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Abstract 

Sleep plays a critical role in children’s mental health development and physical well-being. 

Insufficient duration and inadequate quality of sleep are fairly common in children of preschool 

age (3-5 years) and are associated with an array of health complications in the short and long 

term. The preschool period is also key in the stabilization of gut microbiota characteristics. This 

cross-sectional study aimed to assess the gut microbiota composition and diversity in 

association with the duration and quality of sleep (frequency of sleep onset difficulties and night 

waking) in children of 3.5 years within the framework of the Étude longitudinale française 

depuis l’enfance (ELFE) birth cohort study. Gut microbiota profiling was assessed using a 16S 

rRNA gene sequencing-based method. Two sleep clusters were constructed by Latent Class 

Analysis (LCA) and represented groups of children with less and more optimal sleep. Two 

microbiota enterotypes were identified through the Partitioning Around Medoids (PAM) 

method; enterotype 1 was dominated by Bacteroides and Faecalibacterium and enterotype 2 

was dominated by higher proportions of Prevotella and Bacteroides. Association between 

Chao1 and Shannon alpha diversity measures, microbiota enterotypes, and sleep clusters 

were assessed using binary logistic regression models adjusted for maternal and child health 

and demographic characteristics and household general status. A stratified analysis was 

conducted based on child sex. Permutational Multivariate Analysis of Variance 

(PERMANOVA) was done based on the Bray-Curtis and Weighted UniFrac distance matrices 

to assess the overall gut microbiota community composition differences. Also, the Analysis of 

Compositions of Microbiomes with Bias Correction (ANCOM-BC) and Analysis of Differential 

Abundance Taking Sample Variation into Account (ALDEx-2) methods were used assess the 

specific microbiota genus abundances across the sleep clusters. No significant associations 

were found between the gut microbiota diversity measures or enterotypes and sleep clusters 

in children, however, in the child sex-specific results, every standard deviation increase in the 

microbiota richness was associated with a higher probability of belonging to the “less optimal 

sleep cluster” in boys compared to girls. Neither the overall gut microbiota community 

composition nor any specific genera abundances were significantly different between the two 

sleep clusters. Further research is required to validate the results of this study. 

Keywords: gut microbiota, diversity, composition, sleep duration, night waking, sleep onset 

difficulty, preschool. 
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Résumé  

Le sommeil joue un rôle essentiel dans la santé physique et mentale des enfants. Une durée 

et une qualité de sommeil insuffisantes sont fréquentes chez les enfants d'âge préscolaire (3-

5 ans) et sont associées à un moins bon développement mental et physique à court et à long 

terme. La période préscolaire est également déterminante pour la stabilisation de la 

composition du microbiote intestinal. Cette étude transversale avait pour objectif d’évaluer la 

composition et la diversité du microbiote intestinal en association avec la durée et la qualité 

du sommeil (fréquence des difficultés d'endormissement et des réveils nocturnes) chez des 

enfants de 3,5 ans de la cohorte de naissance ELFE (Étude longitudinale française depuis 

l'enfance). Le profil du microbiote intestinal a été caractérisé par un séquençage du gène 

codant l'ARNr 16S. Deux groupes de sommeil ont été identifiés par « Latent Class Analysis » 

(LCA) correspondant aux enfants ayant un sommeil respectivement moins et plus optimal. 

Deux entérotypes ont été identifiés par la méthode « Partitioning Around Mediods » (PAM) ; 

l'entérotype 1 était dominé par Bacteroides et Faecalibacterium et l'entérotype 2 était dominé 

par des abondances plus élevées de Prevotella et de Bacteroides. Les associations entre les 

indices de diversités alpha, Chao1 et Shannon, les entérotypes et les clusters de sommeil ont 

été testées à l'aide de modèles de régression logistique binaire ajustés sur un ensemble de 

facteur de confusion potentiels dont les caractéristiques sociodémographiques du ménage, 

les variables relatives à la santé de la mère et de l'enfant et d’autres variables liées au mode 

de vie de l’enfant. Une analyse stratifiée a été réalisée en fonction du sexe de l'enfant. Une 

analyse PERMANOVA (« Permutational Multivariate Analysis of Variance ») a été réalisée sur 

la base des matrices de distance de Bray-Curtis et UniFrac pondérée afin de tester les 

associations entre la composition globale du microbiote et les clusters de sommeil. Des tests 

d'abondance différentielle ont été effectués à l'aide des méthodes « Analysis of Compositions 

of Microbiomes with Bias Correction » (ANCOM-BC) et « Analysis of Differential Abundance 

Taking Sample Variation into Account » (ALDEx-2) afin de mettre en évidence de potentielle 

différences d’abondances de genres bactériens spécifiques associés aux clusters de sommeil. 

Aucune association n'a été mise en évidence entre les indicateurs de diversité du microbiote 

intestinal, les entérotypes et les clusters de sommeil chez les enfants, cependant, les résultats 

spécifiques au sexe de l'enfant ont montré que pour chaque écart-type supplémentaire de la 

richesse du microbiote, il y avait une plus grande probabilité d'appartenir au groupe de 

sommeil le moins optimal chez les garçons que chez les filles. De plus, la composition de la 

communauté du microbiote n'était pas différente entre les deux groupes de sommeil. Aucune 

différence dans l'abondance des genres bactériens n'a été mise en évidence au sein des 

cluster de sommeils. Des études supplémentaires sont nécessaires afin valider les résultats 

de cette étude.  
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Mots clés: microbiote, diversité, composition, durée du sommeil, réveil nocturne, difficultés 

d'endormissement, âge préscolaire 
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1. Introduction  

1.1. Sleep characteristics in preschoolers  

Sleep is a natural physiological condition of unconsciousness that is key to health maintenance 

and survival (1). Sleep is controlled by neurobiological functions and external factors, including 

individual lifestyle habits (2). The American Academy of Sleep Medicine (AASM) recommends 

that healthy newborns (0 to 3 months) need to spend approximately 80% of their day sleeping 

(14 to 17 hours over 24 hours) (3, 4). Based on the AASM recommendations, 12 to 16 hours 

of sleep including 2 to 3 naps per day in 3 to 11 months of age, 11 to 14 hours of sleep including 

1 or 2 naps in 1 to 2 years, and 10 to 13 hours of sleep with or without naps in 3 to 5 years of 

age is essential (4, 5). The recommended sleep durations ought to optimize newborn and 

children’s health; inadequate sleep duration and quality can be detrimental to children’s mental 

health development, psychological performance, cognitive function, behavior and academic 

prosperity, and physical well-being in the short and long term (2, 6). 

The sleep architecture evolves over the lifespan, and despite the inter- and intraindividual 

differences in sleep patterns, sleep duration tends to decrease with age among healthy 

individuals (2, 6). In children, the duration and quality of sleep undergo significant changes in 

the first five years of growth and development (6). Nevertheless, due to methodological 

challenges and ethical considerations, experimental evidence detailing the best and most 

appropriate sleep duration in children is lacking, and adequate sleep is defined as the required 

number of sleep hours for optimal functioning in children (2). Evidence from the literature 

suggests that sleep patterns in children may have geographical variations (7). In a large-scale 

study among 8,542 children aged 2 to 9 years from 8 European countries, nocturnal sleep 

duration ranged from 9.5 hours in Estonia to 11.2 hours in Belgium and varied statistically 

significantly between countries (7). In one study among 1,028 children aged 3 years in France, 

the average sleep duration was 12 hours and 35 ± 56 minutes a day, including naps in 90% of 

children (8). The average night sleep duration of French children, as established in the EDEN 

Mother-Child cohort (8), was between those reported in children from North and South Europe 

(7).  

Despite the significance of sufficient and high-quality sleep in the early years of life, children 

of preschool age (3-5 years) are fairly susceptible to sleep disorders, including sleep onset 

difficulties and night waking, with an estimated prevalence of 20 to 30% in children aged 3 

years and below (6, 9). Occasional night-waking (≤ 3 times a week) is a normal part of sleep 

development during the preschool period and higher frequencies are considered abnormal 

(10). According to the 2004 American National Sleep Foundation Poll among 10,085 children 

(including 387 preschoolers), 10.2% and 35.6% of children reported experiencing sleep onset 

difficulties and at least one night waking, respectively (11). In a birth cohort of 11,500 children 
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in England, night waking prevalence was estimated as 23% at 6 months, 50% at 18 months, 

and 49% at 3 years (12). Similarly, in the French Mother-Child EDEN birth cohort study of 

1,346 children, the prevalence of frequent night waking (>2 nights per week) was 22% between 

2 and 5 years and 26% at 3 years (13). In a birth to 6 years cohort study among 2,889 children 

in Italy, night waking was present in about 35% of toddlers aged 6 to 14 months and 22% of 

children aged 25 to 48 months (10). Also, in the same study, the prevalence of sleep onset 

difficulties was reported as 11% in toddlers aged 6 to 12 months, 7.5% in toddlers aged 13 to 

24 months, and 4.7% in toddlers aged 25 to 48 months (14). Sleep onset difficulty and night 

waking are associated with decreased sleep duration if not adequately managed (13). Also, 

sleep challenges may persist into later childhood, adolescence, and adulthood if remain 

untreated (13, 15).  

It is suggested that the household socioeconomic status, the general health and demographic 

characteristics of the mother (age at birth, pre-pregnancy Body Mass Index (BMI), history of 

depression and/or anxiety) and child (sex, breastfeeding duration, main type of care), are 

associated with the quality and duration of sleep in children (2, 6, 13, 16, 17). In particular, a 

strong association was reported between maternal depression and night waking frequency 

(18), and household income, child racial background, bedtime behavior, and sleep onset 

difficulties in children of preschool age in the literature (18, 19).  

1.2. Gut microbiota characteristics in preschoolers  

Research on the human gut microbiota had significant advances in recent years through 

longitudinal cohort studies and deep metagenomic analyses (20). Many studies are 

highlighting the key role of gut microbiota in human health and physiological traits, including 

but not limited to the regulation of gastrointestinal homeostasis, metabolic activities, immune 

system stimulations, and brain-gut axis communication (21). The initial infant–gut microbiota 

symbiosis in infants is established via vertical transfer from the mother at birth (20, 22). The 

majority of the gut microbiota composition and function development happens around the age 

of 3 years, though the age window is under debate upward (approximately 6 years) (23-25). 

From birth onwards, the gradual development, maturation, and establishment of the gut 

microbiota are regulated through a complex interplay between the host, perinatal and maternal 

conditions, and environmental factors (6, 26).  

While all body sites are colonized with microorganisms to different extents, the human gut 

contains one of the highest abundances of the microbiota overall (27). In a multi-national study 

of the gut microbiota in 903 subjects from infancy up to 3 years of age, a constant and gradual 

change in the within-sample microbiota diversity and the Bacteroidetes and Proteobacteria 

phyla abundances were observed until 30 months of age and from month 31, the diversity and 

the abundance reached relative stability (23). In another study comparing the composition of 
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the gut microbiota between children aged 1 and 4 years and adults in the United States of 

America (USA), children aged 3-4 years still had a lower within-sample microbial diversity anda  

relatively higher abundance of Bifidobacterium genus and Actinobacteria, Bacilli, and 

Bacteroidetes phyla than adults (22) 

More extensive and detailed data is available on the gut microbiota variation, composition, and 

characteristics in infants (<3 years) and adults in the literature, compared to children in the 

preschool age period (3-5 years) (20). Available studies in preschoolers showed associations 

between socioeconomic, demographic, and lifestyle factors and gut microbiota characteristics 

(6, 20, 25, 27, 28). In the first large-scale population-based study of the gut microbiota among 

531 individuals, including infants, children (3–17 years), and adults from the Amazonas of 

Venezuela, rural Malawi, and the USA metropolitan areas, differences in the gut microbiota 

maturation and diversity were reported with regards to the dietary intake and westernization at 

the age of 3 years (29). Moreover, results of the Asian Microbiome Project among 303 school-

aged children living in the urban and rural regions of five East Asian countries revealed higher 

microbiota richness among children living in rural than urban sites (30, 31).  

The overall gut microbiota composition in children is relatively less stable and resilient in the 

presence of extreme external stressors compared to adults (20). Therefore, it is important to 

fill the knowledge gap during this critical phase and intervene and manage health pathologies 

within this window of opportunity. 

1.3. Sleep and gut microbiota in preschoolers 

With the development of sequencing and multi-omics technology, there had been significant 

evolvements in the science of microbiota biology, revealing an extensive bi-directional 

communication between the gut and brain and a role for the gut microbiota in sleep physiology 

(32). Also, aligned with the Developmental Origins of Health and Disease (DOHaD) theory, the 

early three years of life sets the stage for the development of healthy gut microbiota and sleep 

patterns (33, 34). Despite so, a small handful of studies have focused on this area among 

human adults and infants, and the data are scarce and inconsistent in the child population. 

Also, most studies are focused on single measures of sleep quality or duration, whereas both 

aspects must be considered in the assessment of sleep pathophysiology. In terms of 

microbiota diversity, one study in adults suggested a positive association between the within-

sample gut microbiota diversity and total sleep duration, sleep efficiency, and global Pittsburgh 

Sleep Quality Index -measured sleep quality (32, 35, 36). In infants, a negative association 

between day sleep and within-sample gut microbiota diversity was found at 12 months old (37). 

In another study of 3 months old infants, the within-sample microbiota diversity metrics were 

not significantly different according to the total sleep duration (38). When considering 

microbiota composition, the between-sample microbiota diversity was associated with acute 
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(48 hours) partial sleep deprivation in adults (39). In the only available study among 

preschoolers in Canada, the between-sample microbiota diversity was linked to the sleep 

duration at night (40). The possible relationship between gut microbiota activity and sleep is 

most likely explained by the gut-brain axis activity (39), however, exact mechanisms are yet to 

be fully understood.  

1.4. Research aim and objectives  

Emerging evidence from human and animal models supports the bidirectional link between gut 

microbiota diversity and composition, and sleep (20, 32). Both the gut microbiota and sleep 

undergo significant changes during the preschool period (20). Despite the significance of this 

age window in long-term health and the importance of filling the knowledge gap for early 

interventions, only one study in Canada has focused on the hypothesized microbiota-sleep 

association in the preschool years so far (40). However, in this study, the potential role of 

confounders was not taken into account in the statistical analyses. Given the scarcity of data 

in this research field and the novelty of this research area during the preschool age, here we 

aim to study the association between the gut microbiota (diversity and composition) and sleep 

(night and day sleep duration, sleep onset difficulty, and night waking) in preschool-aged 

children aged 3.5 years within the framework of the Étude longitudinale française depuis 

l’enfance (the French Longitudinal Study of Children; ELFE) birth cohort study (41), while 

taking into account the potential known confounders, including the maternal and child health, 

perinatal conditions, and environmental and lifestyle factors.   

2. Materials and Methods  

2.1. ELFE birth cohort study  

The ELFE study is a prospective nationally-representative birth cohort that was launched in 

2011 to characterize the environmental factors and the socioeconomic determinants of child 

health and development from birth to adulthood (42, 43).  

In total, 18,329 newborns born in metropolitan France were recruited from a random sample 

of 320 maternity hospitals over 5 days, spread over four seasonal waves (15). Infants were 

eligible to participate if they were born after 33 weeks of gestational age, whose mothers aged 

18 years and over, were not planning to move outside of France in the following 3 years, and 

were able to read French, Arabic, Turkish, or English (15, 42). Participating mothers signed 

consent for themselves and their infants (15). Fathers signed consent for the infant’s 

participation when present on inclusion days or were informed about their rights to oppose 

(15). The study received approvals from the Consultative Committee for the Treatment of 

Information for Health Research (Comité Consultatif sur le Traitement des Informations pour 
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la Recherche en Santé), the national data protection authority (Commission Nationale 

Informatique et Libertés), and the National Statistics Council.  

During hospitalization at the maternity unit and after child delivery, each mother was 

interviewed face-to-face by trained interviewers, and information on the mother’s health and 

medical status during pregnancy and the general characteristics of the newborn were collected 

via standardized questionnaires. Additional information was extracted from the obstetric and 

pediatric medical files and records.  

Telephone interviews with mothers and/or fathers were conducted at the 2, 12, 24, and 42 

months postpartum follow-up and collected more details on the overall socio-demographic and 

health characteristics of mothers, households, and the included children (41). At 42 months, a 

home visit was also scheduled, during which stool samples were collected for volunteering 

participants. Figure 1 illustrates the ELFE birth cohort study data collection from the child’s 

birth until 12 years follow-up.  

 

 

 

 

 

2.2. Variables  

2.2.1. Outcome variable construction  

The main outcome of this study was the sleep characteristics of children aged 3.5 years. 

Bedtime and wake-up times as well as diurnal napping habits and duration on weekdays and 

weekends were used to calculate the mean day and night sleep durations over the week (41). 

Information on sleep onset difficulties and night waking were recoded as yes/no variables 

(sleep onset difficulty; yes = almost always and often, no = sometimes and never/ night waking; 

yes = ≥ 3 to 6 nights per week, no = <3 nights per week). Considering that both the duration 

and the quality of sleep must be taken into account simultaneously to consider sleep in its 

globality, we used the unsupervised Latent Class Analysis (LCA) method to identify clusters of 

children that shared similar sleep patterns in terms of night and day sleep duration, sleep onset 

difficulty, and night waking. LCA allows the detection of latent (or unobserved) heterogeneity 

in samples (15) and assumes that membership in unobserved classes can cause or explain 

patterns of scores across survey questions (44). According to the LCA algorithm, sleep clusters 

were selected based on the minimum goodness of fit measurements (supplementary table 1). 

Figure 1; The ELFE birth cohort study data collection and follow-up (n = 18,329) 

Adopted from: www.elfe-france.fr, access date: May 2023 

http://www.elfe-france.fr/
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Two sleep clusters were identified described in Table 1. Approximately 25% of the children 

were classified in the “less optimal sleep cluster” which was featured with shorter night sleep 

duration compared with children in the “more optimal sleep” cluster (79.2% with 10h30 hours 

vs. 41.4% with 10h54 hours, p<0.001). Also, the sleep quality of children in the “less optimal 

sleep” was poorer, with a higher frequency of night waking experiences (58.8% vs. 0.0%) and 

sleep onset difficulties (65.3% vs. 10.7%) compared to children in the “More optimal sleep” 

cluster. 

 

2.2.2. Exposure variables construction  

The main exposure of this study was the gut microbiota characteristics in children aged 3.5 

years. Stool samples were collected from 630 children according to the operating procedure 

of the International Human Microbiome Standards (IHMS) (41). Sample collection was done 

using an Enterom kit, placed in a stabilizing solution, and sent to study biobanks across 

mainland France (Dijon, Bois-Guillaume, and Annemasse). Within three days, samples were 

homogenized, aliquoted, and stored at -80°C until analysis. The 16S rRNA sequencing of the 

gut microbiota was performed, and data became available, providing information on 

Operational Taxonomic Units (OTUs) and the taxonomy of the gut microbiota. OTUs classify 

the gut microbiota RNA sequences into clusters based on the similarity of the sequence of the 

16S rRNA marker gene (45). 

From an experimental perspective, the observed and actual biological abundance and 

distribution of the microbiota species in each sample might not be essentially identical (41). In 

other words, the sampling depth across microbiota samples can be different since the 16S 

rRNA gene sequencing allows for uneven sequencing depth (41). This problem is exacerbated 

by the fact that the full range of species is rarely saturated, and more bacterial species are 

Table 1; Distribution of the sleep variables across the clusters of sleep  

 Less optimal 
sleep (n=150) 

More optimal 
sleep (n=447) 

Total 
(N=597) 

P-value*  

 n (%)  n (%) n (%)  

Day sleep duration+ 
    Shorter sleep   
    Longer sleep  

 
79 (53.7) 
68 (46.3) 

 
235 (53.2) 
207 (46.8) 

 
314 (53.3) 
275 (46.7) 

0.92 

Night sleep duration+ 
    Shorter sleep  
    Longer sleep 

 
118 (79.2) 
31 (20.8) 

 
185 (41.4) 
262 (58.6) 

 
303 (50.8) 
293 (49.2) 

<0.001 

Sleep onset difficulty   
  Sometimes, never 
  Almost always, often 

 
52 (34.7) 
98 (65.3) 

 
399 (89.3) 
48 (10.7) 

 
451 (75.5) 
146 (24.5) 

<0.001 

Night waking (per week) 
  <3 nights  
  ≥ 3 to 6 nights  

 
62 (41.3) 
88 (58.7) 

 
447 (100) 

0 (0) 

 
509 (85.3) 
88 (14.7) 

<0.001 

+Categories based on the median sleep duration; SD = Standard Deviation; Categorical variables expressed as frequency and proportion (n (%));   

* Chi-squared or exact Fisher test when the expected frequencies are <5 in some cells  
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observed with more sequencing depth (41). To adjust for the effect of uneven sampling depth 

and enable accurate comparisons and statistical analyses, each sample was normalized 

through rarefaction to the minimum sampling depth of the dataset (46). The rarefied data was 

used for all downstream analyses except for the differential abundance testing. Rarefaction 

involves the random discard of sequences in each sample until the number of sequences in 

each sample equals the number of sequences in the sample with the minimum number of 

sequences (46, 47). Figure 2 represents the rarefaction plot associated with the rarefaction of 

samples on the minimum sampling depth, which equaled 10,637 sequences.  

                        

                               

 

The gut microbiota data were used at the genus taxonomic ranking level to avoid uncertainties 

of the species level due the resolution of the 16S rRNA gene sequencing approach. Figure 3 

illustrates the schematic hierarchy of the microbiota classification.  

 

                                  

 

Within-sample microbiota diversity was estimated by the alpha diversity measures that provide 

a unique value for each individual (48). These measures reflect the abundance (richness), 

distribution (evenness), or both in a single sample (49). The richness of the microbiota 

Figure 2 ; Microbiota rarefaction plot (minimum sampling depth = 10,637) 

Figure 3; Hierarchy of microbiota classification 

Adopted from: www. edu.tbioinfo.com, Access date: May 2023 
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community refers to the number of species, and evenness indicates how the species’ relative 

abundance is distributed (49). In the majority of microbiota research, a combination of indices 

is used to cover the discrepancies (48, 49). In this study, Chao1 and Shannon’s measures 

were used, the most frequently reported in the literature. The Chao1 index considers the 

abundance of observed and rare species and provides an estimation of richness based on the 

singleton and doubleton taxa in a sample (50). The Shannon index is based on the abundance 

of different microbiota taxa and how evenly they are distributed across the sample (48, 49).  

An additional diversity metric known as beta diversity was also used in this study. Unlike the 

alpha diversity measures that are specific to each sample, beta diversity provides a value for 

each pair of samples and compares them based on distance measurements and dissimilarity 

matrices (51). Beta diversity distance matrices consider the presence/ absence, abundance, 

and/or the phylogenic characteristics of the microbiota taxa (49, 51). In this research, Bray-

Curtis and Weighted UniFrac distances were used to reflect the different aspects of community 

heterogeneity. Bray-Curtis distance is based on the taxonomic abundance of species to reflect 

the community composition, and the Weighted UniFrac considers the presence/ absence, 

abundance, and phylogenic relationship of species (49). The inter-individual variability of the 

microbiota was visualized based on the dissimilarity matrices through Principal Coordinate 

Analysis (PCoA). 

Subsequently, the gut microbiota profiles were clustered into enterotypes based on the 

Partitioning Around Medoids (PAM) method (52). An enterotype refers to the distinct and 

relatively stable composition of microbial communities, which is characterized by the 

predominance of certain bacterial taxa (52). Enterotypes were constructed based on the 

Jensen-Shannon divergence matrix. The optimal number of clusters was selected in 

accordance with the Calinski-Harabasz index (supplementary figure 1) (53) and validated 

against the Silhouette width index (supplementary figure 2) and prediction strength (52). In 

addition to PAM, the Dirichlet Multinomial Mixtures (DMM) clustering method was also used to 

identify the microbiota enterotypes (supplementary figures 3 and 4), however, the enterotypes 

found through the PAM method had better interpretability and consistency with the previous 

studies in the literature and were used here.  

We identified two microbiota enterotypes explaining nearly 46% of the variability of the 

microbiota data. Figure 4 presents the distribution of the microbiota samples according to the 

enterotypes, showing a clear spatial distinction between the two enterotypes. Enterotype one, 

in red, included 488 (81.7%) children, and enterotype 2, in blue, included 109 (18.2%) children. 
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The distribution of the ten most abundant microbiota genera within the two enterotypes are 

presented in figure 5. Enterotype 1 was dominated by the genera Bacteroides and 

Faecalibacterium, whereas enterotype 2 was dominated by the genera Prevotella and 

Bacteroides. 

 

Figure 4; Distribution of the microbiota genera across the two enterotypes 

Figure 5; Distribution of the ten most abundant microbiota genera within the enterotypes 
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2.2.3. Covariates  

The maternal and household socio-demographic data were collected through face-to-face 

interviews at the maternity ward or by telephone at 2 months follow-up (41). Information on 

children’s health and general characteristics were retrieved from the 2 months follow-up data 

due to higher precision and completeness.  

The covariables of interest were as follows: maternal birthplace (born in France, Yes/ No), 

maternal exposure to psychotropic medications during pregnancy (Yes/No, constructed based 

on responses to the intake of anti-depressant and/or anti-anxiety medication during 

pregnancy), mother’s pre-pregnancy BMI (Kg/m2) calculated based on the pre-pregnancy 

weight and height, gestational age (weeks), child delivery mode (recoded to 1=Vaginal 

(spontaneous vaginal, forceps, spatulas), and 2= vacuum/Caesarean), mother’s age at birth 

(years), child sex (Boy/Girl), sibling (Yes/No), maternal education at 2 months (recoded as 1= 

<secondary education, 2 = ≤ Baccalaureat +2 , and 3 = > Baccalaureat +2), household income 

at 2 months according to the age and the number of each co-habitant (consumption unit (CU)) 

in tertile (<1,500.00 €/month/ CU, 1,500.00 – 1,944.44 €/month/CU, >1,944.44 €/month/CU), 

pet ownership at 2 months (Yes/ No, constructed based on responses of both parents), 

breastfeeding duration (in months), main mode of childcare at 2 years (recoded to 1 = Family 

(responder, responder’s partner, grandparents, or paid home help), 2 = Child sitter, 3 = 

Collective care (crèche or nursery school)), exact child’s age at stool collection (months), child 

tobacco exposure from pregnancy until 3 years (Yes/ No) constructed based on the information 

collected at the maternity ward and 2 months and 1-3.5 years follow-up, child antibiotics intake 

between 2 and 3 years (recoded as 0 = Never, 1 = Once, 2 = More than once), and residential 

setting at 3 years (recoded as 1 = Rural, 2 = Suburban (2,000 to 199,999 inhabitants), 3 = 

Urban (200,000 to 1,999,999 inhabitants and residents of Greater Paris)). The models were 

also adjusted for the child’s BMI Z-score measurement and diet at 2 years. The BMI Z-score 

data at 3.5 years contained a high amount of missingness and could have biased the overall 

statistical analyses, however, it was shown to be significantly correlated with the BMI Z-score 

measurements at 2 years when assessed by a Pearson Correlation test (R2 = 0.73, P <0.01; 

supplementary figure 5). Also, the distribution of sociodemographic variables across the BMI 

measurements at 2 and 3.5 years followed similar patterns (supplementary table 2). Children’s 

diet at 2 years was assessed through a Principal Component Analysis (PCA) of quantitative 

dietary data included in the 2 years questionnaire (41). PCA is an unsupervised dimensionality-

reduction algorithm that summarizes the information content of large datasets to increase 

interpretability (54). Dietary items used in the PCA and results of the PCA on dietary data are 

reported in supplementary table 3 and supplementary figure 6. Two dietary patterns were found 

based on the food loadings; a healthy dietary pattern (positive loading of pasta, fresh fruits, 

and cooked vegetables and negative loading of fries and sugary drinks) and an unhealthy 
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dietary pattern (positive loading of meat and ham, fries, quiche, fruit juice, cheese, bread, 

pastry, and sweets).  

The missing data for covariates represented 2.4% (patterns in supplementary figure 7) and 

were considered missing at random. Imputation of the missing data was performed using the 

MissForest package in RStudio (55). MissForest is a machine learning-based approach 

commonly used in mixed-type data (55). MissForest uses a random forest imputation algorithm 

that imputes missing data by predicting the missing values based on values of other variables 

in the dataset. It initially imputes all missing data using the mean/mode (depending on the data 

type) and subsequently fits a random forest on the observed part of each variable with missing 

values to predict the missing part. The loop of training and predicting repeats in an iterative 

process until a stopping criterion is met.  

In this study, 100 random trees (the default number from the missForest package) were 

implemented. The missForest imputation accuracy and performance were assessed through 

the Normalized Root Mean Squared Error (NRMSE) and Proportion of Fractional Change 

(PFC) indicators. NRMSE measures the average difference between the imputed and actual 

values while considering the scale of the variables. A lower NRMSE indicates better imputation 

accuracy. Also, PFC expresses the relative change between the imputed and the actual values 

and ranges from 0 (perfect imputation) to 1 (poor accuracy). Here, the average difference 

between the imputed and actual values relative to the range of actual values was 0.076 for the 

NRMSE, and the PFC equaled 0.196.  

2.3. Statistical Analysis  

2.3.1. Univariate models  

The household sociodemographic and maternal and child health characteristics were 

presented using count and percentages for discrete variables and means and standard 

deviation for continuous variables. The normality of the continuous data distribution was 

assessed through Q-Q Plots. Included and excluded populations were compared using the 

Independent samples t-test for normally-distributed continuous variables, Wilcoxon Signed 

Rank test for non-normally distributed data, and Chi-square or Fisher’s test for categorical 

variables.  

2.3.2. Microbiota differential abundance testing  

To identify the significant differences in relative abundance of specific microbiota genera  

between the sleep clusters, two differential abundance testing analyses were carried out; 

Analysis of Differential Abundance Taking Sample Variation into Account (ALDEx2) (56) and 

Analysis of Composition of Microbiomes with Bias Correction (ANCOM-BC) (57). The results 

of the two analyses are assumed to help with discrepancies (58, 59). ALDEx2 takes into 

account the compositional nature of microbiota data, where the sum of relative abundances 
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for all taxa in a sample adds up to 1 (56). This approach uses Bayesian methods to estimate 

technical variation in the data and identifies differential abundance between groups while 

accounting for the sparsity and heteroscedasticity in microbiota data (57). ANCOM-BC is a 

more recently-developed method that also includes a bias correction step to address issues 

arising from sample size differences (57). The results of both tests are corrected for the False 

Discovery Rate (FDR) (56, 57). Adjustment for covariates were also performed for these 

methods (57). Since both methods have specific normalizing functions implemented (57), 

analyses were conducted on non-rarefied data. ANCOM-BC and ALDEx2 results were 

interpreted based on the Benjamini–Hochberg-corrected P-values.  

2.3.3. Bivariate and Multivariate models  

Binary logistic regression models were performed to study the potential association between 

the gut microbiota alpha diversity, enterotypes, and sleep clusters among children aged 3.5 

years. The models were adjusted for potential confounders (maternal birthplace, maternal 

exposure to psychotropic medications during pregnancy, mother’s pre-pregnancy BMI, 

gestational age, child delivery mode, mother’s age at birth, child sex, sibling, maternal 

education at 2 months, household income at 2 months, pet ownership at 2 months, 

breastfeeding duration, child BMI Z-score at 2 years, main mode of childcare at 2 years, child’s 

diet at 2 years, exact child’s age at stool collection, child tobacco exposure from pregnancy 

until 3 years, child’s antibiotics intake between 2 and 3 years, and residential setting at 3 

years), identified based on the literature and a Directed Acyclic Graph (DAG; dagitty.net 

software; supplementary figure 8). Additional stratification analysis was performed to assess 

the potential modifying effect of child sex.  

The overall microbiota community composition differences between the sleep clusters were 

studied through the Permutational Analysis of Variance (PERMANOVA) (60) with 999 

permutations, using the beta diversity distance matrices. PERMANOVA is a distance-based 

method and was used to compare the mean rank of beta diversity measures between the sleep 

clusters, assuming that a) the cluster variances were homogenous and b) the centroid and 

dispersion of beta diversity distances in all clusters were equivalent (60). PEMANOVA P-

values were corrected for the FDR by the Benjamini-Hochberg Procedure (61). Models were 

adjusted for the same confounders as the multivariate regression models.  

All statistical analyses were performed in RStudio (using R version 4.2.1), with the latest 

version of the following packages for data management and statistical analyses: stats, tidyr, 

eeptools, dplyr, kableExtra, knitr, magrittr, factoextra, tidyverse, skimr, tibble, DataExplorer, 

epiDisplay, compareGroups, table1, summarytools, reshape2, corrplot, ggpubr, ggfortify, 

ggplot2, gtools, gtsummary, plotly, RColorBrewer, RColorBrewer, car, naniar, pacman, lattice, 

permute, phyloseq (62), vegan (63), microbiome (64), fpc (65), DirichletMultinomia (66)l, 
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poLCA (67), ALDEx2 (56), ANCOMBC (57), and missForest (68). All packages were 

downloaded and loaded from The Comprehensive R Archive Network.  

Sensitivity analysis was performed through bivariate and multivariate analyses of the 

complete-case data to assess the impact of missing data imputation (supplementary tables 4 

and 5). 

 

3. Results 

3.1. Selection of the study population  

Out of the 18,329 newborns included in the ELFE cohort study, 12,235 subjects participated 

in the 3.5-year follow-up. During this follow-up, stool samples were collected from 630 children. 

Following the exclusion of 33 children that lacked sleep-related data, 597 children aged 3.5 

years old with complete data on the exposure and outcome were included for the analysis 

(Figure 6).   

 

 

 

 

 

 

 

 

 

Newborns born in 2011 that participated in the ELFE cohort study (n = 18,329) 

Children aged 3.5 years that participated in the ELFE study follow-up (n = 12,235) 

Children aged 3.5 years with complete data on sleep variables and gut microbiota 
(n = 597) 

Children aged 3.5 years with complete data on 16S rRNA gut microbiota (n = 630) 

Participants lost to follow-up at 3.5 years = 6,035  

Participants without stool samples = 11,605  

Participants without data on the sleep variables = 33 

Figure 6; Flowchart of the study sample inclusion 
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3.2. Description of the study population  

 Table 2 represents the overall descriptive characteristics of the study population compared 

to the ELFE population that were not included in the study.  

 

Overall, mothers in a higher proportion of the included population were born in France (93.1% 

vs. 86.5%, P < 0.001) and were older at birth on average (31.8 ± 4.25 years vs. 30.8 ± 5.08 

years) with higher education level (50.3% vs. 30.2% > Baccalaureat +2). Children in the 

included population were from higher income households (44.6% vs. 32.8% >1,944 €/per 

capita).  

Table 2; Characteristics of the included and excluded population  

 Included Population 
(n = 597) 

Excluded Population 
(n = 17703) 

p-value* 

 n (%) n (%)  

Maternal characteristics    

Birthplace; France  
      Missing  

     556 (93.1) 
0 

15205 (86.5) 
119 (0.67) 

<0.001 

Education at 2 months        
 6658 (42.1)  

<0.001  

< Secondary level      139 (23.5)          

≤ Baccalaureat +2      155 (26.2)       3428 (21.7)          

> Baccalaureat +2      298 (50.3)       5712 (36.2)          

  Missing 5 (2.68) 1905 (10.8)  

Exposure to psychotropic medications 
during pregnancy 
    Missing 

16 (2.68)    
 

0                        

304 (2.72)  
 

6543 (36.9)                          

 1.00  

Vaginal delivery  
     Missing  

470 (81.3) 
8 (1.34)                        

13911 (81.2)  
575 (3.25)                          

 1.00  

 Mean (SD) Mean (SD)  

Age at birth (years) 
   Missing 

31.76 (4.25) 
0 

30.78 (5.08) 
113 (0.62) 

<0.001  

Pre-pregnancy BMI (Kg/m2) 
  Missing 

23.35 (4.68) 
7 (1.17) 

23.48 (4.82) 
420 (2.37) 

0.69 

Gestational age (weeks) 
  Missing 

39.54 (1.49)     
11 (1.84) 

39.58 (1.36) 
379 (2.14) 

0.92 

 n (%) n (%)  

Household characteristics     

Income at 2 months (€/month/CU)                                                     <0.001  

    <1,500       113 (19.5)       5161 (34.6)          

    1,500 – 1,944       209 (35.9)       4879 (32.7)          

    >1,944  
    Missing 

     259 (44.6)  
16 (2.68) 

     4891 (32.8)  
2772 (15.7) 

        

Pet ownership at 2 months 
   Missing 

283 (51.3)  
45 (7.50) 

6110 (47.2)  
4757 (26.9)                   

 0.07  

Child characteristics    

Sex; Girl 
    Missing 

258 (43.2)  
0                          

8547 (48.8)  
179 (1.01)                          

 0.01  

Children with sibling  
   Missing  

324 (54.7) 
5 (0.84) 

8839 (55.5) 
1781 (10.1) 

0.74 

CU = Consumption Unit, SD = Standard Deviation; Categorical variables and missing values expressed as frequency and proportion (n (%)), Continuous 
variables expressed as mean and standard deviation; * Independent samples t-test for continuous variable and chi-squared or exact Fisher test when 
the expected frequencies are <5 in some cells for categorical variables  
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When considering the two sleep clusters (Table 3), compared to those from the “less optimal 

sleep” cluster, higher percentage of children in the “more optimal sleep” were boys (46.5% vs. 

33.3%, P < 0.01), dominantly taken care of by child sitters (56.8% vs. 49.6%, P = 0.07), and 

from households with a pet (53.8% vs. 44.1%, P = 0.05). Most children in the “more optimal 

sleep cluster” were living in the suburban setting at 3.5 years of age (37.8 vs. 28.0, P = 0.04). 

Other covariates were not remarkably different between the two sleep clusters.   
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Table 3; Characteristics of the study population within the two sleep clusters (n = 597) 

  Less optimal 
sleep (n= 150) 

More optimal 
sleep (n= 447) 

P-value* 

 n (%) n (%)  

Maternal characteristics  
Birthplace; France  

 
139 (92.7%) 

 
417 (93.3%) 

 
0.85 

Education at 2 months 
     < Secondary level 
     ≤ Baccalaureat +2 
     > Baccalaureat +2 

 
33 (22.1%) 
38 (25.5%) 
78 (52.3%) 

 
106 (23.9%) 
117 (26.4%) 
220 (49.7%) 

0.85 

Vaginal child delivery  123 (84.2%) 347 (80.3%) 0.33 

Exposure to psychotropic 
medications during pregnancy 

6 (4.00%) 10 (2.20%) 0.25 

 Mean (SD) Mean (SD)  

Age at birth (years)  31.7 (4.18) 31.8 (4.27) 0.78 

Pre-pregnancy BMI 23.2 (4.58) 23.4 (4.71) 0.76 

Gestational age (weeks) 39.5 (1.57) 39.6 (1.27) 0.74 

Breastfeeding duration (months) 4.81 (6.20) 3.87 (5.04) 0.24 

 n (%) n (%)  

Household characteristics     

Income at 2 months (€/month/CU) 
    < 1,500  
    1,500 – 1,944  
    > 1,944  

 
49 (33.3%) 
48 (32.6%) 
50 (30.0%) 

 
153 (32.2%) 
147 (33.9%) 
134 (30.9%) 

0.79 

Pet ownership at 2 months 63 (44.1%) 220 (53.8%) 0.05 

Residential setting at 3.5 years 
    Rural 
    Suburban 

      Urban 

 
43 (28.7%) 
42 (28.0%) 
65 (43.3%) 

 
130 (29.1%) 
169 (37.8%) 
148 (33.1%) 

0.04 

 Mean (SD) Mean (SD)  

Child characteristics 
BMI Z-score at 2 years 

 
0.10 (1.18) 

 
0.04 (1.01) 

 
0.64 

Diet at 2 years  
   Unhealthy dietary pattern  

     Healthy dietary pattern 

 
0.04 (1.62) 

-0.13 (1.52) 

 
-0.01 (1.55) 
0.04 (1.39) 

 
0.70 
0.23 

Exact age at 3 years 42.3 (1.78) 42.3 (1.71) 0.83 

 n (%) n (%)  

Sex; Girl 50 (33.3%) 208 (46.5%) <0.01 

Children with sibling  75 (50.3%) 249 (56.2%) 0.23 

Main mode of care at 2 years 
  Family 
  Child Sitter 
  Collective care 

 
36 (25.2%) 
71 (49.6%) 
36 (25.1%) 

 
117 (26.7%) 
249 (56.8%) 
72 (16.4%) 

0.07 

Tobacco exposure from pregnancy 
up to 3 years  

53 (30.1%) 158 (35.9%) 1.00 

Antibiotics intake between 2 and 3 
years 
    Never 
    Once 
    More than once 

 
 

47 (31.3%) 
36 (24.0%) 
67 (44.7%) 

 
 

150 (34.1%) 
91 (20.7%) 

199 (45.2%) 

0.65 

CU = Consumption Unit, SD = Standard Deviation; Categorical variables and missing values expressed as frequency and proportion (n (%)), 
Continuous variables expressed as mean and standard deviation; *Independent samples t-test for continuous variable and chi-squared or exact 
Fisher test when the expected frequencies were <5 in some cells for categorical variables 
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3.3. Association between gut microbiota alpha diversity measures, enterotypes and 
sleep clusters 

In the unadjusted and adjusted models, no significant associations were found between the 

alpha diversity measures (Chao1 and Shannon), microbiota enterotypes, and sleep clusters 

(Table 4). Similar results were found with other alpha diversity metrics (supplementary table 

6).  

 

3.4. Sex-stratified association between gut microbiota alpha diversity measures, 
enterotypes and sleep clusters 

Table 5 demonstrates the child sex-stratified association between the alpha diversity 

measures, enterotypes, and sleep clusters within the study population. The proportion of girls 

and boys within the two sleep clusters was significantly different in Table 2, and the stratified 

analysis aimed to assess if the child sex has modified the microbiota-sleep association. In the 

adjusted model among boys only, there was a higher probability of belonging to the “less 

optimal sleep” cluster with every higher standard deviation of microbiota richness (Chao 1). 

Although the strength of association did not reach a statistical significance level, the direction 

was different in girls and boys.  

Table 4;  Gut microbiota Alpha diversity measures, enterotypes, and sleep clusters (n = 597) – The 
“More optimal sleep” cluster is the reference group 

 Crude  Adjusted + 
 OR 95% CI P-value b  OR 95% CI P-value b 

Alpha diversity metrics    

  Chao1a 0.05 -1.27, -0.91 0.56 0.08 -0.13, 0.28 0.45 
  Shannona 0.02 -0.17, 0.20 0.86 -0.01 -0.21, 0.19 0.91 

Microbiota Enterotypes                                                
 

  Enterotype 1 (ref) 
  Enterotype 2    

1.00  
1.04 

 
0.64 – 1.67 

0.88 
 

1.00  
0.97 

 
0.59 – 1.62 

0.92 
 

OR = Odds Ratio, CI = Confidence Interval, Ref = Reference; +Model adjusted for maternal birthplace, maternal exposure to psychotropic medications 
during pregnancy, mother’s pre-pregnancy BMI, gestational age, child delivery mode, mother’s age at birth, child sex, sibling, maternal education at 
2 months, household income at 2 months, pet ownership at 2 months, breastfeeding duration, child BMI Z-score at 2 years, main mode of childcare 
at 2 years, child’s diet at 2 years, exact child’s exact age at stool collection, child tobacco exposure from pregnancy until 3 years,  child’s antibiotics 
intake between 2 and 3 years, residential setting at 3 years 
aStandardized estimates  
b Independent samples t-test for continuous variable and chi-squared or exact Fisher test when the expected frequencies were <5 in some cells for 
categorical variables 
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Table 5; Sex-stratified analysis of microbiota alpha diversity measures, enterotypes, and sleep clusters (n = 597) – The “More optimal sleep” cluster is the reference group 

 Boys (n= 339) Girls (n = 258) 

Crude Adjusted Crude Adjusted 
OR 95% CI P-value b OR 95% CI P-value b OR 95% CI P-value b OR 95% CI P-value b 

Alpha diversity metrics   
Chao a 0.14 -0.10, 0.37 0.26 0.26 -0.02, 0.53 0.07 -0.07 -0.37, 0.23 0.65 -0.15 -0.52, 0.21 0.41 
Shannon a 0.03 -0.20,0.27 0.77 0.001 -0.27, 0.27 0.99 -0.02 -0.33, 0.28 0.88 -0.03 -0.39, 0.32 0.85 

Microbiota Enterotypes 
 Enterotype 1 (ref) 
 Enterotype 2  

1.00 
0.98 

 
0.54 – 1.78 

 
0.96 

1.00 
1.16 

 
0.60 – 2.24 

 
0.62 

1.00 
1.08 

 
0.48 – 2.43 

 
0.84 

1.00 
0.94 

 
0.36 – 2.39 

 
0.89 

OR = Odds Ratio, CI = Confidence Interval; + Model adjusted for maternal birthplace, maternal exposure to psychotropic medications during pregnancy, mother’s pre-pregnancy BMI, gestational age, child delivery mode, mother’s age at birth, child sex, 
siblings, maternal education at 2 months, household income at 2 months, pet ownership at 2 months, breastfeeding duration, child BMI Z-score at 2 years, main mode of childcare at 2 years, child’s diet at 2 years, exact child’s exact age at stool 
collection, child tobacco exposure from pregnancy until 3 years, child’s antibiotics intake between 2 and 3 years, residential setting at 3 years. 
a Standardized estimate 
b Independent samples t-test for continuous variable and chi-squared or exact Fisher test when the expected frequencies were <5 in some cells for categorical variables 
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3.5. Gut microbiota community composition differences according to the sleep 
clusters 

Less than 1% of the total variance in the overall gut microbiota community (beta diversity) 

was explained by the sleep clusters using the Bray-Curtis and Weighted UniFrac distance 

matrices (Table 6). This finding is consistent with Figure 7, where no clear spatial separation 

between the two sleep clusters according to the two distances was observed.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 6; The gut microbiota community composition differences and sleep clusters (n = 597) 

 Crude  Adjusted + 

 R2 P-value FDR- 
 P-value 

R2 P-value FDR- 
 P-value 

Beta Diversity distances  
 

   Bray-Curtis   0.0014 0.53 0.53 0.0013 0.62 0.71 

   Weighted UniFrac 0.0024 0.19 0.19 0.0020 0.34 0.76 

FDR = False Discovery Rate; + Model adjusted for maternal birthplace, maternal exposure to psychotropic medications during pregnancy, 
mother’s pre-pregnancy BMI, gestational age, child delivery mode, mother’s age at birth, child sex, siblings, maternal education at 2 months, 
household income at 2 months, pet ownership at 2 months, breastfeeding, child BMI Z-score at 2 years, main mode of childcare at 2 years, 
child’s diet at 2 years, child’s exact age at stool collection, child tobacco exposure from pregnancy until 3 years, child’s antibiotics intake 
between 2 and 3 years, residential setting at 3 years 

Figure 7; Distribution of the microbiota samples according to the sleep clusters 
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Considering the specific microbiota genera that might be associated with the sleep clusters; 

no significant results were found overlapping between the ALDEx2 and ANCOMBC methods 

(Figure 8). Indeed, ANCOM-BC found two genera for which their abundances were 

significantly different between the two sleep clusters. However, ALDEx2 did not detect any 

significant genera, preventing any conclusion towards significant differences between the two 

sleep clusters.  

4. Discussion  

Interest in the role of the gut microbiota in health and disease has gained ground over the past 

couple of years (38), yet, few studies have focused on the significance of gut microbiota on 

sleep health in human subjects, especially children. This study aimed to assess the gut 

microbiota-sleep relationship at 3.5 years of age. No significant associations were observed 

between all gut microbiota characteristics studied and sleep clusters in our study population. 

Nonetheless, considering the gut microbiota richness, there was a potential effect modification 

by child sex, with boys being more likely to belong to the “less optimal sleep”.  

Our study was based on sleep clusters integrating, simultaneously, duration and quality of 

sleep (sleep onset difficulties and night waking). Previous studies have focused on only one of 

these facets (duration or quality) and reported inconsistent findings. In a 2016 randomized 

crossover experimental study in 9 young males, no significant differences were detected in the 

OTU richness and Shannon evenness indices with partial sleep deprivation (39). Also, a 2022 

study among 143 preschool-aged children in Canada did not report any significant differences 

in alpha-diversity metrices (OTU, Shannon, and Faith Phylogenetic) according to actigraphy-

measured night sleep duration and sleep efficiency (40). Consistent with this finding, in a 2019 

Figure 8; Venn diagram of the ANCOM-BC and ALDEx2 microbiota differential abundance testing 

ANCOM-BC 

ALDEx2 
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study on 619 three months old Canadian infants registered in the CHILD birth cohort, 

microbiota richness and evenness (Chao1, Shannon, and Simpson’s) were not associated with 

sleep duration (38). Aligned with our methodology, the sleep data in the CHILD birth cohort 

was recorded through parents’ self-reported questionnaires and included a combination of day 

and night sleep habits per 24-hour period (38). In contrast, in the longitudinal assessment of 

162 infants at twelve months in Switzerland, a negative association was found between Chao1 

and Shannon alpha diversity measures and night sleep (duration, frequency, and regularity) 

after adjusting for age, sex, and breastfeeding status (37). In this study, sleep data were 

collected through ankle actigraphy for 11 continuous days, and five sleep patterns were 

constructed through PCA (37). This study did not report any gut microbiota-night sleep 

(opportunity and duration) associations (37). Also, no differences in the five sleep patterns 

were detected between the microbiota enterotypes (37). It is worth mentioning that daytime 

sleep accounts for approximately 25% of the total sleep time in infancy (34), and also the 

microbiota composition is undergoing considerable evolvements in this period; therefore, the 

generalizability of findings beyond this age window may be limited. Some studies conducted 

on adults concluded that higher gut microbiota diversity promotes healthier sleep (32, 35, 36). 

In a 2019 research in the USA, microbiota diversity measurements (OTU, Shannon, and 

Inverse Simpson’s) were positively correlated with sleep efficiency in 26 male adults, and the 

Inverse Simpson’s index had a significant and positive correlation with total sleep time 

measured in a 30-days period (32). Karl and colleagues reported a significant reduction in the 

microbiota richness among 19 healthy men after applying severe, short-term sleep restriction 

while controlling for diet and physical activity, suggesting that the experimental alterations of 

sleep may induce changes in gut microbial composition (35). Also, a recent study of 28 North 

American adults showed that sleep quality recorded through the Pittsburgh Sleep Quality Index 

was positively associated with microbial diversity (36). Altogether, it is important to consider 

the differences in sample sizes and variations in the adjustments for potential confounders 

when interpreting the discrepancies. Inconsistent results within the literature can be explained 

by the varying age of the participants, the methods of sleep assessment, the study design 

(experimental vs. observational), the sample size, and the potential confounders accounted for 

in the analyses.  

There is evidence to support the sex-specific differences in sleep characteristics in children 

and adults. In a 2015 study of EDEN Mother-Child cohort data among 546 boys and 482 girls 

aged 3 years in France, boys had a later bedtime and earlier wake-up time compared to girls, 

resulting in shorter mean night sleep duration (8). This finding was in agreement with a study 

in the USA among 1-3 years old children, reporting that the likelihood of having a short sleep 

(< 11 hours per day) was 45% higher in boys than in girls due to earlier waking-up times in the 

morning (69). Human sex may also affect the gut microbiota composition (70) and therefore, 
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modulate the microbiota-sleep relationship. In the present study, boys were more prevalent in 

the “less optimal sleep” cluster. The sex-stratified analysis showed that higher gut microbiota 

richness (Chao1 index) tends to be associated with a higher likelihood of belonging to the “less 

optimal sleep cluster” in boys compared to girls. Although the association did not reach a 

significance level, the observed difference in the direction of association reveals a potential 

effect-modifying role for child sex. Despite that most studies on the microbiota-sleep 

relationship among infants and children recruited participants from both sexes, the majority of 

studies in adults focused on males, and sex-specific outcomes were poorly explained. Schoch 

and colleagues focusing on infants, controlled for the effect of child sex in their analyses (37), 

whereas Karl and colleagues and Smith and colleagues (32, 35) only studied young males and 

discussed the generalizability of the findings as well as the need for further sex-specific 

research.  

In this study, we did not observe any differences in the overall microbiota community 

composition assessed by the beta diversity metrics between the sleep clusters. This result was 

consistent with a study among 19 young males in the USA that assessed the beta-diversity 

microbiota community composition with different sleep deprivation levels (35). Also, a 

crossover experimental study in young adults in Thailand did not report any genus-level 

microbial community dissimilarity using the Bray-Curtis distance between two sleep conditions; 

two-week home sleep extension and two weeks of habitual sleep (71). Nevertheless, in a study 

of 143 preschoolers in Canada aged 4.5 years, night sleep duration (based on 48-hours 

actigraphy) was positively associated with the overall gut microbiota community composition 

assessed by the Weighted UniFrac distance (40).  

Finally, we did not observe any differences in the specific microbiota genus abundances across 

the sleep clusters, which was inconsistent with the majority of studies in the literature 

performed in the adult population. In a 2020 study using the Pittsburgh Sleep Quality Index 

and actigraphy-collected sleep data, adults with poor sleep quality had an increased 

abundance of Prevotella and a lower relative abundance of Blautia and Ruminococcus (36). 

In this study, the higher relative abundance of Prevotella explained more than 25% of the 

variance in the global Pittsburgh Sleep Quality Index (36). Also, in the study of Benedict and 

colleagues including 9 adults, partial sleep deprivation led to a significant increase in the 

abundance of Coriobacteriaceae and Erysipelotrichaceaedecrease families and a significant 

decrease in the abundance of Tenericutes phylum, compared with participants that also 

followed two nights of normal sleep (39). In another study among morbidly obese adults, higher 

proportions of Coriobacteriaceae and Erysipelotrichaceae were found (72, 73). However, 

whether changes in these families of gut microbiota were more accentuated in chronic sleep 

loss conditions remains to be investigated. Finally, in a recent study among 118 middle-aged 

subjects in Spain (50% obese), gut microbiota composition sequenced through the shotgun 
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metagenomic method, Christensenella minuta (from the Christensenellaceae family) was 

associated with increased Rapid-eye Movement sleep duration, whereas microbiota belonging 

to the Enterobacteriaceae family demonstrated an opposite link (74). Gut microbiota from the 

Christensenellaceae family are generally related to the BMI and serum lipid and glucose levels 

(75, 76). In the only available study on preschoolers in Canada aged 4.5 years, children with 

a higher total night sleep possessed a higher relative abundance of Bifidobacterium, 

Parabacteroides, and Turicibacter (40). Bifidobacterium was previously shown to improve the 

quality of sleep measured by the Pittsburgh Sleep Quality Index among young adults when 

administered as a probiotic (77).  

To the best of our knowledge, this was the first study to assess the association between the 

gut microbiota characteristics among children of the preschool period and a holistic clustering 

metric of sleep using a large nationwide multicentric cohort data. This study has several 

strengths, namely the inclusion of participants based on a prospective national cohort study, 

the relatively large sample size and study power to assess the hypothesis within the general 

French population and the availability of data on gut microbiota and confounders such as 

dietary information for a large population. Although the addition of potential confounding factors 

to the multivariate models did not improve the results, identification of the early and 

contemporary confounders and assessing the potential effect in the regression models can be 

considered as a methodological strength.  

This study also has some limitations that must be acknowledged. In terms of sleep; the data 

were collected from parents by phone interview through questionnaires (39). Night sleep 

duration calculation was based on the bedtime and wake-up time and may reflect more time 

in bed. Also, night waking and sleep onset difficulties were those noticed and reported by 

parents. Together, this may have led to an overestimation of sleep duration and an 

underestimation of night waking and sleep onset difficulties (75). Subjective estimation of sleep 

quality and duration through questionnaires is a pragmatic choice and classical method to 

provide insight into the important aspects of sleep habits in children in large epidemiological 

studies (2, 8, 76). Nonetheless, objective methods of sleep data collection such as actigraphy 

would have provided better estimations of sleep characteristics that were not implemented in 

this cohort due to cost and logistic challenges (75). Considering the gut microbiota data; stool 

samples were collected once in the ELFE cohort (61), which prevents controlling for the 

microbiota composition dynamic throughout early childhood (34). Also, the gut microbiota 

sequencing was performed through the 16S rRNA gene sequencing approach, which limits the 

scope of this study to the description of the bacteria composition (77). Alternative methods 

such as shotgun metagenomics could have allowed for greater sequencing depth and hence, 

additional information regarding microbiome functional profiles at the species level (77).  
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Moreover, the studied population was more likely from socioeconomically superior households. 

Thus, our results might not have adequate external validity for households with lower 

educational and economic attainments. In addition, the selected families may have been 

featured with higher health literacy and practices and healthy lifestyle. Indeed, the sleep 

duration in both clusters (less and more optimal sleep) was within the AASM’s 

recommendations (10-13 hours of sleep within the preschool period) (1), possibly partially 

explaining the lack of associations observed. Therefore, future studies will focus on the sleep 

quality variables independently of sleep duration to provide a reasonable effect size. 

Finally, the cross-sectional design of this study hinders the establishment of exposure and 

outcome temporality, causal inferences, and identification of the direction of causation. 

 

5. Conclusion and recommendations    

In conclusion, our results did not support the hypothesized association between the gut 

microbiota diversity and composition and sleep clusters combining sleep quality and duration 

in French children aged 3.5 years. Further studies are needed focusing more specifically on 

sleep quality, given that sleep duration included in the clusters was within the international 

recommendations.    

Indeed, both sleep and gut microbiota evolve rapidly up to preschool years. Sleep and gut 

microbiota can be readily modified at early ages (33). Sleep can be tailored with behavioral 

and educational interventions (78), and gut microbial composition can be modified by prenatal 

factors and environmental exposure such as dietary habits and pre- and pro-biotic ingestion 

(79). Therefore, a well-rounded understanding of these facets of human physiology can 

enhance our understanding of the bidirectional communication between the host and the gut 

microbiome. Expanding the body of research in this area can provide new prospects on the 

necessity and method of intervention in sleep health and may lead to novel strategies tailored 

to the gut microbiota health-promoting properties to improve sleep quality and duration in 

children. Also, the statistical methodology used here can generate new insights into the 

selection of variables and statistical models to assess the microbiota-sleep relationship in 

prospective studies. Finally, the planned publication of our results will help with the possible 

challenges of publication bias in the area of microbiota-sleep. Considering the nature of 

scientific publishing, it is important to discern if the underreporting of negative or statistically 

non-significant findings can explain the scarcity of research in the microbiota-sleep literature. 

Our results can help with minimizing the risk of underreporting statistically non-significant 

results in the academic literature. 
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Appendices  

Supplementary table 1; The goodness of fit measurements in the LCA analysis  
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Supplementary table 2; The study population characteristics according to the BMI Z-score 
measurements at 2 and 3.5 years 

 BMI Z-score at 2 years 
(n = 443) 

BMI Z-score at 3.5 years 
(n = 337) 

 n (%) n (%) 

Maternal characteristics   

Born in France      417 (94.1) 322 (95.5) 

Education at 2 months     

     < Secondary education 97 (22.0) 63 (18.9 

     ≤ Baccalaureat +2 112 (25.5) 95 (28.4) 

     >Baccalaureat +2 231 (52.5) 176 (52.7) 

   

Exposure to psychotropic medications 
during pregnancy 

8 (1.8) 8 (2.4) 

Vaginal delivery  353 (80.6) 286 (82.7) 

 Mean (SD) Mean (SD) 

Age at birth (years) 31.8 (4.09) 31.8 (4.26) 

Pre-pregnancy BMI (Kg/m2) 23.2 (4.49) 23.2 (4.70) 

Gestational age (weeks) 39.6 (1.29) 39.6 (1.36) 

Breastfeeding duration (months) 3.92 (5.01) 4.25 (5.78) 

 n (%) n (%) 

Household characteristics 
Income at 2 months (€/month/CU) 

                           
 

    <1,500  137 (31.7) 105 (32.1) 

      1,500 – 1,944  153 (35.4) 116 (35.5) 

    >1,944 142 (32.9) 106 (32.4) 

Pet ownership at 2 months 214 (51.6) 163 (52.6) 

 n (%) n (%) 

Child characteristics   

Sex; Girl 198 (44.7) 147 (43.6) 

Children with sibling  239 (54.3) 163 (48.8) 

Main mode of care at 2 years 
Family  
Child sitter  
Collective care  

 
115 (26.4) 
243 (55.7) 
78 (17.9) 

 
73 (22.3) 

187 (57.2) 
67 (20.5) 

Tobacco exposure from pregnancy until 3 
years; at some point  

150 (34.3) 110 (33.4) 

Antibiotic intake between 2 and 3 years  
Never  
Once  
More than once  

 
152 (33.6) 
96 (21.9) 

195 (44.5) 

 
109 (31.7) 
75 (22.5) 

153 (45.8) 

 Mean (SD) Mean (SD) 

Exact age at stool collection (months) 42.3 (1.69) 42.2 (1.73) 

Diet at 2 years  
Healthy dietary pattern  
Unhealthy dietary pattern  

 
0.12 (1.43) 
<0.1 (1.40) 

 
0.15 (1.43) 
<0.1 (1.58) 

Data reported based on the available data of BMI Z-scores at both ages; CU = Consumption Unit, SD = Standard Deviation; 
Categorical variables and missing values expressed as frequency and proportion (n (%)), Continuous variables expressed as mean 
and standard deviation  
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Supplementary table 3; The PCA factor loading of the food items reported in the 2-years 
child dietary questionnaire 

 Factor loading 

Food Item  Unhealthy dietary pattern   Healthy dietary pattern    

French fries 0.52 -0.41 
Meat and ham  0.51 0.23 
Quiche  0.49 -0.24 
Pastry  0.46 -0.21 
Egg 0.40 0.05 
Charcuterie  0.39 -0.33 
Fruit juice  0.39 -0.11 
Cheese  0.38 0.16 
Bread 0.37 0.24 
Sweets 0.36 -0.20 
Fresh fruit  0.33 0.36 
Pasta  0.29 0.56 
Cooked vegetable  0.18 0.74 
Fruit compote  0.05 0.30 
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Supplementary table 4; Complete-case analysis of the gut microbiota-sleep association 
(n = 374) 
 
 Crude  Adjusted   

OR 95% CI P-value  OR 95% CI P-value  

Alpha diversity metrics    

        Chao1 0.15 -0.08, 0.39 0.20 0.18 -0.08, 0.45 0.18 

        Shannon 0.13 -0.11, 0.36 0.29 0.05 -0.22, 0.31 0.73 

Enterotypes  

More optimal sleep (ref) 
Less optimal sleep    

1.00 
1.28 

 
0.67 – 2.42 

 
0.44 

1.00 
1.22 

 
0.60 – 2.46 

 
0.58 

OR = Odds Ratio, CI = Confidence Interval; + Model adjusted for maternal birthplace, maternal exposure to psychotropic medications during 
pregnancy, mother’s pre-pregnancy BMI, gestational age, child delivery mode, mother’s age at birth, child sex, sibling, maternal education at 2 
months, household income at 2 months, pet ownership at 2 months, breastfeeding duration, child BMI Z-score at 2 years, main mode of childcare 
at 2 years, child’s diet at 2 years, child age at stool collection, child tobacco exposure from pregnancy until 3 years, child’s antibiotics intake between 
2 and 3 years, residential setting at 3 years 
* Standardized estimates 
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Supplementary table 5; The PERMANOVA analysis of variance on the complete-case data  (n = 
374) 

 Crude  Adjusted + 

 R2 P-value FDR- 
 P-value 

R2 P-value FDR- 
 P-value 

Beta Diversity metrics  
 

   Bray-Curtis   0.002 0.50 0.50 0.003 0.45 0.75 

   Weighted UniFrac 0.004 0.16 0.16 0.003 0.22 0.62 
FDR = False Discovery Rate; + Model adjusted for maternal birthplace, maternal exposure to psychotropic medications during pregnancy, 
mother’s pre-pregnancy BMI, gestational age, child delivery mode, mother’s age at birth, child sex, sibling, maternal education at 2 
months, household income at 2 months, pet ownership at 2 months, breastfeeding duration, child BMI Z-score at 2 years, main mode of 
childcare at 2 years, child’s diet at 2 years, exact child’s age at stool collection, child tobacco exposure from pregnancy until 3 years, 
child’s antibiotics intake between 2 and 3 years, residential setting at 3 years 



x 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary table 6; Additional microbiota alpha diversity measures, DMM clustering 
enterotypes, and the sleep clusters (n = 597) 
 Crude  Adjusted 

OR 95% CI P-value  OR 95% CI P-value  

Alpha diversity metrics    

Observed -0.07  -0.25, 0.12 0.47 -0.21 -0.48, 0.06 0.14 

Simpson’s -0.03  -0.22, 0.15 0.72 -0.06  -0.33, 0.21 0.98 

Inverse Simpson’s 0.01  -0.17, 0.20 0.91 0.02 -0.24, 0.27 0.74 

Enterotypes  
Enterotype1 (ref) 
Enterotype 2 
Enterotype 3 
Enterotype 4 
Enterotype 5 

 
1.00 
1.50 
1.38 
1.35 
1.36 

 
 

0.90 – 2.49  
0.80 – 2.39 
0.75 – 2.45  
0.70 – 2.68 

 
 

0.12 
0.25 
0.32 
0.37 

 
1.00  
1.75  
1.63 
1.39 
1.46 

 
 

1.01-3.02 
0.90 – 2.97 
0.73 – 2.62 
0.71 – 3.01  

 
 

0.04* 
0.11 
0.31 
0.30 

OR = Odds Ratio, CI = Confidence Interval; + Model adjusted for maternal birthplace, maternal exposure to psychotropic medications 
during pregnancy, mother’s pre-pregnancy BMI, gestational age, child delivery mode, mother’s age at birth, child sex, sibling, maternal 
education at 2 months, household income at 2 months, pet ownership at 2 months, breastfeeding, child BMI Z-score at 2 years, main 
mode of childcare at 2 years, child’s diet at 2 years, exact child’s age at stool collection, child tobacco from pregnancy until 3 years,  
child’s antibiotics intake between 2 and 3 years, residential setting at 3 years 
* Standardized estimates 
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Supplementary figure 1; The Calinski-Harabasz Index in the PAM clustering microbiota 

enterotypes  
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Supplementary figure 2; The Silhouette Index in the PAM clustering microbiota enterotypes  
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Supplementary figure 3; Comparison of the Goodness of fit measurements in the DMM 

clustering microbiota enterotypes 
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Supplementary figure 4; Distribution of the ten most abundant microbiota genera across the 

five enterotypes identified through DMM clustering 
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Supplementary figure 5; Pearson correlation of BMI Z-score measurements at ages 2 and 

3.5 years 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R = 0.73, P<2.2e-16 
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Supplementary figure 6; Contribution of the recorded food items to the child diet PCA model 
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Supplementary figure 7; Pattern of missing data for the covariates 
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Supplementary figure 8; Identification of the covariates through DAG 
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 رفتن به از نشستن باطل هیبه راه باد

 ...به قدر وسع بکوشم ابمیر مراد نگ و

 


