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Abstract 

Background 

Early life is a critical period for neurodevelopment, during which the nervous system is highly 

vulnerable to environmental factors. Maternal exposure to chemicals during pregnancy can 

transfer through the placenta to the fetal circulation. Numerous substances have been 

documented to have confirmed or potential neurotoxicity. Food is one of the primary pathways 

for exposure to these chemicals. The objective of the present study is to investigate the 

associations between maternal dietary exposure to food chemicals during the last three 

months of pregnancy and child neurodevelopment. 

Methods 

A total of 10,080 mother-child dyads from Étude Longitudinale Française depuis l'Enfance 

(ELFE) study were enrolled in the present study. Maternal dietary exposure to food chemicals 

was assessed by Food Frequency Questionnaire (FFQ). Child neurodevelopment was 

evaluated by the Child Development Inventory (CDI) score at 3.5 years old. After screening 

210 chemicals, we focused our analysis on 14 metals as a mixture. We performed several 

statistical methods to analyze the effects of these chemicals. Principal component analysis 

(PCA) was used for dimensionality reduction and applied in multivariable linear regression. 

Bayesian kernel machine regression (BKMR) and quantile g-computation (QGC) were used to 

assess multiple exposures to mixtures. 

Results 

We obtained consistent results across all four statistical methods. The overall effect of the 

metal mixture was positively associated with child neurodevelopment at 3.5 years of age. 

Specifically, Antimony exhibited a negative association, whereas inorganic Mercury and Tin 

showed positive associations with child neurodevelopment. Additionally, Manganese and 

Germanium demonstrated positive associations in linear regression. No associations were 

found with other metals. 

Conclusion 

The present study showed various associations between maternal dietary exposure to metals 

during pregnancy and the child neurodevelopment. 
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Introduction 

According to the developmental origins of health and disease (DOHaD) theory, prenatal and 

perinatal exposure to environmental factors plays a crucial role in the long-term development 

of children [1]. The fetal period is a critical phase during which the nervous system forms, and 

the developing brain is especially susceptible and vulnerable to environmental factors 

compared to the adult brain. [2–4]. Certain substances can cross the blood-placenta barrier 

from the mother to enter the child’s circulation resulting in impairment, such as methylmercury 

[5] and fluoride [6].  

Neurotoxicity is defined as the direct or indirect impact of chemicals that impair the nervous 

system in humans or animals [7]. A wide variety of substances have been reported to exhibit 

neurotoxic effects on humans, such as polychlorinated biphenyls (PCBs), arsenic, acrylamide, 

organophosphate pesticides, and hazardous air pollutants [8–10]. The susceptibility of the 

mammalian nervous system to chemical perturbations arises from its functional design 

features, given that nerve cells are prone to chemical attack at multiple loci [7]. Consequently, 

neurological dysfunction is one of the most common toxic responses to chemical substances 

among humans [7]. Neurotoxicity-induced diseases include Alzheimer's disease (AD), 

Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism spectrum 

disorder (ASD), intellectual disability and other cognitive impairments [2,8]. 

Epidemiological studies have shown the associations between prenatal exposure to certain 

substances and child neurodevelopment outcomes. For example, higher levels of prenatal 

exposure to phthalate metabolites and organophosphate esters, measured by urinary 

concentrations, have been discovered to be associated with poorer cognitive and behavioral 

outcomes in children aged 0–12 years [11,12]; perinatal exposure to PCBs could be associated 

with adverse cognitive development and attention in middle childhood [13]. However, results 

from previous studies have shown inconsistencies in various aspects. For instance, prenatal 

exposure to different types of PFAs yielded opposite results on the Performance Intelligence 

Quotient (PIQ) among children of different sexes aged 4-8 years [14] ; A cross-sectional study 

in Norway found that maternal blood concentrations of arsenic, cadmium and manganese in 

the 17th week of gestation were positively associated with the risk of autism spectrum disorder, 

while cesium, copper, mercury and zinc were negatively associated [15]. Furthermore, most 

previous epidemiological studies on environmental risk factors have mainly focused on the 

health effects of exposure to single substances, while real-world exposures typically involve 

complex mixtures of multiple chemicals [16,17]. Chemical mixtures have been increasingly 

studied, benefiting from emerging methods such as Bayesian Kernel Machine Regression 
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(BKMR), Weighted Quantile Sum (WQS), and Least Absolute Shrinkage and Selection 

Operator (LASSO). These models are designed to account for nonlinear relationships and 

multicollinearity of mixtures, which makes them more reliable and adaptable than other 

statistical models to screen out the dominant contributors to the joint effect. [18]. 

Diet is a major source of intake for numerous environmentally harmful substances [19]. Food 

can become contaminated during production or processing, or due to leakage from its 

packaging [20–26]. Longitudinal studies investigating the long-term neurodevelopmental 

outcomes in children due to prenatal dietary exposure to the mixture of neurotoxic substances 

have not yet been conducted. The present study aimed to utilize multiple statistical methods 

to investigate the associations between maternal dietary exposure to the chemical mixture 

during the last three months of pregnancy and child neurodevelopment. 

This work was conducted within the team Recherche sur les déterminants précoces de la santé 

(EAROH) at Centre de Recherche en Epidémiologie et Statistiques (CRESS), and was funded 

by Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE). 

All data management, data analyses and manuscript writing were done by Zheng Wang under 

the supervision and guidance of professional advisors Blandine de Lauzon Guillain and Manik 

Kadawathagedara. 

Methods 

2.1 Study population 

The present study was based on the prospective population-based cohort study “Étude 

Longitudinale Française depuis l'Enfance” (ELFE). ELFE study is the first French nationwide 

birth cohort study launched in 2011. This study recruited 18,329 newborns from 320 randomly 

selected maternity units in metropolitan France, including 289 pairs of twins. Recruitment was 

conducted during 25 selected days and grouped into four waves over the year [27]. The 

inclusion criteria were single or twin live births at 33 weeks of gestation or later, mothers aged 

18 years or older, and no intention to leave metropolitan France within three years. Follow-up 

in the first 5 years mainly consisted of phone interviews, face-to-face interviews and self-

reported questionnaires conducted with the parents. 
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2.2 Prenatal exposure to food chemicals 

Maternal dietary intake 

The assessment of maternal dietary exposure to chemicals during the last three months of 

pregnancy has been previously described [26]. During maternity stay, mothers completed a 

self-administered food frequency questionnaire (FFQ) to collect their dietary habits during the 

last three months, including the consumption of 125 food items, 12 non-alcoholic and 4 

alcoholic beverages [28]. Portion size was based on photos from the SU.VI.MAX portion book 

[29] for 75 commonly eaten food items, and the midportion in the SU.VI.MAX portion book was 

automatically assigned for the 50 remaining food items. Following the transformation of FFQ 

frequency categories into daily frequencies, the daily intake of each food item was determined 

by combining the intake frequency and the portion size [28]. 

Maternal daily energy intake (kcal/day) was obtained by multiplying daily food intakes with the 

corresponding nutritional values in the SU.VI.MAX food composition database [30]. Maternal 

diet quality during the last three months was evaluated by the Probability of Adequate Nutrient 

intake-based Diet quality index score (PANDiet score), which ranges from 0 to 100 points, with 

higher scores indicating better nutritional adequacy [31]. 

Chemical content of food products 

The second Total Diet Study (TDS 2) was undertaken by Agence nationale de la sécurité 

sociale (ANSES) and published in 2011. TDS 2 aimed to describe the French population's 

food-based exposure to substances of public health interest and to characterize the health 

risks linked to food and associated with these substances [32]. TDS 2 analyzed 445 

substances in approximately 20,000 food products collected throughout metropolitan France, 

representing 90% of the diets of both adults and children in France [33,34]. For substances 

with concentrations below the limit of detection (LOD) or between the LOD and the limit of 

quantification (LOQ), the Lower Bound (LB) scenario was used, as recommended in 

GEMS/Food-EURO (2013) [35]. This scenario implies that non-detected values were replaced 

with 0 and values between the LOD and the LOQ were replaced by the values of LOD. 

Estimation of maternal dietary exposure to chemicals 

The women’s dietary intake in the ELFE study has been previously combined with the chemical 

content of food items in the TDS 2 [26]. For 210 substances in the ELFE study, the dietary 

exposure was above 0 for at least one woman. 
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2.3 Selection of chemicals 

A mixture is defined as containing a minimum of three independent chemicals or chemical 

groups [16]. Mixture data is often high-dimensional and exhibits non-linear relationships with 

outcomes, which can render traditional statistical methods unsuitable or yield less robust 

results [17,36]. Moreover, the multicollinearity and interactions among mixture components — 

such as synergistic, antagonistic, and additive effects — add complexity and challenges to 

statistical methods [16,18]. It was not feasible to include all 210 substances in the analysis; 

therefore, we conducted the following process to select substances for the present study.  

Initially, our analysis focused on chemicals with evidence of neurotoxic effect or biological 

plausibility of affecting neurodevelopment. We retrieved the conclusions of agency reports, 

literature reviews and articles published between 2014 and 2024 regarding the effects of all 

210 substances on child neurodevelopment, cognitive and behavioral outcomes, as well as 

evidence from animal experiments. Epidemiological, toxicological and mechanistic evidences 

were considered simultaneously [37]. Chemicals demonstrating well-documented neurotoxic 

effects or neurotoxicity were classified as confirmed neurotoxins, while those with inconsistent 

or inconclusive findings were classified as potential neurotoxins. This step resulted in the 

exclusion of 63 chemicals lacking sufficient evidence of neurotoxic effects or neurotoxicity.  

Next, Spearman correlations were conducted between each chemical and each food item, 

using 0.8 as an arbitrary correlation coefficient threshold. 52 chemicals strongly correlated 

(r>0.8) with at least one food item were excluded because high correlation between chemical 

and food item indicated overlapping intake patterns, making it difficult to distinguish the effects 

of the chemical from those of the food itself. 

After these first two steps of selection, the remaining 95 food chemicals consisted of the 

following: 9 brominated flame retardants (BFRs), 8 dioxins, 19 hazardous air pollutants (HAPs), 

14 metals, 17 polychlorinated biphenyls (PCBs), 22 pesticides, 3 perfluoroalkyl acids (PFAAs), 

acrylamide, bisphenol A, and fumonisin B1. In the subsequent study, we aimed to investigate 

the mixture effects of a chemical family. 

Acrylamide, bisphenol A, and fumonisin B1 were excluded as they were the only representative 

of their chemical family. PFAAs, consisting of only three chemicals, were considered 

insufficiently complex for meaningful mixture analysis. Pesticides, PCBs and dioxins were not 

prioritized as their neurotoxic effects have been extensively studied [12,13,38]. HAPs were 

excluded due to their large number of compositions, which could potentially decrease model 

robustness and increase computation time and model complexity. Although animal 
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experiments suggest potential neurotoxicity of BFRs [39,40], the limited and unclear 

mechanisms in existing evidence would make it difficult to compare and discuss our results 

with the literature.  

After considering all the above-mentioned factors and excluding other chemical families, we 

ultimately focused the present study on 14 metals: aluminum (Al), inorganic arsenic (Asi), 

cadmium (Cd), inorganic mercury (HgI), manganese (Mn), lead (Pb), cobalt (Co), chromium 

(VI) (CrVI), germanium (Ge), lithium (Li), nickel (Ni), antimony (Sb), tin (Sn) and vanadium (V). 

2.4 Assessment of child neurodevelopment 

For this project, we decided to focus on child neurodevelopment assessed at 3.5 years. 

Parents complete an adapted version of the Child Development Inventory (CDI-3.5) by phone 

interviews [41,42]. CDI-3.5 included 8 domains of development: social, self-help, gross motor 

skills, fine motor skills, expressive language, language comprehension, characters and 

numbers. Each item is scored with 1 point if the child has acquired the ability and 0 if the ability 

has not been acquired. An overall CDI-3.5 score was calculated by summing the scores for all 

items, ranging from 17 to 62. A higher CDI-3.5 score indicates better neurodevelopmental 

attainment. 

2.5 Selection of study sample 

We excluded 59 participants who withdrew consent during the survey and randomly selected 

one infant from each of the 287 pairs of twins. Then we excluded participants without valid 

data on the FFQ or those who likely misreported their food intake (with a daily energy intake 

lower than the 3rd percentile, 933 kcal or higher than the 97th percentile, 5073 kcal) [43]. Next, 

we excluded participants with missing data in metals exposure or CDI-3.5 score. Finally, a total 

of 10,080 mother-child dyads were included in our study (Fig. 1). 
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Fig.1 Flowchart of the selection of study sample 

 

 

2.6 Covariates 

Maternal socio-economic and health characteristics were collected during the face-to-face 

interview at inclusion, the 2-month phone interview and maternal medical record. These 

covariates included maternal age at delivery (years), maternal pre-pregnancy body mass index 

(kg/m2), maternal educational level (upper secondary or lower, intermediate, 3-y university 

degree, ≥5-y university degree), employment status during pregnancy (employed, unemployed, 

out of the labor force), monthly family income per consumption unit (€), Edinburgh Postnatal 

Depression Scale (EPDS) score [44], migration status (migrant/not born to French parents, 

descendant of at least one migrant parent, majority population/born to French parents), 

number of older children in the household (no sibling, 1 sibling, ≥2 siblings), maternal smoking 

during pregnancy (never smoker, smoker only before pregnancy, smoker only in early 

pregnancy, smoker throughout pregnancy). Region of residence (Paris region, North, East, 

Paris Basin – East, Paris Basin – West, West, Southwest, Southeast, Mediterranean) was 

derived from zip code. 
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2.7 Statistical methods 

In all statistical models, metal concentrations have been log-transformed due to non-normal 

distribution. Following this transformation, all metal concentrations exhibited normal 

distributions. The MissForest imputation was performed to handle missing values in covariates 

[45]. We performed comparisons of continuous or categorical variables between the included 

and excluded populations at baseline using Student's t-test or chi-square test, respectively. 

Covariates used in the main analyses were identified from the literature and selected using the 

directed acyclic graph [46] (Fig. S1). All statistical models were adjusted for variables 

presented before: maternal age at delivery, maternal pre-pregnancy body mass index, 

maternal educational level, employment status during pregnancy, monthly family income per 

consumption unit, Edinburgh Postnatal Depression Scale score, migration status, number of 

older children in the household, maternal smoking during pregnancy, maternal daily energy 

intake, mother’s diet quality and region of residence, as well as variables related to study 

design (recruitment wave and maternity size) and child’s age at neurodevelopment 

assessment. 

Firstly, as a preliminary and traditional approach, we performed multivariable linear regression 

to analyze the association of 14 metals and neurodevelopment at 3.5 years, considering all 14 

metals simultaneously and adjusting for all covariates. 

The following methods were employed to analyze the metal mixture, and their results were 

compared. 

• Principal component analysis (PCA) was conducted to identify the patterns of maternal 

dietary exposure to chemicals. The identified principal components were included in a 

multivariable linear regression model to examine their effects on the child 

neurodevelopment outcomes, instead of 14 individual metals. 

• The Bayesian Kernel Machine Regression (BKMR) model was used to examine the 

overall association of the mixture and the individual associations of 14 metals, as well as 

the interactions among the 14 metals. BKMR is developed to achieve variable selection, 

flexible estimation of the exposure-response relationship, and inference on the strength 

of the association between individual substances and health outcomes in a health effects 

analysis of mixtures simultaneously [17,47–49]. Furthermore, it can identify non-linear and 

non-additive relationships among chemicals in the mixture, and allows for adjustment for 

other variables. The group conditional posterior inclusion probabilities (groupPIPs) and 

conditional posterior inclusion probabilities (condPIPs) for individual metals in the mixture 
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were obtained from the BKMR model with a hierarchical variable selection procedure 

(10,000 iterations by the Markov Chain Monte Carlo algorithm), adjusting for all covariates. 

The 14 metals were grouped into three groups based on their common Spearman 

correlations with the same food group sources (Group 1: Al, Cd, Mn, Pb, Co, Ni, Sn, 

correlated with fruits; Group 2: As, CrVI, Ge, Li, Sb, V, correlated with water; Group 3: HgI, 

correlated with fish) to fit the hierarchical BKMR model (Fig. S2). 

• Quantile g-computation (QGC) was finally performed to estimate the joint effect of the 

metal mixture, providing estimates of the simultaneous effect on the child 

neurodevelopment outcome when all exposures in the mixture increase by one quantile. 

The QGC model also displayed assigned weights of individual metals in the mixture, 

indicating the contribution of individual metals in the mixture to the joint effect. QGC is a 

novel method based on weighted quantile sum (WQS) to analyze mixtures, without 

requiring the assumption of directional homogeneity, and allow nonlinearity and non-

additivity effects of the individual in mixture [50]. The QGC model also included 14 metals 

and adjusted for all covariates, employing 1000 bootstrap iterations for robustness. 

All the statistical analyses were performed in R version 4.2.1 (R Foundation for Statistical 

Computing, Vienna, Austria). 

2.8 Ethical statement 

The ELFE study received approvals from the National Advisory Committee on Information 

Processing in Health Research (Comité Consultatif sur le Traitement de l’Information en 

matière de Recherche dans le domaine de la Santé), the National Data Protection Authority 

(Comission Nationale Informatique et Liberté), the Committee for Protection of Persons 

Engaged in Research (Comité de Protection des Personnes) and the National Committee for 

Statistical Information (Conseil National de l’Information Statistique). An informed consent was 

signed by the parents or the mother alone, with the father being informed of his right to deny 

the consent for participation. 
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Results 

3.1 Sample characteristics 

Compared to excluded mothers, included mothers were older, more frequently employed, 

more highly educated, had higher household incomes, smoked less during pregnancy, and 

were less likely to be immigrants. Included and excluded children showed no difference in sex, 

but included children had a higher proportion of having only one sibling (Table 1). 

Table 1 General characteristics of the included and excluded study population at baseline  

Characteristics Missing 
Value 

Included 
population 
(N = 10,080) 

Missing 
Value 

Excluded 
population 
(N = 8,249) 

p-value 

Maternal age at delivery (years), median ± SD 1 31.5 ± 4.6 112 30.0 ± 5.5 <0.001 
Maternal pre-pregnancy BMI (kg/m2), median ± SD 101 23.3 ± 4.6 328 23.7 ± 5.0 <0.001 
Maternal educational level, % (n) 2,658  3,138  <0.001 

Up to upper secondary  2.8% (210)  8.1% (412)  
Intermediate  36.7% (2,720)  54.2% (2,772)  
3-y university degree  33.1% (2,455)  22.3% (1,138)  
At least 5-y university degree  27.5% (2,037)  15.4% (789)  

Maternal employment status during pregnancy, % (n) 134  1,792  <0.001 
Employed  78.5% (7,804)  60.5% (3,909)  
Unemployed  10.0% (998)  15.4% (997)  
Out of the labor force  11.5% (1,144)  24.0% (1,551)  

Household income, (€/month/consumption unit), median ± SD  405 1740 ± 929 2,385 1458 ± 1107 <0.001 
Migration status, % (n) 154  1,768  <0.001 

Immigrant  7.3% (726)  14.7% (954)  
Descendant of at least one immigrant  9.3% (923)  12.3% (799)  
Rest of population  83.4% (8,277)  73.0% (4,728)  

Maternal smoking during pregnancy, % (n) 93  262  <0.001 
Never smoker  58.0% (5,795)  56.1% (4,479)  
Smoker only before pregnancy  25.3% (2,529)  19.4% (1,547)  
Smoker only in early pregnancy  3.6% (362)  4.4% (355)  
Smoker throughout pregnancy  13.0% (1,301)  20.1% (1,606)  

Child sex, % (n) 0  99  0.233 
Boys  51.0% (5,141)  51.9% (4,230)  
Girls  49.0% (4,939)  48.1% (3,920)  

Number of older children, % (n) 127  1,659  <0.001 
No sibling  43.1% (4,291)  46.7% (3,076)  
One sibling  38.9% (3,871)  32.8% (2,158)  
At least 2 siblings   18.0% (1,791)  20.6% (1,356)  

 

3.2 Concentration of metals 

Table 2 displays the maternal dietary exposure to metals considered individually among the 

entire study sample, measured in units of μg/day, along with different types of health-based 

guidance values from the TDS 2 study. All the concentrations are reported using the median 

and IQR, as none exhibited a normal distribution. 
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Table 2 Concentrations of metals in the study sample and health-based guidance values in the 
TDS 2 study (n=10,080) 

Chemicals Concentration 
(μg/day), 

Median (IQR) 

Health-based 
guidance values 

Type of value 
adopted 

Aluminum 3071.6 (2370.2-3354.6) 1000 µg/kg bw/week PTWI 
Arsenic (inorganic) 27.3 (21.1-35.3) 0.3-8 µg/kg bw/day Reference point 
Cadmium 11.4 (9.0-14.5) 2.5 µg/kg bw/week TWI 
Mercury (inorganic) 1.0 (0.7-1.3) 4 µg/kg bw/week PTWI 
Manganese 2278.6 (1762.8-2884.7) 10000 µg/day UL 
Lead 14.0 (11.3-17.4) 0.5-1.5 µg/kg bw/day Reference doses 
Cobalt 14.0 (11.2-17.5) 1.6-8 µg/kg bw/day TDI 
Chromium (VI) 49.4 (40.5-61.4) / / 
Germanium 5.1 (3.7-6.9) 1000 µg/kg bw/day LOAEL 
Lithium 47.1 (35.1-61.8) / / 
Nickel 171.5 (136.1-215.5) 22 µg/kg bw/day TDI 
Antimony 1.8 (1.4-2.4) 6 µg/kg bw/day TDI 
Tin 91.2 (60.3-141.2) / / 
Vanadium 67.2 (53.3-85.8) / / 
Reference point and reference doses are from The European Food Safety Authority (EFSA 2010b). 
Abbreviations: PTWI, provisional tolerable weekly intake; TWI, tolerable weekly intake; UL, tolerable upper intake 
level; TDI, tolerable daily intake; LOAEL, lowest observed adverse effect level; bw, body weight; IQR, interquartile 
range. 

3.3 Correlation of dietary exposure to metals 

A Spearman correlation matrix was conducted between each individual metals (Fig. 2), 

illustrating some metals were highly correlated. 

3.4 Multivariable linear regression 

The multivariable linear regression considered all 14 metals simultaneously and adjusted for 

potential confounding factors as previously described. Prenatal exposure to mercury, 

manganese, germanium and tin was positively associated with CDI-3.5 score, while prenatal 

dietary exposure to antimony was negatively associated with CDI-3.5 score (Table 3).  
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Fig. 2 Spearman correlation matrix of 14 metals (N=10,080) 

 

Abbreviations: Al, aluminum; Asi, inorganic arsenic; Cd, cadmium; HgI, inorganic mercury; Mn, manganese; Pb, 
lead; Co, cobalt; CrVI, chromium (VI); Ge, germanium; Li, lithium; Ni, nickel; Sb, antimony; Sn, tin; V, vanadium. 

Table 3 Associations of 14 metals considered simultaneously and CDI score at 3.5 years 

Chemicals Adjusted model (N= 10,080) 

β (95%CI) p-value 

Aluminum 0.59 (-0.31, 1.49) 0.196 

Arsenic (inorganic) -1.58 (-3.26, 0.10) 0.066 

Cadmium -0.31 (-1.03, 0.41) 0.394 

Mercury (inorganic) 0.43 (0.13, 0.72) 0.004 

Manganese 0.84 (0.03, 1.65) 0.043 

Lead 0.06 (-0.78, 0.91) 0.882 

Cobalt -0.17 (-1.33, 0.99) 0.770 

Chromium (VI) 0.18 (-0.88, 1.23) 0.745 

Germanium 1.62 (0.53, 2.70) 0.004 

Lithium 0.24 (-0.40, 0.89) 0.464 

Nickel 0.45 (-0.62, 1.52) 0.408 

Antimony -1.17 (-2.03, -0.31) 0.008 

Tin 0.34 (0.17, 0.52) <0.001 

Vanadium -0.55 (-2.18, 1.07) 0.505 

Values were estimated (95%CI) from a multivariable linear regression model, considering all metals 
simultaneously and also adjusted for maternal age at delivery, maternal pre-pregnancy body mass index, 
maternal educational level, maternal employment status during pregnancy, household income, Edinburgh 
Postnatal Depression Scale, migration status, number of older children, maternal smoking during pregnancy, 
maternal daily energy intake, maternal diet quality, region of residence, recruitment wave and maternity size. 
Abbreviations: CI, confidence interval. 
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3.5 Principal component analysis 

Based on the principal component analyses, 4 patterns of dietary exposure to metals were 

identified in PCA, which collectively explained 89% of the variance (Table 4). Factor loadings 

greater than 0.40 were considered indicative of a strong contribution to the underlying pattern. 

The first pattern, labeled 'global exposure to metals', was positively associated with all the 

metals. The second pattern, labeled 'High Mn, Sn and low Ge', was positively associated with 

Mn and Sn, and negatively associated with Ge. The third pattern, labeled 'Sn', was 

characterized by high dietary exposure to Sn. The final pattern, labeled 'HgI', was 

characterized by high dietary exposure to HgI. 

Table 4 Factor loadings of dietary exposure patterns to 14 metals (n=10,080) 

Chemicals Components 

1 2 3 4 

Aluminum 0.89 0.17 -0.15 -0.11 

Arsenic (inorganic) 0.89 -0.39 0.01 -0.02 

Cadmium 0.82 0.38 -0.09 -0.05 

Mercury (inorganic) 0.65 -0.05 0.28 0.66 

Manganese 0.83 0.41 -0.18 -0.09 

Lead 0.89 0.14 -0.02 0.01 

Cobalt 0.87 0.31 -0.12 0.19 

Chromium (VI) 0.88 -0.24 0.05 0.03 

Germanium 0.78 -0.57 0.00 -0.10 

Lithium 0.80 -0.38 0.11 -0.12 

Nickel 0.85 0.37 -0.08 0.10 

Antimony 0.87 -0.03 -0.17 -0.15 

Tin 0.51 0.40 0.70 -0.29 

Vanadium 0.90 -0.38 0.02 -0.05 

% Explained variance 68 11 5 5 

Cumulative % Explained variance 68 79 84 89 

 

A multivariable linear regression model was performed considering all 4 PCA components 

simultaneously instead of 14 individual metals, and adjusted for potential confounding factors. 

All 4 dietary exposure patterns were positively associated with CDI score at 3.5 years. (Table 

5). 
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Table 5 Associations between 4 exposure patterns to metals and CDI score at 3.5 years 
(n=10,080)  

Components β (95%CI) p-value 

1 2.02 (1.82, 2.22) <0.001 
2 0.16 (0.09, 023) <0.001 
3 0.11 (0.003, 0.21) 0.042 
4 0.23 (0.10, 0.36) <0.001 

Values are estimated (95%CI) from a multivariable linear regression model, considering all 4 PCA components 
simultaneously and also adjusted for maternal age at delivery, maternal pre-pregnancy body mass index, 
maternal educational level, maternal employment status during pregnancy, household income, Edinburgh 
Postnatal Depression Scale, migration status, number of older children, maternal smoking during pregnancy, 
maternal daily energy intake, maternal diet quality during the last trimester of pregnancy, region of residence, 
recruitment wave and maternity size. 
Abbreviations: CI, confidence interval. 

3.6 Bayesian kernel machine regression 

The group conditional posterior inclusion probabilities (groupPIPs) and conditional posterior 

inclusion probabilities (condPIPs) derived from the BKMR model are presented in Table 6. The 

posterior inclusion probability (PIP) is a ranking measure (ranging from 0 to 1) used to indicate 

the extent to which data supports the inclusion of variables. In BKMR models, groupPIPs 

assessed the importance of three metal groups, and condPIPs assessed the importance of 

individual metals within their respective groups. 

Group 1 had the highest contribution to the exposure-response function, with a groupPIP of 

1.000. The groupPIPs for Group 2 and Group 3 were 0.516 and 0.518, respectively. In Group 

1, Sn had the highest contribution with a condPIP of 0.970, while CrVi and Sb had the highest 

condPIPs in group 2 (0.674 and 0.112, respectively). HgI was the only metal in Group 3 with 

a condPIP 1.000. 

  



18 

 

Table 6 Group and conditional posterior inclusion probabilities of the metal mixture in BKMR 
(n=10,080) 

Chemicals Group GroupPIP CondPIP 

Aluminum 1 1.000 0.022 
Cadmium 1 1.000 0.000 
Manganese 1 1.000 0.000 
Lead 1 1.000 0.000 
Cobalt 1 1.000 0.000 
Nickel 1 1.000 0.008 
Tin 1 1.000 0.970 
Arsenic (inorganic) 2 0.516 0.023 
Chromium (VI) 2 0.516 0.674 
Germanium 2 0.516 0.062 
Lithium 2 0.516 0.054 
Antimony 2 0.516 0.112 
Vanadium 2 0.516 0.074 
Mercury (inorganic) 3 0.518 1.000 

The BKMR model included all metals simultaneously and adjusted for maternal age at delivery, maternal pre-
pregnancy body mass index, maternal educational level, maternal employment status during pregnancy, 
household income, Edinburgh Postnatal Depression Scale, migration status, number of older children, maternal 
smoking during pregnancy, maternal daily energy intake, maternal diet quality, region of residence, recruitment 
wave and maternity size.  
Abbreviations: GroupPIP, group posterior inclusion probability; CondPIP, conditional posterior inclusion 
probability. 

In the overall mixture effect analysis, after adjustment for all the potential confounding factors, 

the log-transformed concentration of metals mixture at or over the 60th percentile was 

positively associated with the CDI-3.5 score (Fig. 3). 

Fig. 3 Overall association of the metal mixture and the CDI-3.5 score in BKMR (n=10,080) 

 

This figure plots the estimated difference in CDI-3.5 score when all metals were fixed at specified quantiles, 
ranging from the 25th percentile to the 75th percentile. The BKMR model included all metals simultaneously and 
adjusted for maternal age at delivery, maternal pre-pregnancy body mass index, maternal educational level, 
maternal employment status during pregnancy, household income, Edinburgh Postnatal Depression Scale, 
migration status, number of older children, maternal smoking during pregnancy, maternal daily energy intake, 
maternal diet quality, region of residence, recruitment wave and maternity size. 
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Next, we analyzed univariate associations to visually examine the individual effect of each 

metal in the mixture on child neurodevelopment outcome while holding the other metals 

constant at the 50th percentile (Fig. 4). The exposure-response function (h) curves indicated 

that HgI had a linear positive relationship, whereas Sn had a non-linear positive relationship, 

and Sb had a linear negative relationship with the outcome, all with credible intervals excluding 

the null at one point. 

Fig. 4 Univariate associations of individual metals and the CDI-3.5 score in BKMR (n=10,080) 

 

This figure shows the univariate associations of individual metals and CDI-3.5 score in BKMR, when all other 
metals were fixed at the 50th quantile. The BKMR model included all metals simultaneously and adjusted for 
maternal age at delivery, maternal pre-pregnancy body mass index, maternal educational level, maternal 
employment status during pregnancy, household income, Edinburgh Postnatal Depression Scale, migration 
status, number of older children, maternal smoking during pregnancy, maternal daily energy intake, maternal diet 
quality, region of residence, recruitment wave and maternity size. The predictors z are referred to as exposure 
variables, and h(z) is termed the exposure-response function. 

Single-variable effects of individual metals are presented in Fig. 5. The individual contributions 

to the outcome were assessed when other metals were fixed at the 25th, 50th and 75th 

percentile, respectively. The results were consistent with univariate associations analysis: 

prenatal exposure to Sn and HgI were positively associated, while prenatal dietary exposure 

to Sb was negatively associated with the outcome. 
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Fig. 5 Associations of individual metals and the CDI-3.5 score in BKMR (n=10,080) 

 

This figure displays the estimated difference in the CDI-3.5 score with a change in individual metals, when all 
other metals were fixed at the 25th (red), 50th (green) and 75th (blue) percentile. The BKMR model included all 
metals simultaneously and adjusted for maternal age at delivery, maternal pre-pregnancy body mass index, 
maternal educational level, maternal employment status during pregnancy, household income, Edinburgh 
Postnatal Depression Scale, migration status, number of older children, maternal smoking during pregnancy, 
maternal daily energy intake, maternal diet quality, region of residence, recruitment wave and maternity size. 

Fig. S3 illustrates the interaction analyses between each pair of metals. The bivariate 

exposure-response function curve of one metal is depicted, when the concentration of another 

metal in the pair was held constant at the 25th, 50th, or 75th percentile with all other metals 

simultaneously fixed at the 50th percentile, respectively. No interactions were detected within 

the 14 metals. 

3.7 Quantile g-computation 

The joint effect of the mixture from the results of QGC was consistent with the overall effect of 

BKMR model, indicating that for every one quantile increase in the log-transformed 
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concentration of the metal mixture, there is a corresponding increase in the CDI-3.5 score 

(β=0.53, 95%CI: 0.29, 0.77).  

The individual metals included in the mixture were related to the CDI-3.5 score in different 

directions, illustrated by the assigned weights (Fig. 6). Ge contributed the most to the outcome 

in the positive direction, followed by Sn, CrVI, Al, Ni, Mn and HgI. In the negative direction, Sb 

had the highest contribution to the outcome, followed by V, Asi and Co. Cd, Pb and Li only had 

marginal contributions to the outcome. 

Fig. 6 The directions and magnitudes of the assigned weights for individual metals in relation 
to the CDI-3.5 score in the QGC model (n=10,080) 

 

The model considered all metals simultaneously and adjusted for maternal age at delivery, maternal pre-
pregnancy body mass index, maternal educational level, maternal employment status during pregnancy, 
household income, Edinburgh Postnatal Depression Scale, migration status, number of older children, maternal 
smoking during pregnancy, maternal daily energy intake, maternal diet quality, region of residence, recruitment 
wave and maternity size. 

Discussion 

Multiple statistical methods were applied in this study to investigate the effects of maternal 

dietary exposure to individual metals and metal mixture on child neurodevelopment outcome. 

Our main findings were as follows: (1) The overall effect of prenatal exposure to the 14 metals 

was positively associated with the CDI score at 3.5 years. (2) In both the multivariable linear 
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regression model considering all metals simultaneously and the BKMR model, we observed 

that mercury and tin had positive associations with child neurodevelopment outcome, whereas 

antimony had a negative association. The directions of these associations were consistent with 

the assigned weights of individual metals in the QGC model. (3) In the multivariable linear 

regression model considering all metals simultaneously, we additionally observed that 

manganese and germanium had positive associations with the CDI-3.5 score. The directions 

of these associations were also consistent with the assigned weights in the QGC model. (4) In 

PCA, the first four principal components, explaining 89% of the variance, strongly represented 

key patterns of maternal dietary exposure to the 14 metals. We observed that in the 

multivariable linear regression model using the 4 components instead of 14 metals, the 

directions of the coefficients for these 4 components were consistent with the directions of the 

coefficients for the individual metals representing these components' characteristics in the 

linear regression model considering all metals simultaneously.  

The results of the four methods were broadly consistent. Linear regression models, alongside 

logistic regression models, are the classical and most widely used approaches for studying 

chemical substances, yielding straightforward and interpretable results [51,52]. However, its 

application to study mixtures is particularly limited due to the prevalent interactions or 

collinearity among chemicals in real-world mixtures [53,54]. Linear regression struggles to 

handle such interactions or collinearity effectively in high-dimensional data.  

There is insufficient evidence to suggest that germanium is neurotoxic, despite one animal 

study reporting germanium dioxide-induced neurotoxicity [55]. Through the Spearman 

correlation matrix, we observed that germanium was highly correlated with arsenic (r=0.95) 

and vanadium (r=0.94). Its contribution in the BKMR model was minimal, with a condPIP of 

0.062. This indicates that the significant association of germanium in multivariable linear 

regression may be spurious.  

Manganese is a fundamental element in numerous physiological processes, encompassing 

protein and energy metabolism, cellular defense against detrimental free radicals, bone 

development, immune response, reproductive health, digestion, and metabolic homeostasis 

[56]. Despite being a well-understood essential trace element, excessive manganese exposure 

can lead to neurotoxicity [57]. Literature shows mixed epidemiological findings about prenatal 

exposure to manganese and child neurodevelopment outcomes. One study using PROGRESS 

birth cohort reported a negative association between prenatal exposure to manganese and 

child neurodevelopment at 24 months of age (n=514) [58]; another cohort study in Mexico 

found no association between maternal blood manganese levels and child neurodevelopment 

in the first, third, sixth, and twelfth months (n=253) [59], and one study in Spain found that 
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manganese levels in placenta were associated with a decrement in perceptual-performance 

skills in a dose-response manner but with better memory span and quantitative skills at the 

age of 4–5 years (n=302)  [60]. In the present study, dietary exposure to manganese is far 

below the tolerable upper intake level (Table 2). Therefore, the exposure level is probably too 

low to induce deleterious effects on child neurodevelopment. Moreover, through the Spearman 

correlation matrix, manganese was correlated with some other metals, potentially distorting 

the results.  

Mercury has long been established as having neurotoxic effects, with seafood being the main 

source of mercury intake. However, literature shows mixed associations between prenatal 

exposure to mercury and neurodevelopment. We observed a positive association between 

mercury and child neurodevelopment, consistent with one article that reported maternal total 

mercury levels in biomarkers were positively associated with language composite score and 

receptive communication scaled score at 18 months of age (n=1,308) [61]. Two cohort studies 

found mercury exposure through fish intake was not associated with neurodevelopmental 

performance [62,63]. One cohort study in Korea reported maternal exposure to mercury during 

late pregnancy was negatively associated with the Mental Development Index score and 

Physical Development Index score at 6 months in infants (n=523) [64]. A possible explanation 

is that n-3 polyunsaturated fatty acids (PUFAs) in fish consumption have significant health 

benefits for humans [65]. Moreover, the dietary exposure to mercury in the present study was 

much lower than the provisional tolerable weekly intake (Table 2). However, different 

speciation of mercury, such as total mercury and methylmercury, were used in the literature, 

which the present study did not include in the analysis because they were highly correlated 

with fish consumption (>0.8). 

Tin is classified as potentially toxic by the WHO. Inorganic tin has low toxicity, whereas many 

organic tin compounds are toxic [66]. Although we observed positive association of tin with 

child neurodevelopment, the health benefits of tin for humans remain unknown. One 

prospective study in China found urinary Tin levels were negatively associated with Intelligence 

Quotient (IQ) at ages 8 and 10 [67]. No literature or health-based guidance values were 

available to compare the dietary exposure level to tin in the present study. 

Among the four statistical models, the only metal negatively associated with child 

neurodevelopment outcome was antimony. Antimony and its compounds occur naturally in the 

Earth's crust and are released into the environment through natural processes [68]. The 

various toxic effects of antimony on the human body have been confirmed in occupational 

exposure among process workers and laboratory animals  [68–70]. Two prospective studies 

in China showed prenatal exposure to antimony in mixtures was negatively associated with 
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Gesell Development Scale at 2-3 years of age and IQ at 7-10 years of age, respectively [71,72], 

which are consistent with our results.  

The expected negative associations between metals documented to have neurotoxic effects 

on neurodevelopment, such as lead and arsenic, were not observed in the present study. 

Several possible explanations could help to comprehend our results: (1) Although the 

concentrations of these 14 metals are not comparable to those in most previous studies, 

because most literature focuses on substance levels in biomarkers. However, according to 

Table 2, it is possible that because the concentrations of these 14 metals are far below the 

health-based guidance values in TDS2, they may not have had adverse effects on 

neurodevelopment yet. (2) The rate at which chemicals pass through the placenta varies, 

leading to different levels of accumulative chemicals in infant circulation. For example, one 

study in Japan found that antimony levels in the cord blood were twofold higher than those in 

the maternal blood [73]. A population study in China reported that lead, manganese, nickel, 

chromium, tin, vanadium, and arsenic could be detected in umbilical cord blood, while 

cadmium showed difficulty in crossing the placental barrier [74]. Therefore, maternal dietary 

exposure during pregnancy may not accurately represent fetal exposure to some chemicals. 

Our study had several strengths. Firstly, it is the first prospective study investigating the 

relationship between maternal dietary exposure to metal mixture and child neurodevelopment 

in a large-scale population-based cohort, addressing a gap in previous research. Secondly, 

we applied various statistical methods to analyze the effects of the overall mixture and 

individual metals in the mixture, and the different methods resulted in broadly consistent 

findings. Lastly, we adjusted models for various potential confounders selected using a DAG. 

There are also some limitations in our study. Firstly, FFQ might reduce accuracy due to recall 

bias [75]. The FFQ used in the study of dietary intake has been previously validated to mitigate 

this bias [76]. Secondly, the differences in characteristics between included and excluded 

populations at baseline might result in some degree of selection bias. The ELFE study provides 

an opportunity to address this selection and attrition bias, using a specific calculated weighting. 

However, due to time constraints during the internship, we were unable to address this issue. 

This will be undertaken in the future. Other studies on similar subjects utilizing the ELFE study 

demonstrated that this attrition bias minimally impacted our findings [77]. Lastly, We excluded 

some chemicals highly correlated with specific food items, such as methylmercury highly 

correlated with fish consumption (r=0.9), potentially limiting the comprehensiveness of the 

results. However, this exclusion aimed at reducing potential confounding effects from specific 

dietary sources. It ensured that observed associations between chemical exposures and child 

neurodevelopmental outcomes were more likely attributable to a broader range of chemical 
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exposures rather than solely to specific dietary components. Therefore, the implications of this 

exclusion warrant further consideration. 

Conclusion 

The present study applied multivariable linear regression, PCA, BKMR and QGC models to 

investigate the associations between maternal dietary exposure to food chemical mixture of 

14 metals and child neurodevelopment. In the context of prenatal co-exposure to 14 metals, 

we obtained consistent results across all four statistical methods. The overall effect of the metal 

mixture was positively associated with child neurodevelopment at 3.5 years of age. Specifically, 

antimony exhibited a negative association, whereas inorganic mercury and tin showed positive 

associations with CDI-3.5 score. Additionally, manganese and germanium demonstrated 

positive associations only in the multivariable linear regression. No associations were found 

with other metals.  

Our study suggests that given the complexity of chemical mixtures, it is crucial to apply different 

statistical methods to assess their impact on health. We recommend integrating findings from 

various approaches to derive more reliable conclusions. Regarding the recommendations that 

can be made to the public based on this study, we must exercise caution, as this is the first 

large-scale population-based longitudinal study on the association of prenatal exposure to food 

chemicals and child neurodevelopment. Despite identifying several associations, such as soda 

being the food most highly associated with antimony, we cannot yet provide dietary 

recommendations from a public health perspective due to the complexity of various limitations 

and issues. This study represents just the initial phase in this research direction. The exact 

mechanism of the association between prenatal exposure to metals and child 

neurodevelopment is still unclear, and requires further investigation in future studies. 
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Appendices 

Fig. S1 Directed acyclic graph 
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Fig. S2 Spearman correlation heatmap of 14 metals and 44 food groups 

 
Darker colors indicate stronger correlations 
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Fig. S3 Bivariate exposure-response relationships between each pair of individual metals 

 
This figure shows bivariate exposure-response relationships between each pair of individual metals, while the 
concentration of another individual metal was held constant at the 25th (red), 50th (green) and 75th (blue) 
percentile with all other metals simultaneously fixed at the 50th percentile, respectively. The BKMR model 
included all metals simultaneously and adjusted for maternal age at delivery, maternal pre-pregnancy body mass 
index, maternal educational level, maternal employed during pregnancy, household income, Edinburgh Postnatal 
Depression Scale, migration status, number of older children, maternal smoking during pregnancy, maternal daily 
energy intake, maternal diet quality during the last trimester of pregnancy, region of residence of the family, 
recruitment wave and maternity size. 
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Résumé 

Contexte : La première enfance est une période critique pour le neurodéveloppement, durant 

laquelle le système nerveux est hautement vulnérable aux facteurs environnementaux. 

L'exposition maternelle aux produits chimiques pendant la grossesse peut se transférer à 

travers le placenta vers la circulation fœtale. De nombreuses substances ont été documentées 

pour leur neurotoxicité avérée ou potentielle. L'alimentation constitue l'une des voies 

principales d'exposition à ces produits chimiques. L'objectif de la présente étude est 

d'investiguer les associations entre l'exposition alimentaire maternelle aux produits chimiques 

alimentaires au cours des trois derniers mois de la grossesse et le neurodéveloppement de 

l'enfant. 

Méthodes : Un total de 10 080 dyades mère-enfant issues de l'étude Étude Longitudinale 

Française depuis l'Enfance (ELFE) ont été incluses dans la présente étude. L'exposition 

alimentaire maternelle aux produits chimiques alimentaires a été évaluée à l'aide d'un 

questionnaire de fréquence alimentaire (QFA). Le neurodéveloppement de l'enfant a été 

évalué à l'aide du score de l'Inventaire du Développement de l'Enfant (IDE) à l'âge de 3,5 ans. 

Après le dépistage de 210 produits chimiques, nous avons concentré notre analyse sur 14 

métaux sous forme de mélange. Nous avons utilisé plusieurs méthodes statistiques pour 

analyser les effets de ces produits chimiques. L'analyse en composantes principales (PCA) a 

été utilisée pour réduire la dimensionnalité et appliquée à la régression linéaire multivariable. 

La régression bayésienne par noyaux (BKMR) et la g-computation quantile (QGC) ont été 

utilisées pour évaluer les multiples expositions aux mélanges. 

Résultats : Nous avons obtenu des résultats cohérents avec les quatre méthodes statistiques 

utilisées. L'effet global du mélange de métaux était positivement associé au 

neurodéveloppement de l'enfant à l'âge de 3,5 ans. En particulier, l'Antimoine a montré une 

association négative, tandis que le Mercure inorganique et l'Étain ont montré des associations 

positives avec le neurodéveloppement de l'enfant. De plus, le Manganèse et le Germanium 

ont montré des associations positives dans la régression linéaire. Aucune association n'a été 

trouvée avec les autres métaux. 

Conclusion : La présente étude a mis en évidence diverses associations entre l'exposition 

alimentaire maternelle aux métaux pendant la grossesse et le neurodéveloppement de l'enfant. 

 


