

# **Master of Public Health**

Master de Santé Publique

# Natural history of chronic hepatitis B virus infection according to DNA and ALT levels: A systematic review and meta-analysis

# Daniela YUCUMA CONDE

**Class and year of the Master:** Master of Public Health 2022-2023

Location of the practicum: Emerging Disease Epidemiology Unit, Institut Pasteur. Paris, France

**Professional advisor:** Yusuke SHIMAKAWA Institut Pasteur. Paris, France

Academic advisor: Mary Beth TERRY Columbia University Mailman School of Public Health

#### ACKNOWLEDGEMENT

I would first like to thank my professional advisor, Dr Yusuke Shimakawa, for giving me the privilege and the opportunity to dedicate my practicum to this interesting project and for his guidance, support, and for sharing his vision towards a healthier world. I extend my gratitude to Dr Arthur Rakover, Dr Yu Ri Im, Zakary Warsop, Dr Rukmini Jagdish and Dr Emma Chen for and their contributions during references screening, research papers review, data verification and insightful discussion throughout this project.

Additionally, I would like to express my special gratitude to my supervisor Prof. Mary Beth Terry for her brilliant feedback and timely guidance during the process of my practicum and thesis writing.

I thank Professor Philippa Easterbrook (WHO) and Professor Roger Chou (Oregon Health and Science University, USA) as well, for supporting this project with their extensive expertise on the subject matter, through valuable discussion and advice.

Importantly, I would also like to thank all my colleagues of "Unité de Recherche et d'Expertise Epidémiologie des maladies Emergentes" at Institut Pasteur for welcoming me and providing me with the environment and all the useful resources needed to complete this project. Finally, I would like to extend my sincere appreciation and gratitude to my parents, sister and grandmother for their everlasting care and love throughout my life, none of my work would have been possible without them.

#### **Table of Contents**

| List      | of ab                                                                                                                              | breviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Abs       | tract.                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                            |
| Abs       | tract                                                                                                                              | in French                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                            |
| 1.        | Intro                                                                                                                              | oduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                                            |
| 1.1       | l Ba                                                                                                                               | ckground information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                            |
| 1.2       | 2 Ratio                                                                                                                            | onale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                            |
| 1.3       | 3 Revi                                                                                                                             | ew question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                            |
| 1.4       | 1 Obie                                                                                                                             | ctives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                            |
| 2         | Motl                                                                                                                               | bods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q                                                                                            |
| 2.<br>ว 1 |                                                                                                                                    | and registration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o                                                                                            |
| 2.1       |                                                                                                                                    | auostion and oligibility criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                            |
| 2.2       |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
| 2.3       | Search                                                                                                                             | h strategy and Information sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                           |
| 2.4       | 4 Seleo                                                                                                                            | ction process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                           |
| 2.5       | 5 Data                                                                                                                             | extraction and description of the database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                           |
| 2.6       | 6 Qual                                                                                                                             | ity assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                           |
| 2.7       | 7 Data                                                                                                                             | synthesis and statistical analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                                                                           |
| 3.1       | l Gene                                                                                                                             | eral characteristics of included studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                           |
| 3.2       | Ris                                                                                                                                | k of bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                           |
| 3.3       | 8 Me                                                                                                                               | ta-analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                           |
| 3         | 3.3.1                                                                                                                              | HCC in adults with a single HBV DNA assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                           |
| 3         | 3.3.2                                                                                                                              | HCC in adults with multiple HBV DNA assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                           |
| 3         | 3.3.3                                                                                                                              | HCC in children with a single HBV DNA assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                           |
| Э         | 3.3.4                                                                                                                              | HCC in adults with a single ALT assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                           |
| 3         | 3.3.5                                                                                                                              | HCC in adults with multiple ALT assessments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23                                                                                           |
| Э         | 3.3.6                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
| 3         | 3.3.7                                                                                                                              | HCC in children with single ALT assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24                                                                                           |
|           |                                                                                                                                    | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24<br>24                                                                                     |
|           | 3.3.8                                                                                                                              | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24<br>24<br>25                                                                               |
|           | 3.3.8<br>3.3.9                                                                                                                     | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24<br>24<br>25<br>26                                                                         |
|           | 3.3.8<br>3.3.9<br>3.3.10                                                                                                           | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24<br>24<br>25<br>26<br>27                                                                   |
|           | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11                                                                                                 | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with single ALT assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>25<br>26<br>27<br>27                                                                   |
|           | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11<br>3.3.12<br>3.3.12                                                                             | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with multiple ALT assessments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24<br>25<br>26<br>27<br>27<br>28<br>28                                                       |
|           | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11<br>3.3.12<br>3.3.13<br>3.3.13                                                                   | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with multiple ALT assessments<br>Cirrhosis in children with a single ALT assessment<br>Cirrhosis in children with a single ALT assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24<br>25<br>26<br>27<br>27<br>28<br>28<br>28<br>28<br>28                                     |
|           | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11<br>3.3.12<br>3.3.13<br>3.3.13<br>3.3.14<br>3.3.15                                               | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with multiple ALT assessments<br>Cirrhosis in children with a single ALT assessment<br>Cirrhosis in children with a single ALT assessment<br>Liver related deaths in adults with multiple HBV DNA assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24<br>25<br>26<br>27<br>27<br>27<br>28<br>28<br>28<br>28<br>28                               |
|           | 3.3.8         3.3.9         3.3.10         3.3.11         3.3.12         3.3.13         3.3.14         3.3.15         3.3.16       | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with multiple ALT assessment<br>Cirrhosis in children with a single ALT assessment<br>Cirrhosis in children with a single ALT assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24<br>25<br>26<br>27<br>27<br>27<br>28<br>28<br>28<br>28<br>29<br>30                         |
|           | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11<br>3.3.12<br>3.3.13<br>3.3.14<br>3.3.15<br>3.3.16<br>3.3.16<br>3.3.17                           | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with multiple ALT assessments<br>Cirrhosis in children with a single ALT assessment<br>Cirrhosis in children with a single ALT assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in children with a single HBV DNA assessment<br>Liver related deaths in children with a single HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in children with a single HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24<br>25<br>26<br>27<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>29<br>30<br>30             |
|           | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11<br>3.3.12<br>3.3.13<br>3.3.14<br>3.3.15<br>3.3.16<br>3.3.17<br>3.3.18                           | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with multiple ALT assessment<br>Cirrhosis in children with a single ALT assessment<br>Cirrhosis in children with a single ALT assessment<br>Liver related deaths in adults with single HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in children with a single HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in adults with a single HBV DNA assessment<br>Liver related deaths in adults with a single HBV DNA assessment<br>Liver related deaths in adults with a single HBV DNA assessment<br>Liver related deaths in adults with a single ALT assessment                                                                                                                                                                                                                                                                                                                                                                                                                         | 24<br>25<br>26<br>27<br>27<br>28<br>28<br>28<br>28<br>29<br>30<br>30<br>31                   |
|           | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11<br>3.3.12<br>3.3.13<br>3.3.14<br>3.3.15<br>3.3.16<br>3.3.17<br>3.3.18<br>3.3.19 L               | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with multiple ALT assessments<br>Cirrhosis in children with a single ALT assessment<br>Cirrhosis in children with a single ALT assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in children with a single HBV DNA assessment<br>Liver related deaths in children with a single HBV DNA assessment<br>Liver related deaths in adults with multiple HBV DNA assessment<br>Liver related deaths in adults with a single ALT assessment<br>Liver related deaths in adults with a single ALT assessment<br>Liver deaths in adults with multiple ALT assessments<br>Liver deaths in adults with multiple ALT assessments                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>25<br>26<br>27<br>27<br>27<br>28<br>28<br>28<br>28<br>28<br>29<br>30<br>31<br>31       |
| 5.        | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11<br>3.3.12<br>3.3.13<br>3.3.14<br>3.3.15<br>3.3.16<br>3.3.17<br>3.3.18<br>3.3.19 L<br><i>Con</i> | HCC in children with single ALT assessment<br>HCC in adults with a single HBV DNA and ALT assessment<br>Cirrhosis in adults with a single HBV DNA assessment.<br>Cirrhosis in adults with multiple HBV DNA assessments<br>Cirrhosis in children with single HBV DNA assessment.<br>Cirrhosis in adults with single ALT assessment<br>Cirrhosis in adults with multiple ALT assessments.<br>Cirrhosis in children with a single ALT assessment.<br>Cirrhosis in children with a single ALT assessment.<br>Liver related deaths in adults with multiple HBV DNA assessment.<br>Liver related deaths in adults with multiple HBV DNA assessment.<br>Liver related deaths in adults with multiple HBV DNA assessment.<br>Liver related deaths in children with a single HBV DNA assessment.<br>Liver related deaths in adults with multiple HBV DNA assessment.<br>Liver related deaths in adults with a single ALT assessment.<br>Liver related deaths in adults with a single ALT assessment.<br>Liver related deaths in adults with a single ALT assessment.<br>Liver deaths in adults with a single ALT assessment.<br>Liver deaths in adults with multiple ALT assessments<br>Liver deaths in children with single ALT assessments<br>Liver deaths in children with single ALT assessments                                                                                                                                                                                                                                                    | 24<br>25<br>26<br>27<br>27<br>27<br>27<br>27<br>28<br>28<br>28<br>28<br>30<br>31<br>31<br>35 |
| 5.<br>App | 3.3.8<br>3.3.9<br>3.3.10<br>3.3.11<br>3.3.12<br>3.3.13<br>3.3.14<br>3.3.15<br>3.3.16<br>3.3.17<br>3.3.18<br>3.3.19 L<br>Con        | HCC in children with single ALT assessment         HCC in adults with a single HBV DNA and ALT assessment         Cirrhosis in adults with a single HBV DNA assessment         Cirrhosis in adults with multiple HBV DNA assessments         Cirrhosis in children with single HBV DNA assessment         Cirrhosis in adults with multiple ALT assessment         Cirrhosis in adults with multiple ALT assessment         Cirrhosis in children with a single ALT assessment         Cirrhosis in children with a single ALT assessment         Cirrhosis in children with a single HBV DNA assessment         Liver related deaths in adults with single HBV DNA assessment         Liver related deaths in adults with multiple HBV DNA assessment         Liver related deaths in adults with a single HBV DNA assessment         Liver related deaths in adults with a single HBV DNA assessment         Liver related deaths in adults with a single HBV DNA assessment         Liver related deaths in adults with a single ALT assessment         Liver related deaths in adults with a single ALT assessment         Liver deaths in adults with multiple ALT assessments         Liver deaths in children with single ALT assessments <th>24<br/>25<br/>26<br/>27<br/>27<br/>27<br/>27<br/>28<br/>28<br/>28<br/>30<br/>31<br/>35<br/>36</th> | 24<br>25<br>26<br>27<br>27<br>27<br>27<br>28<br>28<br>28<br>30<br>31<br>35<br>36             |

#### List of abbreviations

| Abbreviation or Term | Definition/Explanation                      |
|----------------------|---------------------------------------------|
| HBV                  | Hepatitis B virus                           |
| СНВ                  | Chronic Hepatitis B                         |
| VL                   | Viral load                                  |
| ALT                  | Alanine transaminase                        |
| EASL                 | European Association for the Study of the   |
|                      | Liver                                       |
| AASLD                | American Association for the Study of Liver |
|                      | Diseases                                    |
| APASL                | Asian Pacific Association for the Study of  |
|                      | the Liver                                   |
| APASL                | Asian Pacific Association for the Study of  |
|                      | the Liver                                   |
| WHO                  | World Health Organization                   |
| HBeAg                | Hepatitis B e antigen                       |
| HCC                  | Hepatocellular carcinoma                    |
| HIV                  | Human immunodeficiency virus                |
| HCV                  | Hepatitis C virus                           |
| HDV                  | Hepatitis D virus                           |
| DNA                  | Deoxyribonucleic Acid                       |
| ULN                  | Upper limit of normal                       |
| FU                   | Follow-up                                   |
| PYFU                 | Person-years of follow-up                   |

#### Abstract

#### Background

In 2015, the World Health Organization (WHO) launched the first hepatitis B treatment guidelines, alongside the first global viral hepatitis elimination targets. Currently, decisions around antiviral treatment aim to target individuals at high risk of disease progression. However, with emerging evidence, it is important to re-evaluate treatment eligibility. Thus, this systematic review and meta-analysis aims to review and synthetize evidence on clinical outcomes in untreated, non-cirrhotic HBV patients, stratified by HBV DNA and alanine transaminase (ALT) levels.

#### Methods

We searched PubMed, Embase, Web of Science, and the Cochrane Library for studies published up to Feb 2023. Two reviewers independently screened titles and abstracts and extracted data from full-text articles. Outcomes included hepatocellular carcinoma (HCC), cirrhosis and liver-related mortality. The pooled incidence rates of each outcome were stratified by viral load (<2,000, 2,000-20,000, 20,000-200,000, and  $\geq$ 200,000 IU/mL) or ALT levels (1x, 1-2x,  $\geq$ 2x ULN). We performed a meta-analysis using a generalized mixed model.

#### Results

Of 13,124 identified and screened studies, we identified 45 eligible studies. In low viral load strata - HBV DNA <200 IU/mL and <2,000 IU/mL, the pooled HCC incidence (per 100 person-years) was low: 0.131 (95% CI: 0.097-0.177) and 0.176 (0.117-0.265), respectively. For viral load above 2,000 IU/mL, there was a dose-response relationship: 0.312 (0.245-0.396), 0.874 (0.735-1.040), and 0.941 (0.664-1.335) when HBV DNA levels were 2,000-20,000,  $\geq$ 20,000-200,000, and  $\geq$ 200,000 IU/mL, respectively. A similar relationship was observed for the incidence of cirrhosis and liver-related mortality. There were only two studies in children and no clear association between viral load and clinical outcomes was found.

#### Conclusion

This represents the most comprehensive systematic review and meta-analysis to date of chronic HBV infection natural history. Cirrhosis and HCC incidence rates were low in individuals with HBV DNA<2000 IU/ml. There was paucity of data in the pediatric population.

#### Abstract in French

# Contexte

En 2015, l'OMS publie ses premières directives pour le traitement de l'hépatite B et lance des objectifs d'éradication globale. Ces actions requièrent une expansion importante de la thérapie antivirale, ciblant surtout les sujets à haut risque d'aggravation de la maladie. Cette métaanalyse vise à évaluer cette incidence d'aggravation et à synthétiser les preuves des résultats cliniques chez les patients non-cirrhotiques atteints d'HBV, en fonction des niveaux d'ADN du VHB et d'ALT.

#### Méthodes

Nous avons recherché PubMed, Embase, Web of Science et Cochrane Library des études publiées jusqu'en février 2023 Deux examinateurs ont revu les titres et résumés de manière indépendante et ont extrait les données des articles complets. Les résultats incluaient le carcinome hépatocellulaire (CHC), la cirrhose et la mortalité liée au foie. Les taux d'incidence cumulés de chaque résultat étaient stratifiés par charge virale (<2 000, 2 000-20 000, 20 000-200 000, et ≥200 000 IU/mL) ou niveaux d'ALT (1x, 1-2x, ≥2x ULN). Une méta-analyse utilisant un modèle mixte généralisé a été réalisée.

#### Résultats

Sur 13 124 études identifiées et examinées, 45 ont été incluses. Dans les strates de charge virale faible - ADN du VHB <200 IU/mL et <2 000 IU/mL, l'incidence cumulée de CHC (par 100 années-personnes) était faible: 0,131 (IC 95%: 0,097-0,177) et 0,194 (0,121-0,310) respectivement. Pour une charge virale supérieure à 2 000 IU/mL, une relation dose-réponse était observée. Une relation similaire était observée pour l'incidence de la cirrhose et de la mortalité hèpatique. Aucune association claire n'a été trouvée dans 2 études pédiatriques.

#### Conclusion

Cette revue est la plus exhaustive à ce jour sur l'évolution naturelle de l'infection chronique par le VHB. Les taux d'incidence de la cirrhose et du CHC étaient faibles chez les individus avec un ADN du VHB <2000 IU/ml. Il y avait une pénurie de données dans la population pédiatrique.

#### 1. Introduction

#### 1.1 Background information

Hepatitis B virus (HBV) represents an important public health concern worldwide. In 2019, approximately 296 million people were chronically infected and over 820,000 individuals died globally due to related complications such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC) (1,2). Approximately one in four individuals with chronic hepatitis B virus (HBV) infection are at risk of premature death from related complications, despite the availability of effective tools and technologies, such as testing, vaccines, and antiviral therapies (3). Antiviral therapies lower HBV viral load (VL) and can reduce the risk of developing cirrhosis and hepatocellular carcinoma (4). However, not all the individuals with chronic HBV are eligible for antiviral therapy as it is targeted towards those at high risk of liver-related complications (4).

In recent years, there have been several efforts to establish guidelines to classify individuals with chronic HBV at high risk of liver disease progression who are eligible to receive treatment (4). This classification often requires multiple tests including alanine transaminase (ALT), HBV DNA level, and assessment of the degree of liver fibrosis (either via a non-invasive marker or a liver biopsy) (5,6). Guidelines covering these recommendations have been developed by organizations such as the European Association for the Study of the Liver (EASL) (7), the American Association for the Study of Liver Diseases (AASLD) (5), the Asian Pacific Association for the Study of the Liver (APASL) (6) and the World Health Organization (WHO) (4). These guidelines are fairly similar in their treatment indications, yet, they often differ on the HBV DNA level and ALT threshold designated to indicate antiviral treatment, particularly in non-cirrhotic individuals (8).

In 2015, the WHO launched its first guidelines for the prevention, care and treatment of persons with chronic HBV (4). These guidelines represented an attempt to simplify treatment decisions and used HBV DNA, ALT and fibrosis assessment to establish individuals at risk of disease progression, particularly for resource-limited countries. Specifically, in the case of non-cirrhotic patients, WHO guidelines recommended antiviral therapy for patients with persistently abnormal ALT (defined as three ALT determinations above the upper limit of normal, during a 12-month period) and HBV DNA > 20 000 IU/mL (4). This recommendation was made based on moderate quality of evidence, and it did not distinguish for hepatitis B e antigen (HBeAg) status. Additionally, one of its main limitations was lack of available data in resource-limited settings (8).

#### 1.2 Rationale

Since 2015, new evidence has emerged on the eligibility for chronic HBV infection treatment and on the characteristics of the individuals who might benefit the most from receiving therapy. Thus, it is important to synthesize the evidence, including studies that have been recently published, in order to identify individuals at higher risk of liver complications who might benefit from treatment. Therefore, this study aims to review and synthetize available literature on the incidence rate of liver complications in individuals with chronic HBV infection and without cirrhosis, according to HBV DNA and ALT levels.

#### **1.3 Review question**

What is the incidence rate of clinical outcomes without treatment in HBV-infected people without cirrhosis, stratified according to the HBV DNA levels (<2000, 2000-20,000, 20,000-200,000, and  $\geq$ 200,000 IU/mL) and ALT levels (<1x, 1-2x,  $\geq$ 2x upper limit of normal (ULN))?

#### 1.4 Objectives

- To review and summarize available evidence on the incidence rate of liver complications (HCC, cirrhosis and liver-related deaths) in HBV-infected individuals without cirrhosis and without treatment.
- To estimate the incidence rate of liver complications in HBV-infected individuals without cirrhosis, when not receiving treatment. Stratified by HBV DNA levels and ALT levels.

# 2. Methods

This study used a systematic literature review and meta-analysis as methods to identify relevant studies and synthesize the incidence rates of liver complications (HCC, cirrhosis, and liver-related deaths) in HBV-infected individuals without cirrhosis. This systematic review was reported following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement (9).

# 2.1 Protocol and registration

For all the methods used for this systematic review, a prespecified protocol was developed and followed. This protocol was registered in PROSPERO, the international prospective register of systematic reviews.

# 2.2 PICO question and eligibility criteria

Table 1 describes the PICO framework elements that were considered to include studies in the review.

| Population   | People of any age with CHB <sup>*1</sup> without cirrhosis and without concomitant anti-HBV therapy who had both HBV DNA quantification and ALT measurement at baseline <sup>*2</sup>                                          |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intervention | No treatment (natural history) *3<br>Studies that included participants who<br>initiated antiviral therapy during the follow-up<br>were also included                                                                          |
| Comparison   | Not applicable                                                                                                                                                                                                                 |
| Outcome      | Incidence rate of clinical outcomes <sup>*4</sup><br>reported by HBV DNA levels (<2000, 2000-<br>20,000, 20,000-200,000, and $\geq$ 200,000<br>IU/mL) <sup>*5</sup> and ALT levels (<1x, 1-2x, $\geq$ 2x<br>ULN) <sup>*6</sup> |

Table 1. PICO framework for inclusion of studies

# <sup>\*1</sup> Definition of chronic HBV infection (CHB)

CHB is defined as a positive HBsAg serology test on two occasions at least 6 months apart (10). However, because new HBV infections in adults are rare in highly endemic countries where the majority of HBsAg-positive people acquired the infection perinatally or during childhood, HBsAg positivity on only one occasion in adults living in highly prevalent countries was assumed to reflect CHB (11).

# \*2 Evaluation at baseline

Some longitudinal studies of people with CHB may define subgroups based on HBV DNA levels and ALT levels evaluated at a single time point, but others may define them based on several measurements taken during several visits. We considered both types of studies in this systematic review and performed subgroup analysis based on this parameter (single time point *versus* multiple time points).

# \*3 Natural history of CHB

Our primary focus was on longitudinal studies that assess the natural history of CHB in all participants, ideally without any participants initiating anti-HBV therapy during follow-up. However, most contemporary studies provide antiviral therapy to those who become eligible

during follow-up and retrospectively exclude or censor those who initiated antiviral therapy. This practice may have introduced bias, because participants who become eligible for anti-HBV therapy during follow-up and started treatment are more likely to develop cirrhosis or HCC than those who never meet eligibility criteria during the follow-up. For instance, in a cohort stratified by gender, HBeAg status, and baseline HBV DNA levels, the REAL-B registry database found that the incidence rates of HCC were higher when participants who initiated antiviral therapy during follow-up were included in the analysis, compared to when they were excluded (12). This suggests that studies that exclude participants who start antivirals during follow-up may underestimate the risk of HCC. To ensure a comprehensive analysis of the natural history, we also included a study that included participants who started antiviral therapy during follow-up.

#### \*4 Outcomes

We considered HCC, cirrhosis and liver-related mortality.

#### \*5 HBV DNA levels

All HBV DNA levels will be reported in IU/mL; values given as copies/mL were converted to IU/mL after dividing by a factor of 5 (10 000 copies/mL = 2000 IU/mL; 100 000 copies/mL = 2000 IU/mL; 1 million copies/mL = 200000 IU/mL) (13).

<sup>\*6</sup> Upper limit of normal (ULN) for ALT levels

The ULN of ALT varies between the guidelines. We considered the ULN of whatever the original study used according to the different guidelines. Table 2 describes different possible cut-off values for the upper limit of normal (ULN) of ALT according to different guidelines.

| Guidelines      | Men | Women |
|-----------------|-----|-------|
| AASLD, 2018 (5) | 35  | 25    |
| EASL, 2017 (7)  | 40  | 40    |
| APASL, 2015 (6) | 40  | 40    |
| WHO, 2015 (4)   | 30  | 19    |

| Table 2 Upper limit of permal    |        | (11.1/1.) | occording t  | o tho | different quidelines |
|----------------------------------|--------|-----------|--------------|-------|----------------------|
| Table Z. Opper limit of normal ( | JUIALI |           | according in | o ine | unierent guidennes   |

Articles published in any language were considered and the following criteria were considered for inclusion.

Inclusion criteria:

 Studies presenting longitudinal data on people of any age with CHB<sup>\*1</sup> without cirrhosis and without concomitant anti-HBV therapy,<sup>\*2</sup> who had both HBV DNA quantification and ALT measurement at baseline,<sup>\*3</sup> and reporting the number of events and personyears-at-risk for clinical outcomes<sup>\*4</sup> in a group of participants stratified by both HBV DNA levels (<2000, 2000-20,000, 20,000-200,000, and ≥200,000 IU/mL)<sup>\*5</sup> and ALT levels (<1x, 1-2x, ≥2x ULN)<sup>\*6</sup>

- Clinical outcomes should be reported for a group of participants who were free of cirrhosis at baseline, had no history of anti-HBV therapy before the start of the study, did not receive any such therapy during the study, and were followed up for at least 1 year, with an interval not exceeding 2 years.
- The clinical outcomes should be stratified according to the predefined thresholds for HBV DNA levels and ALT levels. It should be noted that some studies may report subgroups defined by broader categories, for example, HBV DNA levels ≥20,000 IU/mL & ALT levels ≥1x.
- Not all longitudinal studies reporting the number of events for a specific outcome present the person-years-at-risk for that specific clinical outcome. We still included these studies if they reported: i) incidence rate for the outcome; ii) number of participants at the start of follow-up and mean/median duration of follow-up specific for the outcome; or iii) a life table specific for the outcome with the number at risk at each interval.
- Both original articles and conference proceedings were be considered if they reported enough information to meet the inclusion criteria.

Exclusion criteria:

- Studies focused on people with a primary condition other than hepatitis B (e.g., malignancy, autoimmune disease, hemodialysis).
- Studies focused on people co-infected with HIV, HCV, or HDV.
- Studies focused on people who have already lost HBsAg.
- Studies focused on people who have received anti-HBV therapy before recruitment.
- Studies focused on pregnant women.

#### 2.3 Search strategy and Information sources

The databases searched included: PubMed, Embase, Web of Science, and the Cochrane Library. The exact search strategies are adapted to each database and is detailed in **Appendix 1**. The search terms employed covered hepatitis B infection AND parameters used to stratify participants (i.e. ALT, HBV DNA) AND clinical outcomes (i.e. progression of fibrosis, cirrhosis, HCC, death) AND type of research. Additionally, it was restricted to papers published from January of 2000 up to February of 2023.

We also performed a manual search through the references of included studies, as well as through those of relevant systematic reviews identified through the literature search, to identify any further eligible studies.

#### 2.4 Selection process

The search was conducted in the selected databases using the reported search strategy and the results were transferred to a .ris file. Duplicates were identified and removed using a references manager. Subsequently, references were screened by titles and abstracts by two reviewers to assess their eligibility. The decision to include studies were made after screening was complete, and dissimilarities were solved by a third reviewer. Reasons for exclusion were labeled and recorded. Corresponding author for all potentially eligible studies with missing information were contacted by e-mail or phone call.

#### 2.5 Data extraction and description of the database

Data from selected studies were extracted using a pre-piloted data extraction form. All relevant data was extracted including: (i) reference's general characteristic, (ii) General information about the study design and recruitment (iii) Characteristics of study participants (number of participants at baseline, inclusion and exclusion criteria for participants, number of male/female, mean age, number with positive HBeAg, HBV genotype, fibrosis stage, number of participants coinfected with hepatitis C virus, hepatitis D virus and human immunodeficiency virus (HIV), (iv) Baseline HBV DNA and ALT data, (v) measured outcome and outcome's definition (HCC, cirrhosis and liver-related mortality), (vi) method to estimate the time of follow-up, (vii) number of events during the follow-up, and (viii) follow up expressed either in person-years, mean follow-up or median follow-up.

One reviewer extracted the data independently and once data extraction was completed, an independent reviewer verified the data for accuracy. After completing data extraction, articles with potentially overlapping populations were identified by checking the recruitment period, recruitment place and enrolment criteria. Afterwards, articles reporting results for the same research project were identified and references containing less information or reporting results for a subsample were excluded.

#### 2.6 Quality assessment

The quality of included studies was rated using the Newcastle–Ottawa Scale (14) for observational studies (see Appendix 2).

#### 2.7 Data synthesis and statistical analysis

We tabulated extracted data to summarize the characteristics of included studies. We also performed a random-effects meta-analysis using a generalized linear mixed model (GLMM) with the logit link by the "metarate" command in R 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria). We choose random-effects model over fixed-effects model as a high level of heterogeneity is expected among the included studies. We employed I<sup>2</sup> to assess the statistical heterogeneity. We performed subgroup analyses based on: (i) HBV DNA and ALT pre-defined groups; (ii) adults and children's cohorts; and (iii) single and multiple time HBV DNA and ALT assessments.

#### Results

We initially identified a total of 13,124 references through our electronic database search. After a thorough screening process, 43 studies were included in our meta-analysis; the studies were published from 2002 to 2023 and included 43 studies conducted in adults and 2 studies conducted in children/adolescents. Additionally, to address the lack of data on CHB in sub-Saharan Africa, unpublished longitudinal data from the region was identified through the Hepatitis B in Africa collaborative Network (HEPSANET) (15). As a result, we integrated aggregated data from two cohort studies: the Ethiopian cohort (Johannessen A, Desalegn H et al.) and the Gambian cohort (Ndow G, Lemoine M et al.). Figure 2 shows the literature search flowchart.

#### Figure 2. Flow chart of study inclusion and exclusion



#### 3.1 General characteristics of included studies

The majority of the included studies were from the Western Pacific region (64.4%, 29/45), followed by Europe (11.1%, 5/45), Americas (6.7%, 3/45), Eastern Mediterranean (6.7%, 3/45), and Africa (6.7%, 3/45). Most of the studies focused on adults (86.7%, 39/45), while 12.5% (10/45) focused on adolescents/children and 2.5% (2/45) included both. Over a half of the studies were conducted before 2015 (31.1%), around 64.4% (29/45) after 2015 and two included references remain unpublished. Table 3 presents the general characteristics of selected studies including WHO region, year of publication, study population, study design, fibrosis assessment and follow-up duration.

|                       |                             | Number       |       |
|-----------------------|-----------------------------|--------------|-------|
|                       | Variables                   | (Total n=45) | %     |
| WHO regions           |                             |              |       |
|                       | WPR                         | 29           | 64.4% |
|                       | EMR                         | 2            | 4.4%  |
|                       | EUR                         | 5            | 11.1% |
|                       | AFR                         | 3            | 6.7%  |
|                       | AMR                         | 3            | 6.7%  |
|                       | Combination                 | 3            | 6.7%  |
| Year of publication   |                             |              |       |
|                       | Before 2015                 | 14           | 31.1% |
|                       | After 2015 (including 2015) | 29           | 64.4% |
|                       | Unpublished                 | 2            | 4.4%  |
| Study population      | •                           |              |       |
|                       | Adults                      | 39           | 86.7% |
|                       | Children (<18 years)        | 2            | 4.4%  |
|                       | Mixed                       | 4            | 8.9%  |
| Study design          | •                           |              |       |
|                       | Prospective cohort study    | 22           | 48.9% |
|                       | Retrospective cohort study  | 23           | 51.1% |
| Fibrosis assessment   |                             |              |       |
|                       | Not reported                | 34           | 75.6% |
|                       | F0-1                        | 1            | 2.2%  |
|                       | F0-2                        | 1            | 2.2%  |
|                       | F0-3                        | 9            | 20.0% |
| Duration of follow-up |                             |              |       |
|                       | < 5 years                   | 9            | 20.0% |
|                       | ≥ 5 years                   | 36           | 80.0% |
|                       |                             |              |       |

#### Table 3. General characteristics of included studies

Across all 45 included references, 22 (48,9%) prospective studies, and 23 retrospective studies (51,1%) were included. Table 4 presents the main characteristics of participants in included studies.

# Table 4. Summary of included studies

| Author, year                | Country                  | Study design<br>(prospective,<br>retrospective) | Total<br>number of<br>participants<br>at baseline | Male sex<br>(n/N, %) | Age<br>category | Mean age<br>(±SD) or<br>median (range<br>or IQR) in<br>years | HBeAg-<br>positive<br>(n/N, %) | HBV genotype: A, B,<br>C, D, E, F, G, H, I, J<br>(n/N, %) | Fibrosis<br>stage       | HCV (n/N,<br>%) | HDV (n/N,<br>%) | HIV (n/N,<br>%) | Alcohol<br>(n/N, %) |
|-----------------------------|--------------------------|-------------------------------------------------|---------------------------------------------------|----------------------|-----------------|--------------------------------------------------------------|--------------------------------|-----------------------------------------------------------|-------------------------|-----------------|-----------------|-----------------|---------------------|
| Ahn, 2014 (16)              | Korea                    | Retrospective                                   | 309                                               | 55,0%                | Adults          | Mean 46.8 SD<br>10.2                                         | 0,0%                           | N/R                                                       | N/R                     | N/R             | N/R             | N/R             | N/R                 |
| Akbulut, 2014<br>(17)       | Turkey                   | Retrospective                                   | 150                                               | 64,7%                | Children        | Mean 14.97<br>SD 2.92                                        | 60,7%                          | N/R                                                       | F0-3                    | 0,0%            | 0,0%            | N/R             | N/R                 |
| Bonacci, 2018<br>(18)       | Spain                    | Prospective                                     | 287                                               | N/R                  | Adults          | N/R                                                          | 0,0%                           | N/R                                                       | F0-2                    | 0,0%            | 0,0%            | 0,0%            | 0,0%                |
| Brouwer, 2016<br>(19)       | Multinational            | Prospective                                     | 292                                               | 55,5%                | Adults          | Mean 43.2 SD<br>13.3                                         | 0,0%                           | A 16%; B 14%; C<br>11%; D 37%; Other<br>5%                | Unclear<br>distribution | 0,0%            | 0,0%            | 0,0%            | N/R                 |
| Chang, 2017 (20)            | Korea                    | Retrospective                                   | 484                                               | 50%                  | Adults          | N/R                                                          | 100,00%                        | C 484                                                     | F0-3                    | 0,00%           | 0,00%           | Not<br>reported | Not<br>reported     |
| Chen, 2012 (21)             | Taiwan                   | Retrospective                                   | 62                                                | N/R                  | Both            | Range 17–57                                                  | 0,0%                           | B 47; C 15                                                | N/R                     | 0,0%            | 0,0%            | 0,0%            | N/R                 |
| Chen, 2006 (22)             | Taiwan                   | Prospective                                     | 3653                                              | 61,9%                | Adults          | N/R                                                          | 15,5%                          | N/R                                                       | N/R                     | 0,0%            | N/R             | N/R             | N/R                 |
| Chen, 2010 (23)             | Taiwan                   | Prospective                                     | 1932                                              | 58%                  | Adults          | Mean 47.4,<br>SD 10                                          | 0,00%                          | N/R                                                       | N/R                     | 0,00%           | Not<br>reported | Not<br>reported | 0.00%               |
| Cho, 2014 (24)              | Korea                    | Retrospective                                   | 1014                                              | 60,0%                | Adults          | Mean 51.7<br>SD10.2                                          | 0,0%                           | N/R                                                       | N/R                     | 0,0%            | NR              | 0,0%            | N/R                 |
| Choi, 2019 (25)             | Korea                    | Retrospective                                   | 5414                                              | N/R                  | Adults          | N/R                                                          | 0,0%                           | N/R                                                       | N/R                     | 0,0%            | N/R             | 0,0%            | N/R                 |
| Farzi, 2014 (26)            | Iran                     | Prospective                                     | 399                                               | 74,4%                | Adults          | N/R                                                          | 0.0%                           | N/R                                                       | N/R                     | 0,0%            | 0,0%            | 0,0%            | 0,0%                |
| Hsu, 2021 (27)              | Taiwan                   | Prospective                                     | 81                                                | 80,2%                | Adults          | Median 43,<br>(IQR 37-51)                                    | 25.93%                         | N/R                                                       | F0-3                    | 0.00%           | 0.00%           | N/R             | N/R                 |
| Hsu, 2013 (28)              | Taiwan                   | Prospective                                     | 95                                                | 63%                  | Children        | Mean 5.8<br>(Range 0.5–<br>18.4)                             | 42,11%                         | B 62; C 25                                                | N/R                     | 0,00%           | 0,00%           | 0,00%           | Not<br>reported     |
| Huang, 2021 (29)            | Multinational            | Prospective                                     | 3366                                              | 68,7%                | Adults          | Mean 45.60<br>SD 10.83                                       | 15,2%                          | N/R                                                       | N/R                     | 0,0%            | 0,0%            | 0,0%            | N/R                 |
| lloeje, 2007 (30)           | Taiwan                   | Prospective                                     | 3931                                              | 59,3%                | Adults          | N/R                                                          | 14,4%                          | N/R                                                       | N/R                     | 0,0%            | N/R             | N/R             | 11,9%               |
| Jeon, 2021 (31)             | Korea                    | Retrospective                                   | 125                                               | 61,6%                | Adults          | Median 38.6<br>(IQR 28.1–<br>50.7)                           | 100,0%                         | N/R                                                       | Unclear<br>distribution | 0.00%           | N/R             | N/R             | 0.00%               |
| Johannessen,<br>unpublished | Ethiopia                 | Prospective                                     | 1303                                              | 59,1%                | Adults          | Median 31<br>(range 18-72)                                   | 12,1%                          | N/R                                                       | F0-3                    | 2,6%            | 0,9%            | 0.00%           | 3,5%                |
| Kim, 2018 (32)              | Korea                    | Retrospective                                   | 4535                                              | N/R                  | Adults          | N/R                                                          | 100,0%                         | N/R                                                       | N/R                     | 0,0%            | 0,0%            | 0,0%            | N/R                 |
| Kim, 2020 (33)              | Korea                    | Retrospective                                   | 6949                                              | 55,9%                | Adults          | Mean 45<br>SD12                                              | 29,9%                          | N/R                                                       | N/R                     | 0,0%            | 0,0%            | 0,0%            | N/R                 |
| Koc, 2022 (34)              | Belgium &<br>Netherlands | Retrospective                                   | 404                                               | N/R                  | Adults          | N/R                                                          | 0,0%                           | N/R                                                       | N/R                     | 0,0%            | 0,0%            | 0,0%            | 0,0%                |
| Kumada, 2022<br>(35)        | Japan                    | Retrospective                                   | 526                                               | 51,9%                | Adults          | Median 53<br>(IQR 43–64)                                     | 0,0%                           | A 20; B 60; C 296; D 3                                    | F0-3                    | 0.00%           | 0.00%           | 0.00%           | 26,0%               |
| Kusakabe, 2011<br>(36)      | Japan                    | Prospective                                     | 479                                               | 45,9%                | Adults          | N/R                                                          | 3,5%                           | N/R                                                       | N/R                     | 0.00%           | N/R             | N/R             | 0.00%               |
| Lee, 2020 (37)              | Korea                    | Prospective                                     | 747                                               | 54,5%                | Adults          | Mean 56.4 SD<br>11.8                                         | 16,9%                          | N/R                                                       | F0-3                    | 0,0%            | 0,0%            | 0,0%            |                     |

| Lee, 2020 (38)                  | Korea             | Retrospective | 946  | 45,3% | Adults | Median 36.8<br>(IQR 27.6-<br>45.7)   | 100,0% | N/R                                 | F0-1                    | 0,0% | 0,0% | 0,0% | 0,0% |
|---------------------------------|-------------------|---------------|------|-------|--------|--------------------------------------|--------|-------------------------------------|-------------------------|------|------|------|------|
| Lee, 2019 (39)                  | Korea             | Retrospective | 773  | N/R   | Adults | N/R                                  | N/R    | N/R                                 | N/R                     | 0,0% | 0,0% | 0,0% | N/R  |
| Liu, 2016 (40)                  | Taiwan            | Prospective   | 1529 | N/R   | Adults | N/R                                  | 0,0%   | B 775; B 337                        | N/R                     | 0,0% | N/R  | N/R  | N/R  |
| Liu, 2021 (12)                  | Multiple          | Retrospective | 8526 | N/R   | Adults | Mean 44.01<br>SD10.85                | 15,4%  | N/R                                 | Unclear<br>distribution | 0,0% | 0,0% | 0,0% | N/R  |
| Lok, 2021 (41)                  | USA &<br>Canada   | Prospective   | 1418 | 48,5% | Adults | Median 41.1<br>years                 | 16,2%  | A 219; B 523; C 434;<br>D 87; E 33  | F0-3                    | 0,0% | 0,0% | 0,0% | 7,1% |
| Nakazawa, 2011<br>(42)          | Japan             | Prospective   | 104  | 54,8% | Adults | Median 49 SD<br>11 range (22–<br>74) | 0,0%   | A 4; B 24; C 74; Other<br>2         | N/R                     | 0,0% | N/R  | N/R  | 0,0% |
| Ndow,<br>Unpuplished            | The Gambia        | Prospective   | 857  | 61,8% | Adults | Median 35<br>(IQR 31-43)             | 100,0% | A 40; E 267                         | F0-3                    | 0,9% | 0,9% | 2,8% | 6,4% |
| Ormeci, 2016<br>(43)            | Turkey            | Prospective   | 120  | 48,3% | Both   | Mean 42.8 SD<br>11.32                | 0,0%   | N/R                                 | N/R                     | 0,0% | 0,0% | 0,0% | 0,0% |
| Raptopoulou-<br>Gigi, 2002 (44) | Greece            | Retrospective | 307  | 62,9% | Adults | Mean 45.65<br>SD 11.37               | 0,0%   | N/R                                 | N/R                     | 0,0% | N/R  | 0,0% | N/R  |
| Sali, 2016 (45)                 | Iran              | Prospective   | 420  | 62,1% | Adults | N/R                                  | 0,0%   | N/R                                 | N/R                     | N/R  | N/R  | N/R  | N/R  |
| Seong, 2022 (46)                | Korea             | Retrospective | 651  | 62,1% | Adults | Median 36<br>(28-45)                 | 100,0% | N/R                                 | F0-3                    | 0,0% | N/R  | 0,0% | N/R  |
| Shimakawa, 2016<br>(47)         | The Gambia        | Prospective   | 405  | 50,4% | Both   | Median 10.8<br>(IQR 4.6-21.8)        | 44,8%  | A 5; E 97                           | N/R                     | N/R  | N/R  | N/R  | N/R  |
| Sinn, 2019 (48)                 | Korea             | Retrospective | 3624 | N/R   | Adults | Mean 48.0<br>SD11.9                  | 25,7%  | N/R                                 | N/R                     | 0,0% | NR   | 0,0% | N/R  |
| Suzuki, 2021 (49)               | Japan             | Retrospective | 462  | 57,1% | Adults | N/R                                  | N/R    | N/R                                 | Unclear distribution    | 0,0% | N/R  | 0,0% | N/R  |
| Tseng, 2012 (50)                | Taiwan            | Retrospective | 390  | 67,7% | Adults | N/R                                  | 0,0%   | N/R                                 | N/R                     | 0,0% | 0,0% | 0,0% | N/R  |
| Tseng, 2012 (51)                | Taiwan            | Retrospective | 2668 | 61,2% | Adults | N/R                                  | 19,5%  | B 80.7%; C 19.3%                    | N/R                     | 0,0% | 0,0% | 0,0% | N/R  |
| Tseng, 2022 (52)                | Taiwan &<br>Japan | Retrospective | 2150 | 61,0% | Adults | Mean 42,4 SD<br>10,1                 | 0,0%   | B 1700; C 331                       | N/R                     | 0,0% | 0,0% | 0,0% | N/R  |
| Tohme, 2013 (53)                | USA               | Prospective   | 414  | 43,2% | Adults | N/R                                  | 0,0%   | A 57; B 9; C 23; D<br>209; F 71     | N/R                     | 0,0% | N/R  | 0,0% | N/R  |
| Tong, 2013 (54)                 | USA               | Prospective   | 146  | 46,6% | Adults | Mean 40.6 SD<br>12.3                 | 100,0% | A 5; B 43; C 30; D 3;<br>H 1; B+C 1 | N/R                     | 0,0% | N/R  | 0,0% | N/R  |
| Tseng, 2013 (55)                | Taiwan            | Retrospective | 2165 | N/R   | Adults | N/R                                  | 0,0%   | B 87%; C 13%                        | N/R                     | 0,0% | 0,0% | 0,0% | 0,0% |
| Tseng, 2021 (56)                | Taiwan            | Retrospective | 1673 | 56,2% | Adults | N/R                                  | 0,0%   | B 1324; C 248; Other<br>101         | N/R                     | 0,0% | 0,0% | 0,0% | N/R  |
| Yasunaka, 2016<br>(57)          | Japan             | Prospective   | 657  | 50,4% | Both   | Median 49,<br>(range11-88)           | 26,1%  | B 20; C 178                         | N/R                     | 0,0% | N/R  | 0,0% | N/R  |

#### 3.2 Risk of bias

26 studies were rated poor-quality, four fair-quality and 15 as good-quality. Regarding the representativeness of the study participants, the majority of the reports (n=40, 88.9%) selected truly representative exposed cohorts or somewhat representative cohorts that identified participants to carry HBsAg as clinically indicated for suspected liver disease or known to carry HBsAg through general population testing or clinically indicated and have been followed by specialist services. All the included studies clearly defined how participants were categorized based on HBV DNA levels and ALT levels. Additionally, most of the reports (n=40, 97.8%) verified that the outcome of interest was not present at the start of the study. With respect to the outcome score, the majority of the included studies (n=28, 62.2%) did not described how the assessment of the outcome was performed. Yet, the follow-up was  $\geq$  5 years in 80.0% of the included studies. Finally, most of the assessed reports lacked a clear statement for the adequacy of follow up (n=38, 84.4%). Table 5 reports the quality assessment for the included references.

| Author & Year        | 1)Representative<br>ness of the<br>exposed cohort<br>(number of stars) | 2)<br>Ascertainment<br>of exposure<br>(number of stars) | 4) Demonstration<br>that outcome of<br>interest was not<br>present at start of<br>study | Selection score | 1) Assessment of outcome | 2) Was follow-up<br>long enough for<br>outcomes to<br>occur | 3) Adequacy of followup of cohorts | Outcome score | Interpretation |
|----------------------|------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------|--------------------------|-------------------------------------------------------------|------------------------------------|---------------|----------------|
| Ahn 2014 (16)        | *                                                                      | *                                                       | *                                                                                       | 3               | *                        |                                                             |                                    | 1             | Poor quality   |
| Akbulut 2014 (17)    |                                                                        | *                                                       | *                                                                                       | 2               | *                        | *                                                           |                                    | 2             | Fair quality   |
| Bonacci 2018<br>(18) | *                                                                      | *                                                       | *                                                                                       | 3               |                          | *                                                           |                                    | 1             | Poor quality   |
| Brouwer 2016<br>(19) | *                                                                      | *                                                       | *                                                                                       | 3               |                          | *                                                           | *                                  | 2             | Good quality   |
| Chang 2017 (20)      | *                                                                      | *                                                       | *                                                                                       | 3               |                          |                                                             |                                    | 0             | Poor quality   |
| Chen 2012 (21)       |                                                                        | *                                                       | *                                                                                       | 2               |                          | *                                                           |                                    | 1             | Poor quality   |
| Chen 2006 (22)       | *                                                                      | *                                                       | *                                                                                       | 3               | *                        | *                                                           |                                    | 2             | Good quality   |
| Chien 2016 (24)      | *                                                                      | *                                                       | *                                                                                       | 3               |                          | *                                                           | *                                  | 2             | Good quality   |
| Cho 2014 (24)        | *                                                                      | *                                                       | *                                                                                       | 3               |                          |                                                             |                                    | 0             | Poor quality   |
| Choi 2019 (25)       | *                                                                      | *                                                       | *                                                                                       | 3               | *                        | *                                                           |                                    | 2             | Good quality   |
| Farzi 2014 (26)      | *                                                                      | *                                                       | *                                                                                       | 3               |                          | *                                                           |                                    | 1             | Poor quality   |
| Hsu 2013 (28)        | *                                                                      | *                                                       | *                                                                                       |                 |                          | *                                                           | *                                  | 2             | Good quality   |
| Hsu 2021 (27)        |                                                                        | *                                                       | *                                                                                       | 2               | *                        |                                                             | *                                  | 2             | Fair quality   |

Table 5. Risk of bias assessment according to the New Castle Ottawa scale.

| Huang 2021 (29)  | * | * | * | 3 |   | * |   | 1 | Poor quality    |
|------------------|---|---|---|---|---|---|---|---|-----------------|
| lloeje 2007 (30) | * | * | * | 3 | * | * |   | 2 | Good quality    |
| Jeon 2021(31)    |   | * | * | 2 |   | * |   | 1 | Poor quality    |
| Johannessen      |   |   |   |   |   |   |   |   |                 |
| Unpublished      | * | * | * | 3 |   | * | * | 2 | Good quality    |
| Kim 2018 (32)    | * | * |   | 2 | * | * |   | 2 | Fair quality    |
| Kim 2020 (33)    | * | * | * | 3 | * | * |   | 2 | Good quality    |
| Koc 2022 (34)    |   | * | * | 2 |   | * |   | 1 | Poor quality    |
| Kumada 2022      |   |   |   |   |   |   |   |   |                 |
| (35)             | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Kusakabe 2011    |   |   |   |   |   |   |   |   | <b>–</b> · · ·· |
| (36)             | * |   | * | 2 | * | * |   | 2 | Fair quality    |
| Lee 2019 (39)    | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Lee 2020 (37)    | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Lee 2020 (38)    | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Liu 2016 (40)    | * | * | * | 3 | * | * |   | 2 | Good quality    |
| Liu 2021 (12)    | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Lok 2021 (41)    | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Nakazawa 2011    |   |   |   |   |   |   |   |   |                 |
| (42)             | * | * | * | 3 | * | * |   | 2 | Good quality    |
| Ndow             |   |   |   |   |   |   |   |   |                 |
| Unpublished      | * | * | * | 3 | * | * | * | 3 | Good quality    |
| Ormeci 2016 (43) | * | * | * | 3 |   |   |   | 0 | Poor quality    |
| Raptopoulou-     |   |   |   |   |   |   |   |   |                 |
| Gigi 2002 (44)   | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Sali 2016 (45)   | * | * |   | 2 |   |   |   | 0 | Poor quality    |
| Seong 2022 (46)  | * | * | * | 3 | * | * |   | 2 | Good quality    |
| Shimakawa 2016   |   |   |   | 0 |   |   |   | 0 |                 |
| (47)             | * | * | * | 3 | * | * | * | 3 | Good quality    |
| Sinn 2019 (48)   | * | * | * | 3 | * |   |   | 1 | Poor quality    |
| Suzuki 2021 (49) | * | * | * | 3 |   |   |   | 0 | Poor quality    |
| Tohme 2013 (53)  | * | * |   | 2 |   | * |   | 1 | Poor quality    |
| Tong 2013 (54)   | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Tseng 2012 (50)  | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Tseng 2012 (51)  | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Tseng 2013 (55)  | * | * | * | 3 |   | * |   | 1 | Poor quality    |
| Tseng 2021 (56)  | * | * | * | 3 | * | * |   | 2 | Good quality    |
| Tseng 2022 (52)  | * | * | * | 3 | * | * |   | 2 | Good quality    |
| Yasunaka 2016    |   |   |   |   |   |   |   |   |                 |
| (57)             | * | * |   | 2 |   |   |   | 0 | Poor quality    |

# 3.3 Meta-analysis

# 3.3.1 HCC in adults with a single HBV DNA assessment

22 studies provided a total of 39 distinct within-study groups, 4, 16, 7, 4, 8 for the viral load strata of <200 IU/mL, <2,000 IU/mL, 20,000-200,000 IU/mL, and ≥200,000 IU/mL, respectively. There was a dose-response relationship between HBV DNA levels at baseline and the incidence rates of HCC (per 100 person-years): 0.131 (95% CI: 0.097-0.177,  $f^2 = 0\%$ ) in the <200 IU/mL stratum; 0.176 (0.117-0.265,  $f^2 = 88\%$ ) in the <2,000 stratum; 0.312 (0.245-0.396,  $f^2 = 16\%$ ) in the 2,000-20,000 stratum; 0.874 (0.735-1.040,  $f^2 = 0\%$ ) in the 20,000-200,000 stratum; and 0.941 (0.664-1.335,  $f^2 = 62\%$ ) in the ≥200,000 stratum (p for heterogeneity between subgroups < 0.01) (Figure 1).

The pooled incidence rates of the first three strata (<200, <2,000, and 2,000-20,000 IU/mL) were all relatively low, at less than 0.35 per 100 person-years. The 95% confidence intervals for these rates overlapped. The mean duration of follow-up was higher than 5 years for most of the studies included in all strata (<200, <2,000, 2,000-200,000, and >200,000 IU/mL) (Figure 1).

**Figure 1.** Forest plot of pooled HCC incidence rate in adults, according to a single HBV DNA assessment

|                                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         | Events per 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                 |
|-------------------------------------|--------------------------|-------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|--------|---------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
| Study                               | groupID                  | Country                 | hbeag       | alt_category                                                                                                                                              | vl_baseline | antiviral_treatment | number | mean_fu | events | PYFU    | person-years Incide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nce_rate | 95% CI          |
|                                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| < 200 IU/mL                         |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| Tseng, 2012                         | 68961                    | Taiwan                  | Negative    | Any ALT                                                                                                                                                   | NR          | Excluded/censored   | 139    | 9.5     | 1      | 1319    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076    | [0.011; 0.538]  |
| Chen, 2006                          | 87921                    | Taiwan                  | Mix         | Any ALT                                                                                                                                                   | NR          | Some                | 869    | 23.4    | 24     | 20365   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.118    | [0.079; 0.176]  |
| Kusakabe, 2011                      | 731822                   | Japan                   | Mix         | Any ALT                                                                                                                                                   | NR          | NR                  | 312    | 12.7    | 5      | 3962    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.126    | [0.053; 0.303]  |
| Tseng, 2012                         | 69675                    | Taiwan                  | Negative    | Any ALT                                                                                                                                                   | NR          | Excluded/censored   | 438    | 14.7    | 12     | 6455    | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.186    | [0.106; 0.327]  |
| Pooled estimate                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.131    | [0.097; 0.177]  |
| Heterogeneity: $I^2 = 0\%$ ,        | $t^2 = 0, p = 0.57$      | 7                       |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
|                                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| < 2,000 IU/mL                       |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| Koc, 2022                           | 10742 E                  | Belgium & Netherland    | is Negative | <uln< td=""><td>50.1</td><td>None</td><td>327</td><td>7</td><td>0</td><td>2289</td><td>-</td><td>0.000</td><td>[0.001; 0.349]</td></uln<>                 | 50.1        | None                | 327    | 7       | 0      | 2289    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000    | [0.001; 0.349]  |
| Farzi, 2014                         | 57431                    | Iran                    | Negative    | <uln< td=""><td>NR</td><td>None</td><td>399</td><td>8.9</td><td>1</td><td>3557</td><td>100</td><td>0.028</td><td>[0.004; 0.200]</td></uln<>               | NR          | None                | 399    | 8.9     | 1      | 3557    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.028    | [0.004; 0.200]  |
| Kusakabe, 2011                      | 731823                   | Japan                   | Mix         | Any ALT                                                                                                                                                   | NR          | NR                  | 76     | 12.7    | 0      | 965     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000    | [0.003; 0.828]  |
| Liu, 2021                           | 108667                   | Multiple                | Negative    | Any ALT                                                                                                                                                   | NR          | Excluded/censored   | 5334   | 11.8    | 61     | 62997   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.097    | [0.075; 0.124]  |
| Shimakawa, 2016                     | 107441                   | The Gambia              | Mix         | Any ALT                                                                                                                                                   | NB          | None                | 102    | 26.2    | 3      | 2674    | <b>H</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.112    | [0.036: 0.348]  |
| Tseng, 2022                         | 8391                     | Taiwan & Japan          | Negative    | <uln< td=""><td>NB</td><td>Excluded/censored</td><td>824</td><td>16.3</td><td>16</td><td>13404</td><td>E</td><td>0.119</td><td>[0.073: 0.195]</td></uln<> | NB          | Excluded/censored   | 824    | 16.3    | 16     | 13404   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.119    | [0.073: 0.195]  |
| Tohme, 2013                         | 62531                    | USA                     | Negative    | <uln< td=""><td>NB</td><td>Some</td><td>414</td><td>72</td><td>4</td><td>2984</td><td><b>F</b></td><td>0.134</td><td>[0.050: 0.357]</td></uln<>           | NB          | Some                | 414    | 72      | 4      | 2984    | <b>F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.134    | [0.050: 0.357]  |
| Chen. 2006                          | 87922                    | Taiwan                  | Mix         | Any ALT                                                                                                                                                   | NB          | Some                | 1151   | 23.7    | 43     | 27317   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.157    | [0.117: 0.212]  |
| Tong 2013                           | 63661                    | USA                     | Positive    | <uln< td=""><td>NB</td><td>Some</td><td>146</td><td>8</td><td>2</td><td>1168</td><td>-</td><td>0 171</td><td>10 043 0 6851</td></uln<>                    | NB          | Some                | 146    | 8       | 2      | 1168    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 171    | 10 043 0 6851   |
| Tseng 2012                          | 69671                    | Taiwan                  | Mix         | Any ALT                                                                                                                                                   | NB          | Excluded/censored   | 649    | 15.1    | 17     | 9780    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 174    | 10 108: 0 2801  |
| 1 10 2021                           | 1086610                  | Multiple                | Positive    | Any ALT                                                                                                                                                   | NB          | Some                | 155    | 122     | 5      | 1892    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 264    | 10 110: 0 6351  |
| Choi 2019                           | 30251                    | Korea                   | Negative    | <b>JIIN</b>                                                                                                                                               | NB          | None                | 3572   | 10.1    | 140    | 36064   | Te la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.388    | [0.329: 0.458]  |
| Sinn 2019                           | 32701                    | Korea                   | Mix         | Any ALT                                                                                                                                                   | NB          | Excluded/censored   | 1388   | 4.6     | 25     | 6385    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.302    | [0.265: 0.579]  |
| Teong 2022                          | 8303                     | Toiwan & Japan          | Nogatino    | 1-2-1 IL M                                                                                                                                                | NIR         | Excluded/consored   | 172    | 14.0    | 12     | 2595    | in the second se | 0.464    | [0.264: 0.917]  |
| Vasunaka 2016                       | 102423                   | lanan                   | Mix         | III N                                                                                                                                                     | 300 1       | None                | 225    | 4.1     | 5      | 028     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.539    | [0.224: 1.204]  |
| Teong 2022                          | 8303                     | Taiwan & Japan          | Nagatino    | 2VIII N                                                                                                                                                   | NB          | Excluded/concored   | 61     | 15.1    | 6      | 023     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.650    | 10 202: 1 4471  |
| Tseng, 2022                         | 0393                     | Taiwan & Japan          | Negative    | SZXULIN                                                                                                                                                   | INIT        | Excluded/cerisored  | 01     | 15.1    | 0      | 923     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.030    | [0.292, 1.447]  |
| Pooled estimate                     | 2 0 1051                 | 0.04                    |             |                                                                                                                                                           |             |                     |        |         |        |         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.176    | 10.117; 0.2001  |
| Heterogeneity: / = 88%              | $\tau^{-} = 0.4851, \mu$ | 5<0.01                  |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
|                                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| 2,000 - 20,000 IU/mL                | 100000                   |                         |             |                                                                                                                                                           |             | F                   | 1700   | 10.0    |        | 470.774 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000    | 10 100 0 0101   |
| Liu, 2021                           | 108668                   | Multiple                | Negative    | Any ALT                                                                                                                                                   | NH          | Excluded/censored   | 1/52   | 10.2    | 41     | 1/8/1   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.229    | [0.169; 0.312]  |
| Liu, 2021                           | 1086611                  | Multiple                | Positive    | Any ALT                                                                                                                                                   | NH          | Some                | 196    | 9.7     | 5      | 1903    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.263    | [0.109; 0.631]  |
| Kusakabe, 2011                      | 731824                   | Japan                   | Mix         | Any ALT                                                                                                                                                   | NR          | NR                  | 46     | 12.7    | 2      | 584     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.342    | [0.086; 1.369]  |
| Ahn, 2015                           | 51321                    | Korea                   | Negative    | <2xULN                                                                                                                                                    | NR          | Some                | 149    | 3.7     | 2      | 556     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.360    | [0.090; 1.438]  |
| Tseng, 2012                         | 69672                    | Taiwan                  | Mix         | Any ALT                                                                                                                                                   | NR          | Excluded/censored   | 555    | 14.7    | 30     | 8141    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.368    | [0.258; 0.527]  |
| Chen, 2006                          | 87923                    | Taiwan                  | Mix         | Any ALT                                                                                                                                                   | NR          | Some                | 629    | 23.3    | 56     | 14666   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.382    | [0.294; 0.496]  |
| Shimakawa, 2016                     | 107442                   | The Gambia              | Mix         | Any ALT                                                                                                                                                   | 14012       | None                | 5      | 10.6    | 0      | 53      | <b>H</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000    | [0.059; 15.083] |
| Pooled estimate                     | 14                       |                         |             |                                                                                                                                                           |             |                     |        |         |        |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.312    | [0.245; 0.396]  |
| Heterogeneity: I <sup>2</sup> = 16% | $\tau^2 = 0.0264, \mu$   | 0 = 0.31                |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
|                                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| 20,000 - 200,000 IU/m               | L                        |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| Kusakabe, 2011                      | 731825                   | Japan                   | Mix         | Any ALT                                                                                                                                                   | NR          | NR                  | 22     | 12.7    | 2      | 279     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.716    | [0.179; 2.862]  |
| Tseng, 2012                         | 69673                    | Taiwan                  | Mix         | Any ALT                                                                                                                                                   | NR          | Excluded/censored   | 292    | 14.5    | 32     | 4224    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.758    | [0.536; 1.071]  |
| Kim, 2020                           | 24802                    | Korea                   | Mix         | <2xULN                                                                                                                                                    | NR          | Excluded/censored   | 431    | 6.7     | 26     | 2877    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.904    | [0.615; 1.327]  |
| Chen, 2006                          | 87924                    | Taiwan                  | Mix         | Any ALT                                                                                                                                                   | NB          | Some                | 333    | 21.5    | 67     | 7149    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.937    | [0,738; 1,191]  |
| Pooled estimate                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.874    | [0.735; 1.040]  |
| Heterogeneity: $I^2 = 0\%$ .        | $r^2 = 0, p = 0.78$      | в                       |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
|                                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| >= 200.000 IU/mL                    |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| Jeon 2021                           | 19461                    | Korea                   | Positive    | <uln< td=""><td>76 2M</td><td>None</td><td>125</td><td>5</td><td>0</td><td>625</td><td>18</td><td>0.000</td><td>[0.005: 1.279]</td></uln<>                | 76 2M       | None                | 125    | 5       | 0      | 625     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000    | [0.005: 1.279]  |
| Seong 2022                          | 12111                    | Korea                   | Positive    | <b>JUN</b>                                                                                                                                                | 13 9M       | Some                | 301    | 52      | 6      | 1565    | ter -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.383    | 10 172 0 8531   |
| Tseng 2012                          | 69674                    | Taiwan                  | Mix         | Any ALT                                                                                                                                                   | NB          | Excluded/censored   | 754    | 14.4    | 100    | 10827   | T #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.924    | [0 759 1 124]   |
| Seong 2022                          | 12112                    | Korea                   | Positivo    | 1-211 II N                                                                                                                                                | 13 114      | Some                | 350    | 5.2     | 18     | 1820    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.989    | [0.623 1.570]   |
| Kim 2020                            | 249021                   | Koroa                   | Mix         | -2VIII N                                                                                                                                                  | ND          | Evoluded/conserred  | 2526   | 6.4     | 206    | 16201   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 265    | [1 102: 1 450]  |
| Chop 2006                           | 97025                    | Toiwan                  | Mix         | Any ALT                                                                                                                                                   | NID         | CACING COMPO        | 602    | 20.7    | 167    | 10201   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 240    | [1.100, 1.400]  |
| Cheng 2017                          | 40161                    | Koroo                   | Dooitino    | All N                                                                                                                                                     | 25 184      | Some                | 207    | 4.1     | 22     | 1600    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.040    | [1.132, 1.300]  |
| Kuaakaba 2011                       | 701000                   | lanan                   | Mix         | Any ALT                                                                                                                                                   | Q 414       | ND                  | 001    | 19.7    | A      | 202     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 260    | [0.030, 2.000]  |
| Rusakabe, 2011                      | 731020                   | Jahan                   | MIX         | Ally AL I                                                                                                                                                 | 0.410       | INIA                | 20     | 12.7    |        | 292     | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.041    | [0.514, 3.049]  |
| Hotorogonoity: 12 - 629/            | -2 - 0 1976              | -0.01                   |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.941    | 10.004; 1.0301  |
| meterogeneity. r = 62%              | ι = 0.13/6, μ            | 0.01                    |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |
| Declard actions                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000    | 10 014 0 4001   |
| Hoters are stimate                  | 2-0.0450                 | - 0.01                  |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.290    | 10.214; 0.4091  |
| Test for an harry: 1- = 96%         | τ = 0.8459, p            |                         |             |                                                                                                                                                           |             |                     |        |         |        |         | 0 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                 |
| rest for subgroup differe           | rices: $\chi_4 = 166$    | 1.09, dI = 4 (p < 0.01) |             |                                                                                                                                                           |             |                     |        |         |        |         | 0 1 2 3 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                 |
|                                     |                          |                         |             |                                                                                                                                                           |             |                     |        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |

#### 3.3.2 HCC in adults with multiple HBV DNA assessment

8 studies provided 9, 2 and 2 distinct within-study groups for the viral load strata of <2,000 IU/mL, 2,000-20,000 IU/mL, > 20,000 IU/mL, respectively. The pooled incidence rate of HCC (per 100 person-years) was very low in persistently below 2,000 IU/mL stratum (0.099, 95% CI: 0.073-0.134, I2 = 0%) (Figure 2). Additionally, there were only two within-study groups for the viral load stratum between 2,000 and 20,000 IU/mL, there were no events reported, yet the number of individuals in this stratum was relatively low.

Figure 2. Forest plot of pooled HCC incidence rate in adults, according to multiple HBV DNA assessments

| Study                                                                                                                                                                                                                  | groupID                                                                           | country                                                                       | hbeag                                                                                        | alt_category v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1_baseline                                                       | dna_duration_assessment                                                                                                                     | antiviral_treatment                                                     | number                                                      | mean_fu                                                       | events                                | PYFU                                                                  | Events per 100<br>person-years | Incidence_rate                                                                                | 95% CI                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| < 2,000 IU/mL<br>Bonacci, 2018<br>Huang, 2022<br>Brouwer, 2016<br>Liu, 2016<br>Kumada, 2022<br>Lee, 2020<br>Cho, 2014<br>Bonacci, 2018<br>Pooled estimate<br>Heterogeneitr, <i>i</i> <sup>2</sup> = 0%, i <sup>2</sup> | 37181<br>131021<br>46551<br>47321<br>10471<br>100571<br>122071<br>109251<br>37182 | Spain<br>Multinational<br>Taiwan<br>Japan<br>Korea<br>Korea<br>Japan<br>Spain | Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative<br>Negative | <uln<br><uln<br><uln<br><uln<br><uln<br><uln<br><uln<br><uln< td=""><td>NR<br/>37.9<br/>162.4<br/>125.9<br/>398.1<br/>NR<br/>NR<br/>630.9<br/>NR</td><td>24 months<br/>12 months<br/>18 months<br/>12 months<br/>12 months<br/>Entire duration of F/U<br/>Entire duration of F/U<br/>12 months<br/>24 months</td><td>Some<br/>Excluded/censored<br/>None<br/>NR<br/>None<br/>None<br/>Some<br/>Some</td><td>137<br/>1370<br/>187<br/>777<br/>332<br/>621<br/>884<br/>134<br/>60</td><td>7.5<br/>8.9<br/>7.1<br/>18.9<br/>14.4<br/>6.2<br/>3.5<br/>7.9<br/>8.7</td><td>0<br/>7<br/>15<br/>5<br/>6<br/>5<br/>2<br/>1</td><td>1028<br/>12215<br/>1328<br/>14719<br/>4783<br/>3826<br/>3076<br/>1060<br/>522</td><td></td><td>0.000<br/>0.057<br/>0.075<br/>0.102<br/>0.105<br/>0.157<br/>0.163<br/>0.189<br/>0.192<br/><b>0.099</b></td><td>[0.003; 0.778]<br/>[0.027; 0.120]<br/>[0.011; 0.535]<br/>[0.061; 0.169]<br/>[0.044; 0.251]<br/>[0.044; 0.251]<br/>[0.047; 0.349]<br/>[0.047; 0.754]<br/>[0.027; 1.360]<br/>[0.073; 0.134]</td></uln<></uln<br></uln<br></uln<br></uln<br></uln<br></uln<br></uln<br> | NR<br>37.9<br>162.4<br>125.9<br>398.1<br>NR<br>NR<br>630.9<br>NR | 24 months<br>12 months<br>18 months<br>12 months<br>12 months<br>Entire duration of F/U<br>Entire duration of F/U<br>12 months<br>24 months | Some<br>Excluded/censored<br>None<br>NR<br>None<br>None<br>Some<br>Some | 137<br>1370<br>187<br>777<br>332<br>621<br>884<br>134<br>60 | 7.5<br>8.9<br>7.1<br>18.9<br>14.4<br>6.2<br>3.5<br>7.9<br>8.7 | 0<br>7<br>15<br>5<br>6<br>5<br>2<br>1 | 1028<br>12215<br>1328<br>14719<br>4783<br>3826<br>3076<br>1060<br>522 |                                | 0.000<br>0.057<br>0.075<br>0.102<br>0.105<br>0.157<br>0.163<br>0.189<br>0.192<br><b>0.099</b> | [0.003; 0.778]<br>[0.027; 0.120]<br>[0.011; 0.535]<br>[0.061; 0.169]<br>[0.044; 0.251]<br>[0.044; 0.251]<br>[0.047; 0.349]<br>[0.047; 0.754]<br>[0.027; 1.360]<br>[0.073; 0.134] |
| <b>2,000 – 20,000 IU/mL</b><br>Bonacci, 2018<br>Bonacci, 2018<br><b>Pooled estimate</b><br>Heterogeneity: <i>I</i> <sup>2</sup> = 0%, 1 <sup>2</sup>                                                                   | 37184<br>37183<br>= 0, <i>p</i> = 1                                               | Spain<br>Spain<br>.00                                                         | Negative<br>Negative                                                                         | 1-2xULN<br><uln< td=""><td>NR<br/>NR</td><td>24 months<br/>24 months</td><td>Some<br/>Some</td><td>36<br/>54</td><td>15<br/>6.7</td><td>0<br/>0</td><td>540<br/>362</td><td>•</td><td>0.000<br/>0.000<br/><b>0.000</b></td><td>[0.006; 1.480]<br/>[0.009; 2.209]<br/><b>[0.000; Inf]</b></td></uln<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NR<br>NR                                                         | 24 months<br>24 months                                                                                                                      | Some<br>Some                                                            | 36<br>54                                                    | 15<br>6.7                                                     | 0<br>0                                | 540<br>362                                                            | •                              | 0.000<br>0.000<br><b>0.000</b>                                                                | [0.006; 1.480]<br>[0.009; 2.209]<br><b>[0.000; Inf]</b>                                                                                                                          |
| >= 20,000 IU/mL<br>Lee, 2020<br>Suzuki, 2021<br>Pooled estimate<br>Heterogeneity: J <sup>2</sup> = 0%, t <sup>2</sup>                                                                                                  | 24391<br>109252<br>= 0, <i>p</i> = 0                                              | Korea<br>Japan<br>.44                                                         | Positive<br>Positive                                                                         | <uln<br>&lt;2xULN</uln<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 316.2M<br>100.0M                                                 | 12 months<br>12 months                                                                                                                      | None<br>Some                                                            | 946<br>56                                                   | 3<br>5.6                                                      | 10<br>2                               | 2864<br>315                                                           | *                              | 0.349<br>0.635<br><b>0.377</b>                                                                | [0.188; 0.649]<br>[0.159; 2.539]<br><b>[0.214; 0.665]</b>                                                                                                                        |
| Pooled estimate<br>Heterogeneity: $I^2 = 44\%$ ,<br>Test for subgroup difference                                                                                                                                       | t <sup>2</sup> = 0.1868<br>ces: c <sub>2</sub> <sup>2</sup> = 1                   | l, p = 0.05<br>6.80, df = 2 (p <                                              | < 0.01)                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                                                                                                                             |                                                                         |                                                             |                                                               |                                       |                                                                       | 0 0.5 1 1.5 2 2.5              | 0.122<br>3                                                                                    | [0.081; 0.183]                                                                                                                                                                   |

# 3.3.3 HCC in children with a single HBV DNA assessment

There were six groups from three studies reporting on HCC in children. There were no cases of HCC in any of these groups. The baseline median age was less than 10 years in four groups (4.3, 5.9, 5.8, 7.1 years) and >12 years in two groups (12.5 and 14.9 years) (Figure 3). The mean duration of follow-up was longer than 5 years in most of the studies and only 2 studies had a follow up shorter than 5 years. We did not identify any study reporting multiple VL assessments in children.

**Figure 3.** Forest plot of pooled HCC incidence rate in children, according to a single HBV DNA assessment

| Study                                                                                                                                | groupID                                  | Country                    | Age                                              | hbeag                | alt_category                                                                                                                                                                                                                                                   | vl_baseline     | antiviral_treatment | number    | mean_fu e   | events | PYFU        | Events per 100<br>person-years | Incidence_rate          | 95% CI                                           |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|--------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------|-------------|--------|-------------|--------------------------------|-------------------------|--------------------------------------------------|
| <pre>&lt; 2,000 IU/mL Shimakawa, 2016 Akbulut, 2014 Pooled estimate Heterogeneity: <math>I^2 = 0\%</math>, <math>\tau^2</math></pre> | 107453<br>58881<br>= 0, <i>p</i> = 1.    | The Gambia<br>Turkey<br>00 | Median 12.5 (IQR 8.1-15.8)<br>Mean 14.95 SD 2.94 | Negative<br>Negative | <uln<br><uln< td=""><td>NR<br/>NR</td><td>None<br/>None</td><td>85<br/>59</td><td>30.1<br/>5.7</td><td>0<br/>0</td><td>2559<br/>337</td><td></td><td>0.000<br/>0.000<br/>0.000</td><td>[0.001; 0.312]<br/>[0.009; 2.369]<br/>[0.000; Inf]</td></uln<></uln<br> | NR<br>NR        | None<br>None        | 85<br>59  | 30.1<br>5.7 | 0<br>0 | 2559<br>337 |                                | 0.000<br>0.000<br>0.000 | [0.001; 0.312]<br>[0.009; 2.369]<br>[0.000; Inf] |
| 2,000 - 20,000 IU/mL<br>Shimakawa, 2016                                                                                              | 107449                                   | The Gambia                 | Median 7.1 (IQR 4.0-13.9)                        | Mix                  | Any ALT                                                                                                                                                                                                                                                        | 5025            | None                | 21        | 25.2        | 0      | 530         |                                | 0.000                   | [0.006; 1.508]                                   |
| 20,000 - 200,000 IU/mL<br>Shimakawa, 2016                                                                                            | 107450                                   | The Gambia                 | Median 5.6 (IQR 3.9-9.8)                         | Mix                  | Any ALT                                                                                                                                                                                                                                                        | 46000           | None                | 6         | 30.3        | 0      | 182         |                                | 0.000                   | [0.017; 4.392]                                   |
| >= 200,000 IU/mL<br>Shimakawa, 2016<br>Hsu, 2013<br>Pooled estimate<br>Heterogeneity: $J^2 = 0\%$ , $\tau^2$                         | 107451<br>= 0, <i>p</i> = 1              | The Gambia<br>Taiwan<br>00 | Median 4.3 (IQR 2.9-8.9)<br>5.9 (0.1–18.4)       | Mix<br>Mix           | Any ALT<br>Any ALT                                                                                                                                                                                                                                             | 160.0M<br>25.2M | None<br>None        | 130<br>49 | 27.3<br>8.1 | 0<br>0 | 3549<br>397 |                                | 0.000<br>0.000<br>0.000 | [0.001; 0.225]<br>[0.008; 2.014]<br>[0.000; Inf] |
| Pooled estimate<br>Heterogeneity: $I^2 = 0\%$ , $\tau^2$<br>Test for subgroup differen                                               | = 0, $\rho$ = 1,<br>ces: $\chi_3^2$ = 0. | 00<br>00, df = 3 (p =      | 1.00)                                            |                      |                                                                                                                                                                                                                                                                |                 |                     |           |             |        |             | 0 1 2 3 4                      | 0.000                   | [0.000; Inf]                                     |

# 3.3.4 HCC in adults with a single ALT assessment

14 studies provided 27, distinct within-study groups for the ALT strata of <ULN, 1-2ULN and, >2ULN. The pooled incidence rate of HCC (per 100 person-years) in the < ULN ALT stratum was 0.240 (95% CI: 0.123-0.471), but there was significant heterogeneity across the studies within this stratum ( $f^2 = 92\%$ ). We also identified a wide variation in HBV DNA levels at baseline. There were four within-study groups that reported an incidence rate of more than 1.0 per 100 person-years; all of these studies recruited participants with HBV DNA levels of >2,000 or >20,000 IU/mL. The pooled incidence rate in the strata with 1-2x ULN was statistically significantly higher than the normal ALT stratum: 0.240 (95% CI: 0.123-0.471,  $f^2 = 92\%$ ) in <1x ULN, 0.870 (0. 597-1.269,  $f^2 = 67\%$ ) in 1-2x ULN. However, we identified only 1 reference for the in >2x ULN stratum. This study reported an incidence rate of 0.650 (0.292-1.447) (Figure 4).

Figure 4. Forest plot of pooled HCC incidence rate in adults, according to a single ALT assessment

| Study                         | groupID                    | Country                           | hbeag    | hbv_dna_category | vl_baseline | antiviral_treatment | number | mean_fu | events | PYFU  | person-years                          | Incidence_rate | 95% CI         |
|-------------------------------|----------------------------|-----------------------------------|----------|------------------|-------------|---------------------|--------|---------|--------|-------|---------------------------------------|----------------|----------------|
| <uln<br>Lok, 2021</uln<br>    | 16601                      | USA & Canada                      | Mix      | <1000            | NR          | Some                | 488    | 4.7     | 0      | 2296  | -                                     | 0.000          | [0.001; 0.348] |
| Lok, 2021                     | 16602                      | USA & Canada                      | Mix      | 1000-100000      | NR          | Some                | 485    | 5       | 1      | 2404  | -                                     | 0.042          | [0.006; 0.295] |
| Lok, 2021                     | 16603                      | USA & Canada                      | Mix      | >100000          | NR          | Some                | 423    | 4.2     | 1      | 1788  |                                       | 0.056          | [0.008; 0.397] |
| Chen, 2010                    | 76321                      | Taiwan                            | Negative | <2000            | NR          | None                | 1932   | 12.4    | 16     | 23996 | 13                                    | 0.067          | [0.041; 0.109] |
| Jeon, 2021                    | 19461                      | Korea                             | Positive | >200000          | 76.2M       | None                | 125    | 5       | 0      | 625   | <b>B</b>                              | 0.000          | [0.005; 1.279] |
| Kusakabe, 2011                | 731827                     | Japan                             | Negative | <2000            | NR          | NR                  | 345    | 12.7    | 4      | 4382  | C                                     | 0.091          | [0.034; 0.243] |
| Shimakawa, 2016               | 107446                     | The Gambia                        | Negative | <2000            | NR          | None                | 81     | 25.8    | 2      | 2088  | 100 C                                 | 0.096          | [0.024: 0.383] |
| Tseng, 2022                   | 8391                       | Taiwan & Japan                    | Negative | <2000            | NR          | Excluded/censored   | 824    | 16.3    | 16     | 13404 |                                       | 0.119          | [0.073; 0.195] |
| Tong, 2013                    | 63661                      | USA                               | Positive | <2000            | NR          | Some                | 146    | 8       | 2      | 1168  | -                                     | 0.171          | [0.043; 0.685] |
| Kusakabe, 2011                | 731829                     | Japan                             | Negative | 2000-20000       | NR          | NR                  | 38     | 12.7    | 1      | 483   |                                       | 0.207          | [0.029; 1.471] |
| Tseng, 2022                   | 8394                       | Taiwan & Japan                    | Negative | 2000-20000       | NR          | Excluded/censored   | 394    | 16.5    | 18     | 6499  | *                                     | 0.277          | 0.175: 0.440   |
| Seong, 2022                   | 12111                      | Korea                             | Positive | >20 000 000      | 13.9M       | Some                | 301    | 5.2     | 6      | 1565  |                                       | 0.383          | [0.172; 0.853] |
| Sinn, 2019                    | 32792                      | Korea                             | Mix      | >2000            | NR          | Excluded/censored   | 1017   | 4.6     | 22     | 4678  | *                                     | 0.470          | 0.310: 0.714   |
| Yasunaka, 2016                | 102423                     | Japan                             | Mix      | <2000            | 399.1       | None                | 225    | 4.1     | 5      | 928   |                                       | 0.539          | [0.224; 1.294] |
| Tseng, 2022                   | 8396                       | Taiwan & Japan                    | Negative | >20000           | NR          | Excluded/censored   | 264    | 16.7    | 28     | 4417  | -                                     | 0.634          | [0.438; 0.918] |
| Kim, 2018                     | 37211                      | Korea                             | Positive | >20000           | 100.0M      | Excluded/censored   | 413    | 5.5     | 24     | 2275  |                                       | 1.055          | [0.707; 1.574] |
| Chang, 2017                   | 40161                      | Korea                             | Positive | >20000           | 25.1M       | Some                | 397    | 4.1     | 22     | 1622  |                                       | 1.356          | [0.893: 2.060] |
| Yasunaka, 2016                | 102422                     | Japan                             | Negative | >2000            | 15886.6     | None                | 93     | 3.8     | 9      | 357   |                                       | 2.519          | [1.311; 4.842] |
| Yasunaka, 2016                | 102421                     | Japan                             | Positive | >2000            | 3.2M        | None                | 27     | 6.1     | 6      | 164   |                                       | → 3.647        | [1.639; 8.119] |
| Pooled estimate               |                            |                                   |          |                  |             |                     |        |         |        |       | ¢.                                    | 0.240          | [0.123; 0.471] |
| Heterogeneity: I2 = 92%, 1    | $r^2 = 1.8395$             | p < 0.01                          |          |                  |             |                     |        |         |        |       |                                       |                |                |
| 1-2xULN                       |                            |                                   |          |                  |             |                     |        |         |        |       |                                       |                |                |
| Kusakabe 2011                 | 731828                     | Japan                             | Negative | <2000            | NR          | NB                  | 21     | 127     | 1      | 267   |                                       | 0 375          | 10 053 2 662]  |
| Tseng 2022                    | 8392                       | Taiwan & Japan                    | Negative | <2000            | NR          | Excluded/censored   | 173    | 14.9    | 12     | 2585  | -                                     | 0 464          | 0 264 0 817    |
| Tseng 2022                    | 8395                       | Taiwan & Japan                    | Negative | 2000-20000       | NB          | Excluded/censored   | 98     | 13.8    | 9      | 1350  | Las.                                  | 0.667          | 0 347 1 282    |
| Kusakabe 2011                 | 731830                     | Japan                             | Negative | 2000-20000       | NB          | NR                  | 4      | 12.7    | õ      | 51    | 10                                    | • 0.000        | [0 062 15 736] |
| Seong 2022                    | 12112                      | Korea                             | Positive | >20 000 000      | 13.1M       | Some                | 350    | 52      | 18     | 1820  |                                       | 0.989          | [0 623: 1 570] |
| Tseng 2022                    | 8397                       | Taiwan & Japan                    | Negative | >20000           | NB          | Excluded/censored   | 161    | 15      | 29     | 2409  |                                       | 1.204          | [0.836: 1.732] |
| Kim 2018                      | 37212                      | Korea                             | Positive | >20000           | 50.1M       | Excluded/censored   | 1141   | 51      | 83     | 5783  | -                                     | 1 435          | [1 157: 1 780] |
| Pooled estimate               |                            |                                   |          |                  |             | Literature          |        |         |        | 0,00  | 0                                     | 0.870          | [0 597: 1 269] |
| Heterogeneity: $l^2 = 67\%$ , | e <sup>2</sup> = 0.1261    | , p < 0.01                        |          |                  |             |                     |        |         |        |       |                                       |                |                |
| S2YUL N                       |                            |                                   |          |                  |             |                     |        |         |        |       |                                       |                |                |
| Tseng, 2022                   | 8393                       | Taiwan & Japan                    | Negative | <2000            | NR          | Excluded/censored   | 61     | 15.1    | 6      | 923   |                                       | 0.650          | [0.292; 1.447] |
| De ala di a dimata            |                            |                                   |          |                  |             |                     |        |         |        |       |                                       | 0.004          | 10 000 0 0701  |
| Pooled estimate               | 2 1 4672                   | 0 < 0.01                          |          |                  |             |                     |        |         |        |       | · · · · · · · · · · · · · · · · · · · | 0.334          | 10.300; 0.3721 |
| Test for subgroup differen    | ces: $\chi_2^2 = 10^{-10}$ | p < 0.01<br>0.67, df = 2 (p < 0.0 | 01)      |                  |             |                     |        |         |        |       | 0 1 2 3 4                             | 5              |                |

Events ner 100

#### 3.3.5 HCC in adults with multiple ALT assessments

In individuals with persistently normal ALT levels, the incidence rates of HCC were consistently low in all included within-study groups, at less than 0.4 per 100 person-years, with the exception of one stud (42). This study was led by Nakazawa in 2011 and had only 11 participants in this ALT category, 4 individuals developed HCC after a mean follow-up duration of 6.4 years (42). The overall pooled incidence rate in the groups of individuals with persistently normal ALT levels was low: 0.094 (95% CI: 0.045-0.196,  $l^2 = 82\%$ ). This rate was slightly higher in a group with persistently elevated ALT between 1-2x ULN (0.312, 0.075-1.293,  $l^2 = 6\%$ ) (Figure 5). Figure 5. Forest plot of pooled HCC incidence rate in adults, according to multiple ALT assessment

|                                                                                                                                                   |                       |                        |          |                 |               |                        |                        |        |         |        |        | Events per 100                           |                |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|----------|-----------------|---------------|------------------------|------------------------|--------|---------|--------|--------|------------------------------------------|----------------|-----------------|
| Study                                                                                                                                             | groupID               | Country                | nbeag    | hbv_dna_categor | / baseline_vi | alt_duration_assessmer | it antiviral_treatment | number | mean_fu | events | S PYFU | person-years                             | Incidence_rate | 95% CI          |
| <uln< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></uln<> |                       |                        |          |                 |               |                        |                        |        |         |        |        |                                          |                |                 |
| Koc, 2022                                                                                                                                         | 10742                 | Belgium & Netherlands  | Negative | <2000           | 50.1          | 12 months              | None                   | 327    | 7       | 0      | 2289   | 10-10-10-10-10-10-10-10-10-10-10-10-10-1 | 0.000          | [0.001; 0.349]  |
| Raptopoulou-Gigi, 2002                                                                                                                            | 112241                | Greece                 | Negative | <20000          | NR            | 12 months              | Some                   | 307    | 7.4     | 0      | 2272   |                                          | 0.000          | [0.001; 0.352]  |
| Farzi, 2014                                                                                                                                       | 57431                 | Iran                   | Negative | <2000           | NR            | 12 months              | None                   | 399    | 8.9     | 1      | 3557   | lē.                                      | 0.028          | [0.004; 0.200]  |
| Koc, 2022                                                                                                                                         | 10741                 | Belgium & Netherlands  | Negative | >2000           | 7943.3        | 12 months              | None                   | 116    | 10      | 0      | 1160   |                                          | 0.000          | [0.003; 0.689]  |
| Bonacci, 2018                                                                                                                                     | 37181                 | Spain                  | Negative | <2000           | NR            | 24 months              | Some                   | 137    | 7.5     | 0      | 1028   |                                          | 0.000          | [0.003; 0.778]  |
| Huang, 2022                                                                                                                                       | 131021                | Multinational          | Negative | <2000           | 37.9          | 12 months              | Excluded/censored      | 1370   | 8.9     | 7      | 12215  |                                          | 0.057          | [0.027; 0.120]  |
| Brouwer, 2016                                                                                                                                     | 46551                 | Multinational          | Negative | <2000           | 162.4         | 12 months              | None                   | 187    | 7.1     | 1      | 1328   | H-                                       | 0.075          | [0.011; 0.535]  |
| Liu, 2016                                                                                                                                         | 47321                 | Taiwan                 | Negative | <2000           | 125.9         | 18 months              | None                   | 777    | 18.9    | 15     | 14719  | i i i i i i i i i i i i i i i i i i i    | 0.102          | [0.061; 0.169]  |
| Kumada, 2022                                                                                                                                      | 10471                 | Japan                  | Negative | <2000           | 398.1         | 12 months              | NR                     | 332    | 14.4    | 5      | 4783   |                                          | 0.105          | [0.044; 0.251]  |
| Tohme, 2013                                                                                                                                       | 62531                 | USA                    | Negative | <2000           | NB            | 12 months              | Some                   | 414    | 7.2     | 4      | 2984   | ÷                                        | 0.134          | [0.050; 0.357]  |
| Bonacci, 2018                                                                                                                                     | 37183                 | Spain                  | Negative | 2000-20000      | NR            | 24 months              | Some                   | 54     | 6.7     | 0      | 362    |                                          | 0.000          | [0.009; 2.209]  |
| Lee, 2020                                                                                                                                         | 100571                | Korea                  | Negative | <2000           | NR            | Entire duration of F/U | None                   | 621    | 6.2     | 6      | 3826   | (H)                                      | 0.157          | [0.070; 0.349]  |
| Chen, 2012                                                                                                                                        | 68732                 | Taiwan                 | Negative | >20000          | NB            | Entire duration of F/U | NR                     | 18     | 17.2    | 0      | 310    |                                          | 0.000          | [0.010; 2.582]  |
| Cho, 2014                                                                                                                                         | 122071                | Korea                  | Negative | <2000           | NR            | Entire duration of F/U | None                   | 884    | 3.5     | 5      | 3076   | <u>*</u>                                 | 0.163          | [0.068; 0.391]  |
| Nakazawa, 2011                                                                                                                                    | 71232                 | Japan                  | Negative | >20000          | NR            | 6 months               | None                   | 93     | 6.4     | 1      | 595    | ÷                                        | 0.168          | [0.024; 1.193]  |
| Suzuki, 2021                                                                                                                                      | 109251                | Japan                  | Negative | <2000           | 630.9         | 12 months              | Some                   | 134    | 7.9     | 2      | 1060   | ÷                                        | 0.189          | [0.047; 0.754]  |
| Lee, 2020                                                                                                                                         | 24391                 | Korea                  | Positive | >20000          | 316.2M        | 12 months              | None                   | 946    | 3       | 10     | 2864   |                                          | 0.349          | [0.188; 0.649]  |
| Choi, 2019                                                                                                                                        | 30251                 | Korea                  | Negative | <2000           | NR            | 12 months              | None                   | 3572   | 10.1    | 140    | 36064  |                                          | 0.388          | [0.329; 0.458]  |
| Nakazawa, 2011                                                                                                                                    | 71231                 | Japan                  | Negative | <20000          | NB            | 6 months               | None                   | 11     | 6.4     | 4      | 70     |                                          | → 5.682        | [2.132; 15.139] |
| Pooled estimate                                                                                                                                   |                       |                        |          |                 |               |                        |                        |        |         |        |        | ¢.                                       | 0.094          | [0.045; 0.196]  |
| Heterogeneity: I <sup>2</sup> = 82%, τ                                                                                                            | <sup>2</sup> = 1.6232 | , <i>p</i> < 0.01      |          |                 |               |                        |                        |        |         |        |        |                                          |                |                 |
| 1 Out II N                                                                                                                                        |                       |                        |          |                 |               |                        |                        |        |         |        |        |                                          |                |                 |
| Repeace 2018                                                                                                                                      | 97104                 | Coolo                  | Mogotivo | 2000 20000      | ND            | 24 months              | Como                   | 26     | 15      | 0      | E40    |                                          | 0.000          | 10 0061 1 4901  |
| Bonacci, 2018                                                                                                                                     | 07104                 | Spain                  | Negative | 2000-20000      | ND            | 24 months              | Some                   | 20     | 0.7     |        | 540    |                                          | 0.000          | [0.000, 1.460]  |
| Burlacci, 2018                                                                                                                                    | 3/102                 | Span                   | Negative | 2000            | 077070 4      | 24 monuts              | Some                   | 00     | 0./     |        | 004    | 1                                        | 0.192          | [0.027, 1.360]  |
| HSU, 2021                                                                                                                                         | 20252                 | Koroo                  | Nix      | >2000           | 2//2/0.4      | Less than 6 months     | None                   | 000    | 2.9     | 65     | 234    | -                                        | 0.427          | [0.060; 3.034]  |
| Choi, 2019                                                                                                                                        | 30232                 | Kolea                  | Negative | 2000            | 20110.9       | 12 11011015            | NOTE                   | 900    | 7.5     | 65     | 0/42   | -                                        | 0.904          | [0.750, 1.229]  |
| Heterogeneity: $l^2 = 6\% \tau^2$                                                                                                                 | = 0.8391              | n = 0.36               |          |                 |               |                        |                        |        |         |        |        |                                          | 0.312          | [0.075; 1.295]  |
| riotorogonoliji r = o ioj r                                                                                                                       | - 01000 1;            | p = 0100               |          |                 |               |                        |                        |        |         |        |        |                                          |                |                 |
| Pooled estimate                                                                                                                                   |                       |                        |          |                 |               |                        |                        |        |         |        |        | 6                                        | 0.109          | [0.055; 0.216]  |
| Heterogeneity: I <sup>2</sup> = 87%, τ                                                                                                            | <sup>2</sup> = 1.7165 | , <i>p</i> < 0.01      |          |                 |               |                        |                        |        |         |        |        |                                          |                |                 |
| Test for subgroup difference                                                                                                                      | x = 2 = 2             | .15, df = 1 (p = 0.14) |          |                 |               |                        |                        |        |         |        |        | 0 1 2 3 4                                | 5              |                 |
|                                                                                                                                                   |                       |                        |          |                 |               |                        |                        |        |         |        |        |                                          |                |                 |

# 3.3.6 HCC in children with single ALT assessment

We identified only two references reporting results on children with normal ALT levels (<ULN). There was no case of HCC in any of these groups. The median duration of follow-up was more than 5 years in both studies (Table 6).

| Study                   | Country | Mean age<br>(±SD) or<br>median<br>(range or<br>IQR) in<br>years | HBeAg    | VL category | Antiviral<br>treatment | Number of participants | Mean or<br>median<br>of FU | Events | PYFU | Incidence<br>rate (100<br>person-<br>years) |
|-------------------------|---------|-----------------------------------------------------------------|----------|-------------|------------------------|------------------------|----------------------------|--------|------|---------------------------------------------|
| < ULN                   |         |                                                                 |          |             |                        |                        |                            |        |      | •                                           |
| Akbulut,<br>2014 (17)   | Turkey  | Mean 14.9<br>SD 2.9                                             | Negative | <2000 IU/mL | None                   | 59                     | 5.7                        | 0      | 337  | 0.000 (95%<br>Cl: 0.009-<br>2.369)          |
| Shimakawa,<br>2016 (47) | Gambia  | Median<br>12.5 (IQR<br>8.1-15.8)                                | Negative | <2000 IU/mL | None                   | 85                     | 30.1                       | 0      | 2559 | 0.000 (95%<br>Cl: 0.001-<br>0.312)          |

Table 6. Studies reporting HCC in children, according to a single ALT assessment.

# 3.3.7 HCC in adults with a single HBV DNA and ALT assessment

There was only one study with available data in most of the viral load and ALT strata, especially for the strata of VL 2,000-20,000 IU/mL stratified also by ALT levels. In the strata with VL <2,000 IU/mL, there was a dose-response relationship between the baseline ALT levels and the incidence rates of HCC per 100 person-years: 0.127 (95% CI: 0.066-0.245,  $f^2$  = 77%) in the normal ALT stratum, 0.464 (0.264-0.817, only one study) in the 1-2x ULN stratum, and 0.650 (0.292-1.447, only one study) in the >2x ULN stratum.

In the strata with VL 2,000-20,000 IU/mL, there was only one study for each ALT stratum. The incidence rates of HCC per 100 person-years were 0.271 (95% CI: 0.175-0.440) in the normal ALT stratum, 0.277 (0.175-0.440) in the 1-2x ULN stratum, and 0.667 (0.347-1.282) in the >2x ULN stratum (Figure 6).

**Figure 6.** Forest plot of pooled HCC incidence rate in adults characterized according to a single HBV DNA and ALT assessment.

| Study                                                                                                                                                                                                                            | groupID                                                              | country                                                | hbeag                                               | vl_baseline                       | antiviral_treatment                               | number                          | mean_fu                          | events                  | PYFU                                  | Events per 100<br>person-years | Incidence_rate                                            | 95% CI                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|-----------------------------------|---------------------------------------------------|---------------------------------|----------------------------------|-------------------------|---------------------------------------|--------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| VL < 2,000 and ALT < Chen, 2010<br>Shimakawa, 2016<br>Tseng, 2022<br>Tong, 2013<br>Yasunaka, 2016<br>Pooled estimate                                                                                                             | ULN<br>76321<br>107446<br>8391<br>63661<br>102423                    | Taiwan<br>The Gambia<br>Taiwan & Japan<br>USA<br>Japan | Negative<br>Negative<br>Negative<br>Positive<br>Mix | NR<br>NR<br>NR<br>399.1           | None<br>None<br>Excluded/censored<br>Some<br>None | 1932<br>81<br>824<br>146<br>225 | 12.4<br>25.8<br>16.3<br>8<br>4.1 | 16<br>2<br>16<br>2<br>5 | 23996<br>2088<br>13404<br>1168<br>928 | •                              | 0.067<br>0.096<br>0.119<br>0.171<br>0.539<br><b>0.127</b> | [0.041; 0.109]<br>[0.024; 0.383]<br>[0.073; 0.195]<br>[0.043; 0.685]<br>[0.224; 1.294]<br><b>[0.066; 0.245]</b> |
| Heterogeneity: /* = //%,<br>VL < 2,000 and ALT 1-                                                                                                                                                                                | -2xULN                                                               | 3, p < 0.01                                            | Negetive                                            |                                   | Fuelude d/eeseed                                  | 470                             | 44.0                             | 40                      | 0505                                  |                                | 0.404                                                     | 10 004 0 0471                                                                                                   |
| rseng, 2022                                                                                                                                                                                                                      | 8392                                                                 | iaiwan & Japan                                         | Negative                                            | INR                               | Excluded/censored                                 | 173                             | 14.9                             | 12                      | 2585                                  |                                | 0.464                                                     | [0.264; 0.817]                                                                                                  |
| VL < 2,000 and ALT > 2<br>Tseng, 2022                                                                                                                                                                                            | 2xULN<br>8393                                                        | Taiwan & Japan                                         | Negative                                            | NR                                | Excluded/censored                                 | 61                              | 15.1                             | 6                       | 923                                   | -                              | 0.650                                                     | [0.292; 1.447]                                                                                                  |
| VL 2,000 - 20,000 and<br>Tseng, 2013                                                                                                                                                                                             | ALT < UL<br>63021                                                    | <b>N</b><br>Taiwan                                     | Negative                                            | NR                                | Excluded/censored                                 | 449                             | 15.6                             | 19                      | 7010                                  | •                              | 0.271                                                     | [0.173; 0.425]                                                                                                  |
| VL 2,000 - 20,000 and<br>Tseng, 2022                                                                                                                                                                                             | <b>I ALT 1-2</b><br>8394                                             | <b>xULN</b><br>Taiwan & Japan                          | Negative                                            | NR                                | Excluded/censored                                 | 394                             | 16.5                             | 18                      | 6499                                  | -                              | 0.277                                                     | [0.175; 0.440]                                                                                                  |
| VL 2,000 - 20,000 and<br>Tseng, 2022                                                                                                                                                                                             | ALT > 2x<br>8395                                                     | <b>ULN</b><br>Taiwan & Japan                           | Negative                                            | NR                                | Excluded/censored                                 | 98                              | 13.8                             | 9                       | 1350                                  |                                | 0.667                                                     | [0.347; 1.282]                                                                                                  |
| VL > 200,000 and ALT<br>Jeon, 2021<br>Seong, 2022<br>Kim, 2018<br>Chang, 2017<br>Pooled estimate<br>Heterogeneity: $l^2 = 60\%$ ,                                                                                                | < ULN<br>19461<br>12111<br>37211<br>40161<br>t <sup>2</sup> = 0.6725 | Korea<br>Korea<br>Korea<br>Korea                       | Positive<br>Positive<br>Positive<br>Positive        | 76.2M<br>13.9M<br>100.0M<br>25.1M | None<br>Some<br>Excluded/censored<br>Some         | 125<br>301<br>413<br>397        | 5<br>5.2<br>5.5<br>4.1           | 0<br>6<br>24<br>22      | 625<br>1565<br>2275<br>1622           | +                              | 0.000<br>0.383<br>1.055<br>1.356<br><b>0.563</b>          | [0.005; 1.279]<br>[0.172; 0.853]<br>[0.707; 1.574]<br>[0.893; 2.060]<br><b>[0.207; 1.529]</b>                   |
| $\label{eq:VL} \begin{array}{l} \textbf{VL} > \textbf{200,000} \text{ and } \textbf{ALT} \\ \textbf{Seong, 2022} \\ \textbf{Kim, 2018} \\ \textbf{Pooled estimate} \\ \textbf{Heterogeneity: } \textbf{f}^2 = 51\%, \end{array}$ | <b>1-2xULN</b><br>12112<br>37212<br>t <sup>2</sup> = 0, <i>p</i> =   | Korea<br>Korea                                         | Positive<br>Positive                                | 13.1M<br>50.1M                    | Some<br>Excluded/censored                         | 350<br>1141                     | 5.2<br>5.1                       | 18<br>83                | 1820<br>5783                          | *-<br>*<br>\$                  | 0.989<br>1.435<br><b>1.328</b>                            | [0.623; 1.570]<br>[1.157; 1.780]<br><b>[1.093; 1.614]</b>                                                       |
| Pooled estimate<br>Heterogeneity: $l^2 = 94\%$ ,<br>Test for subgroup differen                                                                                                                                                   | t <sup>2</sup> = 0.8641<br>ces: c <sub>7</sub> <sup>2</sup> = 1      | l, p < 0.01<br>02.08, df = 7 (p < 0                    | 0.01)                                               |                                   |                                                   |                                 |                                  |                         |                                       |                                | <b>0.364</b>                                              | [0.222; 0.598]                                                                                                  |

#### 3.3.8 Cirrhosis in adults with a single HBV DNA assessment

7 studies provided 2, 8, 5, 3 and 3 distinct within-study groups for the viral load strata of <200, <2,000, 2,000-20,000, 20,000-200,000, and >200,000 IU/mL, respectively. The pooled incidence rates of cirrhosis (per 100 person-years) were similar between the <200 IU/mL stratum (0.308, 95% CI: 0.221-0.429,  $f^2$  = 54%) and <2,000 IU/mL stratum (0.301, 0.147-0.620,  $f^2$  = 88%) with overlapping 95% CIs. Then, there was a dose-response relationship between HBV DNA levels at baseline and the incidence rates of cirrhosis: 0.301 (95% CI: 0.147-0.620,  $f^2$  = 88%), 0.719 (0.630-0.821,  $f^2$  = 47%), 1.461 (0.990-2.155,  $f^2$  = 78%), and 2.236 (1.700-2.943,  $f^2$  = 84%), in the strata of <2,000, 2,000-20,000, 20,000-200,000, and ≥200,000 IU/mL, respectively (p for test for subgroup differences <0.01) (Figure 7). Additionally, the lower boundary of the 95% CI of the pooled incidence rate in the stratum of 2,000-20,000 IU/mL was higher than the upper boundary of those estimated in the strata of <200 IU/mL or <2,000 IU/mL. The mean duration of follow-up was larger than 5 years in all

included studies in the strata of <200, <2,000, 2,000-20,000, 20,000-200,000, and >200,000 IU/mL.

| Figure 7. Forest p | olot of pooled | cirrhosis inci | dence rates | in adults, | according to | a single l | HBV |
|--------------------|----------------|----------------|-------------|------------|--------------|------------|-----|
| DNA assessment     |                |                |             |            |              |            |     |

| Study                                                                                                                                                                                       | groupID                                                                                   | Country                                                            | hbeag                                                                              | alt_category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vl_baseline                            | antiviral_treatment                                                                  | number                                                | mean_tu                                            | events                                    | PYFU                                                          | Events per 100<br>person-years | Incidence_rate                                                                       | 95% CI                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| < 200 IU/mL<br>Tseng, 2012<br>Iloeje, 2006<br>Pooled estimate<br>Heterogeneity: $l^2 = 54\%$                                                                                                | 68961<br>88671<br>$\tau^2 = 0, p =$                                                       | Taiwan<br>Taiwan<br>0.14                                           | Negative<br>Mix                                                                    | Any ALT<br>Any ALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NR<br>NR                               | Excluded/censored<br>NR                                                              | 139<br>869                                            | 9.5<br>11.6                                        | 1<br>34                                   | 1315<br>10049                                                 |                                | 0.076<br>0.338<br><b>0.308</b>                                                       | [0.011; 0.540]<br>[0.242; 0.474]<br>[ <b>0.221; 0.429]</b>                                                                                                            |
| < 2,000 IU/mL<br>Tong, 2013<br>Farzi, 2014<br>Tseng, 2018<br>Tseng, 2018<br>Liu, 2021<br>Iloeje, 2006<br>Liu, 2021<br>Sali, 2016<br>Pooled estimate<br>Heterogeneity: 1 <sup>2</sup> = 88%, | 63661<br>57431<br>36721<br>68962<br>108661<br>88672<br>108664<br>109811<br>$x^2 = 0.8297$ | USA<br>Iran<br>Taiwan<br>Taiwan<br>Multiple<br>Iran<br>7, p < 0.01 | Positive<br>Negative<br>Mix<br>Negative<br>Negative<br>Mix<br>Positive<br>Negative | <uln<br><uln<br>Any ALT<br/>Any ALT<br/>Any ALT<br/>Any ALT<br/>Any ALT<br/><uln< td=""><td>NR<br/>NR<br/>NR<br/>NR<br/>NR<br/>NR<br/>NR</td><td>Some<br/>None<br/>None<br/>Excluded/censored<br/>Excluded/censored<br/>NR<br/>Some<br/>Some</td><td>146<br/>399<br/>876<br/>100<br/>3344<br/>1150<br/>72<br/>420</td><td>8<br/>8.9<br/>16<br/>6.6<br/>15.2<br/>11.5<br/>11.2<br/>5</td><td>0<br/>2<br/>36<br/>2<br/>189<br/>57<br/>6<br/>28</td><td>1168<br/>3557<br/>13999<br/>662<br/>50752<br/>13259<br/>810<br/>2100</td><td></td><td>0.000<br/>0.056<br/>0.257<br/>0.302<br/>0.372<br/>0.430<br/>0.741<br/>1.333<br/><b>0.301</b></td><td>[0.003; 0.684]<br/>[0.014; 0.225]<br/>[0.186; 0.357]<br/>[0.076; 1.208]<br/>[0.323; 0.429]<br/>[0.332; 0.557]<br/>[0.333; 1.650]<br/>[0.921; 1.931]<br/><b>[0.147; 0.620]</b></td></uln<></uln<br></uln<br> | NR<br>NR<br>NR<br>NR<br>NR<br>NR<br>NR | Some<br>None<br>None<br>Excluded/censored<br>Excluded/censored<br>NR<br>Some<br>Some | 146<br>399<br>876<br>100<br>3344<br>1150<br>72<br>420 | 8<br>8.9<br>16<br>6.6<br>15.2<br>11.5<br>11.2<br>5 | 0<br>2<br>36<br>2<br>189<br>57<br>6<br>28 | 1168<br>3557<br>13999<br>662<br>50752<br>13259<br>810<br>2100 |                                | 0.000<br>0.056<br>0.257<br>0.302<br>0.372<br>0.430<br>0.741<br>1.333<br><b>0.301</b> | [0.003; 0.684]<br>[0.014; 0.225]<br>[0.186; 0.357]<br>[0.076; 1.208]<br>[0.323; 0.429]<br>[0.332; 0.557]<br>[0.333; 1.650]<br>[0.921; 1.931]<br><b>[0.147; 0.620]</b> |
| 2,000 - 20,000 IU/mL<br>Tseng, 2018<br>Liu, 2021<br>Iloeje, 2006<br>Tseng, 2012<br>Liu, 2021<br><b>Pooled estimate</b><br>Heterogeneity: <i>r</i> <sup>2</sup> = 47%,                       | 36722<br>108662<br>88673<br>68963<br>108665<br>$x^2 = 0, p =$                             | Taiwan<br>Multiple<br>Taiwan<br>Taiwan<br>Multiple<br>0.11         | Mix<br>Negative<br>Mix<br>Negative<br>Positive                                     | Any ALT<br>Any ALT<br>Any ALT<br>Any ALT<br>Any ALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NR<br>NR<br>NR<br>NR                   | None<br>Excluded/censored<br>NR<br>Excluded/censored<br>Some                         | 447<br>1296<br>628<br>63<br>89                        | 15.6<br>11.1<br>11.3<br>8.6<br>12.7                | 40<br>102<br>55<br>6<br>14                | 6975<br>14423<br>7106<br>540<br>1131                          |                                | 0.574<br>0.707<br>0.774<br>1.111<br>1.237<br><b>0.719</b>                            | [0.421; 0.782]<br>[0.582; 0.859]<br>[0.594; 1.008]<br>[0.499; 2.472]<br>[0.733; 2.089]<br><b>[0.630; 0.821]</b>                                                       |
| 20,000 - 200,000 IU/m<br>Tseng, 2018<br>Iloeje, 2006<br>Tseng, 2012<br>Pooled estimate<br>Heterogeneity: /² = 78%,                                                                          | $\frac{1}{36723}$ 88674<br>68964<br>$\tau^2 = 0.0685$                                     | Taiwan<br>Taiwan<br>Taiwan<br>5, p < 0.01                          | Mix<br>Mix<br>Negative                                                             | Any ALT<br>Any ALT<br>Any ALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NR<br>NR<br>NR                         | None<br>NR<br>Excluded/censored                                                      | 219<br>333<br>30                                      | 15.9<br>10.4<br>8.1                                | 35<br>65<br>5                             | 3473<br>3460<br>243                                           | *                              | 1.008<br>1.879<br>2.058<br>1.461                                                     | [0.724; 1.404]<br>[1.473; 2.396]<br>[0.857; 4.946]<br><b>[0.990; 2.155]</b>                                                                                           |
| >= 200,000 IU/mL<br>Tseng, 2018<br>Iloeje, 2006<br>Tseng, 2012<br>Pooled estimate<br>Heterogeneity: / <sup>2</sup> = 84%                                                                    | 36724<br>88675<br>68965<br>$\tau^2 = 0.0344$                                              | Taiwan<br>Taiwan<br>Taiwan<br>4, p < 0.01                          | Mix<br>Mix<br>Negative                                                             | Any ALT<br>Any ALT<br>Any ALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NR<br>NR<br>NR                         | None<br>NR<br>Excluded/censored                                                      | 533<br>602<br>58                                      | 14.4<br>10.2<br>7.1                                | 133<br>154<br>14                          | 7650<br>6164<br>413                                           | *                              | 1.739<br>2.498<br>→ 3.390<br><b>2.236</b>                                            | [1.467; 2.061]<br>[2.133; 2.926]<br>[2.008; 5.724]<br>[1.700; 2.943]                                                                                                  |
| Pooled estimate<br>Heterogeneity: $r^2 = 97\%$ ,<br>Test for subgroup differe                                                                                                               | $\tau^2 = 0.9735$<br>nces: $\chi_4^2 = 1$                                                 | 5, <i>p</i> < 0.01<br>104.48, df =                                 | = <b>4</b> (p < 0.01                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                      |                                                       |                                                    |                                           |                                                               | 0 1 2 3 4                      | 0.643                                                                                | [0.410; 1.008]                                                                                                                                                        |

#### 3.3.9 Cirrhosis in adults with multiple HBV DNA assessments

5 studies provided 5, 2, 1 distinct within-study groups for the viral load strata of <2,000, 2,000-20,000, and >200,000 IU/mL, respectively. The pooled incidence rate of cirrhosis (per 100 person-years) was low in persistently below 2,000 IU/mL stratum (0.285, 95% CI: 0.132-0.615,  $f^2 = 0\%$ ). There were only two within-study groups for the viral load stratum between 2,000 and 20,000 IU/mL, and there were no events. The mean duration of follow-up lasted more than 5 years in all the groups identified in the strata of <2,000 and 2,000-20,000 IU/mL (Figure 8).

Figure 8. Forest plot of pooled cirrhosis incidence rates in adults, according to multiple HBV

#### DNA assessment

| Study                                                                                                                                                             | groupID                                                              | country                                                       | hbeag                                                      | alt_category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vl_who                             | dna_duration_assessmen                                                                        | t antiviral_treatment                             | number                          | mean_fu                      | events                  | PYFU                                | Events per 100<br>person-years Incid | ence_rate                                                 | 95% CI                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------|------------------------------|-------------------------|-------------------------------------|--------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| < 2,000 IU/mL<br>Bonacci, 2018<br>Bonacci, 2018<br>Lee, 2018<br>Liu, 2019<br>Liu, 2016<br>Huang, 2022<br>Pooled estimate<br>Heterogeneity: J <sup>2</sup> = 0%, t | 37181<br>37182<br>99401<br>47321<br>131022<br><sup>2</sup> = 0.0167, | Spain<br>Spain<br>Korea<br>Taiwan<br>Multinationa<br>p = 0.63 | Negative<br>Negative<br>Negative<br>Negative<br>I Negative | <uln<br>1-2xULN<br/><uln<br><uln<br><uln< td=""><td>NR<br/>NR<br/>199.5<br/>125.9<br/>37.9</td><td>24 months<br/>24 months<br/>Entire duration of F/U<br/>Other (specify)<br/>Entire duration of F/U</td><td>Some<br/>Some<br/>None<br/>None<br/>Excluded/censored</td><td>137<br/>60<br/>621<br/>777<br/>1370</td><td>7.5<br/>8.7<br/>6.1<br/>12<br/>6</td><td>0<br/>0<br/>7<br/>32<br/>29</td><td>1028<br/>522<br/>3799<br/>9326<br/>8191</td><td></td><td>0.000<br/>0.000<br/>0.184<br/>0.343<br/>0.354<br/><b>0.285</b></td><td>[0.003; 0.778]<br/>[0.006; 1.531]<br/>[0.088; 0.387]<br/>[0.243; 0.485]<br/>[0.246; 0.509]<br/><b>[0.132; 0.615]</b></td></uln<></uln<br></uln<br></uln<br> | NR<br>NR<br>199.5<br>125.9<br>37.9 | 24 months<br>24 months<br>Entire duration of F/U<br>Other (specify)<br>Entire duration of F/U | Some<br>Some<br>None<br>None<br>Excluded/censored | 137<br>60<br>621<br>777<br>1370 | 7.5<br>8.7<br>6.1<br>12<br>6 | 0<br>0<br>7<br>32<br>29 | 1028<br>522<br>3799<br>9326<br>8191 |                                      | 0.000<br>0.000<br>0.184<br>0.343<br>0.354<br><b>0.285</b> | [0.003; 0.778]<br>[0.006; 1.531]<br>[0.088; 0.387]<br>[0.243; 0.485]<br>[0.246; 0.509]<br><b>[0.132; 0.615]</b> |
| 2,000 – 20,000 IU/mL<br>Bonacci, 2018<br>Bonacci, 2018<br>Pooled estimate<br>Heterogeneity: $l^2 = 0\%$ , t                                                       | 37184<br>37183<br>2 <sup>2</sup> = 0, <i>p</i> = 1                   | Spain<br>Spain<br>.00                                         | Negative<br>Negative                                       | 1-2xULN<br><uln< td=""><td>NR<br/>NR</td><td>24 months<br/>24 months</td><td>Some<br/>Some</td><td>36<br/>54</td><td>15<br/>6.7</td><td>0<br/>0</td><td>540<br/>362</td><td>B</td><td>0.000<br/>0.000<br/><b>0.000</b></td><td>[0.006; 1.480]<br/>[0.009; 2.209]<br/><b>[0.000; Inf]</b></td></uln<>                                                                                                                                                                                                                                                                                                                                                                                            | NR<br>NR                           | 24 months<br>24 months                                                                        | Some<br>Some                                      | 36<br>54                        | 15<br>6.7                    | 0<br>0                  | 540<br>362                          | B                                    | 0.000<br>0.000<br><b>0.000</b>                            | [0.006; 1.480]<br>[0.009; 2.209]<br><b>[0.000; Inf]</b>                                                         |
| >= 20,000 IU/mL<br>Lee, 2020<br>Pooled estimate<br>Heterogeneity: $l^2 = 0\%$ , t<br>Test for subgroup differen                                                   | 24391<br>$c^{2} = 0.0322,$<br>nces: $c_{2}^{2} = 0.0322,$            | Korea<br>p = 0.92<br>04, df = 2 (p =                          | Positive                                                   | <uln< td=""><td>316.2M</td><td>12 months</td><td>None</td><td>946</td><td>3</td><td>9</td><td>2864</td><td></td><td>0.314<br/><b>0.266</b></td><td>[0.164; 0.604]<br/>[<b>0.143; 0.495]</b></td></uln<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 316.2M                             | 12 months                                                                                     | None                                              | 946                             | 3                            | 9                       | 2864                                |                                      | 0.314<br><b>0.266</b>                                     | [0.164; 0.604]<br>[ <b>0.143; 0.495]</b>                                                                        |

# 3.3.10 Cirrhosis in children with single HBV DNA assessment

There were only two studies assessing cirrhosis in children. There was no case of cirrhosis in these studies. Mean age was 5.9 years and 14.9 years, respectively, and mean follow-up was 8.0 years and 5.7 years, respectively (Table 7). We did not identify any study reporting cirrhosis as outcome and assessing VL multiple times in children.

| Study                 | Country | Mean age<br>(±SD) or<br>median<br>(range or<br>IQR) in<br>years | HBeAg    | VL category    | Antiviral<br>treatment | Number of<br>participants | Mean or<br>median<br>of FU | Events | PYFU | Incidence rate<br>(100 person-<br>years) |
|-----------------------|---------|-----------------------------------------------------------------|----------|----------------|------------------------|---------------------------|----------------------------|--------|------|------------------------------------------|
| < ULN                 |         |                                                                 |          |                |                        |                           |                            |        |      |                                          |
| Akbulut, 2014<br>(17) | Turkey  | Mean 14.9<br>SD 2.9                                             | Negative | <2000 IU/mL    | None                   | 59                        | 5.7                        | 0      | 337  | 0.000 (95% CI:<br>0.009-2.369)           |
| Hsu, 2013             | Taiwan  | Mean 5.9<br>(0.1-18.4)                                          | Mix      | >=200000 IU/mL | None                   | 49                        | 8.1                        | 0      | 397  | 0.000 (95% CI:<br>0.008-2.014)           |

**Table 7.** Studies reporting cirrhosis in children, according to a single HBV DNA assessment.

# 3.3.11 Cirrhosis in adults with single ALT assessment

There were only four within-study groups from two studies with normal ALT. The pooled incidence rate of cirrhosis (per 100 person-years) was 0.235 (95% CI: 0.148-0.373,  $l^2 = 0\%$ ) in individuals with normal ALT levels at baseline (Figure 9). Both included studies were conducted in North America.

Figure 9. Forest plot of pooled cirrhosis incidence rate in adults, according to a single ALT assessment.

| Study                                                                                                                                                         | groupID                                                      | Country                                                   | hbeag                         | hbv_dna_category                         | vl_baseline a        | ntiviral_treatme             | nt number                | mean_fu              | event            | s PYFU                       | Events per 100<br>person-years | Incidence_rate                                    | 95% CI                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|------------------------------------------|----------------------|------------------------------|--------------------------|----------------------|------------------|------------------------------|--------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <b><uln< b=""><br/>Tong, 2013<br/>Lok, 2021<br/>Lok, 2021<br/>Lok, 2021<br/><b>Pooled estimate</b><br/>Heterogeneity: <i>I</i><sup>2</sup> = 0%, τ</uln<></b> | 63661<br>16603<br>16601<br>16602<br><sup>2</sup> = 0, p = 0. | USA<br>USA & Canada<br>USA & Canada<br>USA & Canada<br>93 | Positive<br>Mix<br>Mix<br>Mix | <2000<br>>100000<br><1000<br>1000-100000 | NR<br>NR<br>NR<br>NR | Some<br>Some<br>Some<br>Some | 146<br>423<br>488<br>485 | 8<br>4.2<br>4.7<br>5 | 0<br>4<br>6<br>8 | 1168<br>1788<br>2296<br>2404 |                                | 0.000<br>0.224<br>0.261<br>0.333<br><b>0.23</b> 5 | 0 [0.003; 0.684]<br>1 [0.084; 0.596]<br>1 [0.117; 0.582]<br>3 [0.166; 0.665]<br>5 [0.148; 0.373] |
| Pooled estimate<br>Heterogeneity: $l^2 = 0\%, \pi$<br>Test for subgroup differen                                                                              | $r^2 = 0, p = 0.$<br>nces: $\chi_0^2 = 0$                    | 93<br>.00, df = 0 (p = N/                                 | 4)                            |                                          |                      |                              |                          |                      |                  |                              |                                | <b>0.23</b>                                       | 5 [0.148; 0.373]                                                                                 |

#### 3.3.12 Cirrhosis in adults with multiple ALT assessments

In the group of individuals with persistently normal ALT levels, the pooled incidence rate of cirrhosis (per 100 person-years) was 0.215 (95% CI: 0.103-0.448, f = 88%) (Figure 10). There were only two within-study groups from one study in the stratum with persistently abnormal ALT levels (1-2x ULN).

Figure 10. Forest plot of pooled cirrhosis incidence rate in adults, according to multiple ALT assessment.



#### 3.3.13 Cirrhosis in children with a single ALT assessment

There was only one group in children having normal ALT levels. There were no cases of cirrhosis in this group. We did not identify any study reporting cirrhosis as outcome and assessing VL multiple times in children (Table 8).

| Table 8. | Studies reporti | ng cirrhosis ir | n children, | according to | a single ALT | assessment. |
|----------|-----------------|-----------------|-------------|--------------|--------------|-------------|
|          |                 |                 | ,           |              |              |             |

| Study                 | Country | Mean age<br>(±SD) or<br>median<br>(range or<br>IQR) in<br>years | HBeAg    | VL category | Antiviral<br>treatment | Number of<br>participants | Mean or<br>median<br>of FU | Events | PYFU | Incidence<br>rate (100<br>person-<br>years) |
|-----------------------|---------|-----------------------------------------------------------------|----------|-------------|------------------------|---------------------------|----------------------------|--------|------|---------------------------------------------|
| < ULN                 |         |                                                                 |          |             |                        |                           |                            |        |      |                                             |
| Akbulut,<br>2014 (17) | Turkey  | Mean<br>14.95 SD<br>2.94                                        | Negative | <2000 IU/mL | None                   | 59                        | 5.7                        | 0      | 337  | 0.000 (95%<br>CI : 0.009-<br>2.369)         |

#### 3.3.14 Liver related deaths in adults with single HBV DNA assessment

Studies provided 1, 4, 3, 1 ,2 distinct within-study groups for the viral load strata of <200, <2,000, 2,000-20,000, 20,000-200,000, and ≥200,000 IU/mL. The pooled liver-related mortality rates (per 100 person-years) were similarly very low in the <200 IU/mL stratum (0.080, 95% CI: 0.042-0.154, only one study) and the <2,000 IU/mL stratum (0.084, 0.053-0.133,  $f^2 = 0\%$ ). But, there was a dose-response relationship between HBV DNA levels at baseline and the liver-related mortality rates: 0.084 (95% CI: 0.053-0.133,  $f^2 = 0\%$ ), 0.224 (0.144-0.347,  $f^2 = 0\%$ ), 0.815 (0.585-1.135, only one study), and 1.056 (0.849-1.313, only one study), in the strata of <2,000, 2,000-20,000, 20,000-200,000, and ≥200,000 IU/mL, respectively, although the number of studies in high viral load strata was limited.

**Figure 11.** Forest plot of pooled liver-related deaths rate in adults, according to single HBV DNA assessment.

| Study                                                                                                                                                  | groupID                                                 | Country                                                         | hbeag                         | alt_category                                     | vl_baseline             | antiviral_treatment        | number                    | mean_fu ev               | ents              | PYFU                          | Events per 100<br>person-years | Incidence_rate                                   | 95% CI                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|-------------------------------|--------------------------------------------------|-------------------------|----------------------------|---------------------------|--------------------------|-------------------|-------------------------------|--------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------|
| < 200 IU/mL<br>Iloeje, 2007                                                                                                                            | 84361                                                   | Taiwan                                                          | Mix                           | Any ALT                                          | NR                      | NR                         | 873                       | 12.9                     | 9                 | 11247                         |                                | 0.080                                            | [0.042; 0.154]                                                                         |
| < 2,000 IU/mL<br>Koc, 2022<br>Johannessen, 2023<br>Iloeje, 2007<br>Shimakawa, 2016<br><b>Pooled estimate</b><br>Heterogeneitly: / <sup>2</sup> = 0%, t | $10742 \\ A0011 \\ 84362 \\ 107441 \\ 8^{2} = 0, p = 0$ | Belgium & Netherlands<br>Ethiopia<br>Taiwan<br>The Gambia<br>87 | Negative<br>Mix<br>Mix<br>Mix | <uln<br>Any ALT<br/>Any ALT<br/>Any ALT</uln<br> | 50.1<br>343<br>NR<br>NR | None<br>None<br>NR<br>None | 327<br>351<br>1161<br>102 | 7<br>4.4<br>12.9<br>26.2 | 0<br>0<br>14<br>4 | 2289<br>1543<br>15034<br>2674 | 10-<br>10-<br>10<br>10-        | 0.000<br>0.000<br>0.093<br>0.150<br><b>0.084</b> | [0.001; 0.349]<br>[0.002; 0.518]<br>[0.055; 0.157]<br>[0.056; 0.399]<br>[0.053; 0.133] |
| 2,000 - 20,000 IU/mL<br>Johannessen, 2023<br>Iloeje, 2007<br>Shimakawa, 2016<br>Pooled estimate<br>Heterogenelty: / <sup>2</sup> = 0%, t               | A0012<br>84363<br>107442<br>$e^2 = 0, p = 1$            | Ethiopia<br>Taiwan<br>The Gambia<br>.00                         | Mix<br>Mix<br>Mix             | Any ALT<br>Any ALT<br>Any ALT                    | 5003<br>NR<br>14012     | None<br>NR<br>None         | 130<br>643<br>5           | 4.7<br>12.9<br>10.6      | 0<br>20<br>0      | 605<br>8281<br>53             |                                | 0.000<br>0.242<br>→ 0.000<br><b>0.224</b>        | [0.005; 1.321]<br>[0.156; 0.374]<br>[0.059; 15.083]<br>[0.144; 0.347]                  |
| <b>20,000 - 200,000 IU/m</b><br>Iloeje, 2007                                                                                                           | L<br>84364                                              | Taiwan                                                          | Mix                           | Any ALT                                          | NR                      | NR                         | 349                       | 12.3                     | 35                | 4294                          | -                              | 0.815                                            | [0.585; 1.135]                                                                         |
| >= 200,000 IU/mL<br>Shimakawa, 2016<br>Iloeje, 2007<br>Pooled estimate<br>Heterogeneity: / <sup>2</sup> = 0%, τ                                        | 107444<br>84365<br>$s^{2} = 0, p = 0$                   | The Gambia<br>Taiwan                                            | Mix<br>Mix                    | Any ALT<br>Any ALT                               | 42.8M<br>NR             | None<br>NR                 | 7<br>627                  | 17.9<br>12.2             | 1<br>81           | 125<br>7670                   | *                              | → 0.800<br>1.056<br><b>1.052</b>                 | [0.113; 5.679]<br>[0.849; 1.313]<br>[0.847; 1.306]                                     |
| Pooled estimate<br>Heterogeneity: $l^2 = 93\%$ ,<br>Test for subgroup differen                                                                         | $\tau^2 = 1.7347$<br>nces: $\chi^2_4 = 1$               | , <i>p</i> < 0.01<br>53.40, df = 4 ( <i>p</i> < 0.01)           |                               |                                                  |                         |                            |                           |                          |                   |                               | 0 1 2 3 4                      | 0.138<br>5                                       | [0.052; 0.367]                                                                         |

# 3.3.15 Liver related deaths in adults with multiple HBV DNA assessment

There were only two studies (both in the viral load stratum of persistently below 2,000 IU/mL). The liver-related mortality rate (per 100 person-years) was very low in both studies and all participants had ALT values below the ULN at baseline evaluation. Additionally, the mean duration of follow-up was more than 5 years in both references (Table 9).

**Table 9.** Studies reporting liver related deaths in adults, according to multiple HBV DNA assessments.

| Study           | Country | HBeAg    | ALT<br>category                                                                                                                | Antiviral<br>treatment | Number of<br>participants | Mean<br>FU | Events | PYFU | Incidence<br>rate (100<br>person-<br>years) |  |
|-----------------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|------------|--------|------|---------------------------------------------|--|
| < 2000 IU/mL    |         |          |                                                                                                                                |                        |                           |            |        |      |                                             |  |
| Kumada,<br>2022 | Japan   | Negative | <uln< td=""><td>None</td><td>332</td><td>14.5</td><td>3</td><td>4820</td><td>0.062 (95%<br/>CI : 0.020-<br/>0.193)</td></uln<> | None                   | 332                       | 14.5       | 3      | 4820 | 0.062 (95%<br>CI : 0.020-<br>0.193)         |  |

| Brouwer,<br>2016 | Multinational | Negative | <uln< th=""><th>Not<br/>reported</th><th>187</th><th>7.1</th><th>1</th><th>1328</th><th>0.075 (95%<br/>CI : 0.011-<br/>0.535)</th></uln<> | Not<br>reported | 187 | 7.1 | 1 | 1328 | 0.075 (95%<br>CI : 0.011-<br>0.535) |
|------------------|---------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----|---|------|-------------------------------------|
|                  |               |          |                                                                                                                                           |                 |     |     |   |      |                                     |

# 3.3.16 Liver related deaths in children with a single HBV DNA assessment

There was one single study reporting on liver related deaths according to VL group. There were no cases of liver-related deaths (Table 10). There was no study reporting on liver related deaths in children according to multiple VL assessments.

| Table  | 10.  | Studies | reporting | liver | related | deaths | in | children | with | а | single | HBV | DNA |
|--------|------|---------|-----------|-------|---------|--------|----|----------|------|---|--------|-----|-----|
| assess | smen | it.     |           |       |         |        |    |          |      |   |        |     |     |

| Study                   | Country        | HBeAg    | ALT category                                                                                                                  | Antiviral<br>treatment | Number of<br>participants | Mean<br>FU | Events | PYFU | Incidence rate<br>(100 person-<br>years) |
|-------------------------|----------------|----------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|------------|--------|------|------------------------------------------|
| < 2000 IU/mL            |                | ,        | ,                                                                                                                             |                        |                           |            |        | ,    |                                          |
| Shimakawa,<br>2016 (47) | Gambia         | Negative | <uln< td=""><td>None</td><td>85</td><td>30.1</td><td>0</td><td>2559</td><td>0.000 (95%<br/>Cl : 0.001-<br/>0.312)</td></uln<> | None                   | 85                        | 30.1       | 0      | 2559 | 0.000 (95%<br>Cl : 0.001-<br>0.312)      |
| 2000-20000 IU           | J/mL           | ,        | ,                                                                                                                             |                        |                           |            |        | ,    |                                          |
| Shimakawa,<br>2016 (47) | Gambia         | Mix      | Any ULN                                                                                                                       | None                   | 21                        | 25.2       | 0      | 530  | 0.000 (95%<br>CI : 0.006-<br>1.508)      |
| 20000-200000            | IU/mL          |          |                                                                                                                               | -                      | •                         | •          |        |      | •                                        |
| Shimakawa,<br>2016 (47) | Gambia         | Mix      | Any ULN                                                                                                                       | None                   | 6                         | 30.3       | 0      | 182  | 0.000 (95%<br>Cl : 0.017-<br>4.392)      |
| >=200000 IU/n           | >=200000 IU/mL |          |                                                                                                                               |                        |                           |            |        |      |                                          |
| Shimakawa,<br>2016 (47) | Gambia         | Mix      | Any ULN                                                                                                                       | None                   | 130                       | 27.3       | 0      | 3549 | 0.000 (95%<br>Cl : 0.001-<br>0.225)      |

#### 3.3.17 Liver related deaths in adults with a single ALT assessment

There were only four within-study groups from two studies in a stratum of normal ALT levels at baseline. The pooled liver-related mortality rate (per 100 person-years) was very low (0.034, 0.006-0.198,  $l^2 = 0\%$ ). The mean duration of follow-up was longer than 4 years in all studies (Figure 12).

Figure 12. Forest plot for liver-related deaths in adults with a single ALT assessment

| Study                                                                                                                                   | groupID                                               | Country                                                    | hbeag                         | hbv_dna_category                         | vl_baseline a  | antiviral_treatme            | nt number               | mean_fu                 | events           | s PYFU                       |       | Event<br>perso | s per 10<br>on-year | 00<br>s | In | cidence_rate                                     | 95% CI                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------|------------------------------------------|----------------|------------------------------|-------------------------|-------------------------|------------------|------------------------------|-------|----------------|---------------------|---------|----|--------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <uln<br>Lok, 2021<br/>Lok, 2021<br/>Lok, 2021<br/>Shimakawa, 2016<br/>Pooled estimate<br/>Heterogeneity: 1<sup>2</sup> = 0% of</uln<br> | 16602<br>16601<br>16603<br>107446<br>$r^{2} = 0.7449$ | USA & Canada<br>USA & Canada<br>USA & Canada<br>The Gambia | Mix<br>Mix<br>Mix<br>Negative | 1000-100000<br><1000<br>>100000<br><2000 | NR<br>NR<br>NR | Some<br>Some<br>Some<br>None | 485<br>488<br>423<br>81 | 5<br>4.7<br>4.2<br>25.8 | 0<br>0<br>1<br>3 | 2404<br>2296<br>1788<br>2088 | # # # |                |                     |         |    | 0.000<br>0.000<br>0.056<br>0.144<br><b>0.034</b> | [0.001; 0.333]<br>[0.001; 0.348]<br>[0.008; 0.397]<br>[0.046; 0.445]<br><b>[0.006; 0.198]</b> |
| Pooled estimate<br>Heterogeneity: I <sup>2</sup> = 0%, n<br>Test for subgroup differe                                                   | $t^2 = 0.7449$ ,<br>nces: $\chi_0^2 = 0$              | ρ = 0.88<br>00, df = 0 (ρ = NA                             | 4)                            |                                          |                |                              |                         |                         |                  |                              | 0     | 1 2            | 3                   | 1       | 5  | 0.034                                            | [0.006; 0.198]                                                                                |

# 3.3.18 Liver deaths in adults with multiple ALT assessments

There were four studies in a stratum of persistently normal ALT levels. The pooled liver-related mortality rate (per 100 person-years) was very low (0.054, 0.022-0.125,  $l^2 = 0\%$ ). The median (range) duration of follow-up was 8.55 (7-14.5) years.

Figure 13. Forest plot for liver-related deaths in adults with multiple ALT assessments

| Study                                                                                                                                                        | groupID                                                                                                                                             | Country                                                                                                             | hbeag                            | hbv_dna_category                        | vl_baseline                      | alt_duration_assessmer                           | nt antiviral_treatme       | nt number                | mean_fu                | event            | s PYFU                       | Events per 100<br>person-years | Incidence_rate                                          | 95% CI                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|----------------------------------|--------------------------------------------------|----------------------------|--------------------------|------------------------|------------------|------------------------------|--------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|
| ≺ULN<br>Koc, 2022<br>Kumada, 2022<br>Brouwer, 2016<br>Koc, 2022<br>Pooled estimate<br>Heterogeneity: <i>I<sup>2</sup></i> = 0%,<br>Test for subgroup differe | $\begin{array}{ccc} 10742 &   \\ 10471 & \\ 46551 & \\ 10741 &   \\ t^2 = 0, \ p = 0.9 \\ t^2 = 0, \ p = 0.9 \\ nces; \ \chi^2_0 = 0.6 \end{array}$ | Belgium & Netherlands<br>Japan<br>Multinational<br>Belgium & Netherlands<br>19<br>19<br>10, df = 0 ( <i>p</i> = NA) | Negative<br>Negative<br>Negative | e <2000<br><2000<br><2000<br>2000-20000 | 50.1<br>398.1<br>162.4<br>7943.3 | 12 months<br>12 months<br>12 months<br>12 months | None<br>NR<br>None<br>None | 327<br>332<br>187<br>116 | 7<br>14.5<br>7.1<br>10 | 0<br>3<br>1<br>1 | 2289<br>4820<br>1328<br>1160 |                                | 0.000<br>0.062<br>0.075<br>0.086<br>0.052<br>0.052<br>5 | [0.001; 0.349]<br>[0.020; 0.193]<br>[0.011; 0.535]<br>[0.012; 0.612]<br>[0.022; 0.125] |

# 3.3.19 Liver deaths in children with single ALT assessments

There was only one study in a stratum of normal ALT (<ULN) levels at baseline. There was no case of liver-related death.

 Table 11. Studies reporting liver related deaths in children with a single HBV DNA assessment.

| Study                   | Country       | Mean age<br>(±SD) or<br>median<br>(range or<br>IQR) in<br>years | HBeAg    | VL category | Antiviral<br>treatment | Number of<br>participants | Mean or<br>median of<br>FU | Events | PYFU | Incidence rate<br>(100 person-<br>years) |
|-------------------------|---------------|-----------------------------------------------------------------|----------|-------------|------------------------|---------------------------|----------------------------|--------|------|------------------------------------------|
| < ULN                   |               |                                                                 |          |             |                        |                           |                            |        |      |                                          |
| Shimakawa,<br>2016 (47) | The<br>Gambia | Median 10.8<br>(IQR 5.4-<br>14.9)                               | Negative | <2000 IU/mL | None                   | 85                        | 30.1                       | 0      | 2559 | 0.000 (95% CI :<br>0.001-0.312)          |

# 4. Discussion

In this systematic review and meta-analysis, we identified a total of 13,124 articles through our electronic database search. After a thorough screening process, 45 studies were included in our meta-analysis. In addition, to address the lack of data on CHB in sub-Saharan Africa, the WHO reached out to the Hepatitis B in Africa collaborative Network (HEPSANET) to identify unpublished longitudinal data from the region. As a result, we integrated aggregated data from two cohort studies: the Ethiopian cohort (Johannessen A, Desalegn H et al.) and the Gambian cohort (Ndow G, Lemoine M et al.). Most of the included studies were from the Western Pacific region (64.4%, 29/45), followed by Europe (11.1%, 5/45). Most of the studies included only adults (86.7%, 39/45) and more than a half (64.4%, 29/45) were published after 2015.

For adults, a substantial number of estimates were available for different viral load strata, especially for important clinical outcomes, such as HCC and cirrhosis. Similarly to previous literature (58) that describes HBV DNA levels among the main risk factors for HCC, our results found higher HCC incidence rates for the groups with higher viral load levels. The pooled incidence rates of HCC in adults (per 100 person-years) were similarly low between the stratum with less than 200 IU/mL of HBV DNA (0.131, 95% CI: 0.097-0.177, I2 = 0%), the stratum with less than 2,000 IU/mL (0.176, 95% CI: 0.117-0.265, I2 = 88%), and the stratum with 2,000-20,000 IU/mL (0.312, 95% CI: 0.245-0.396,  $I^2 = 16\%$ ), with overlapping 95% CIs. However, for the viral load strata above 2,000 IU/ml, there was a clear dose-response relationship between HBV DNA levels at baseline and the incidence rates of HCC. The incidence rates of HCC were 0.312 (95% CI: 0.245-0.396, I<sup>2</sup> = 16%), 0.874 (0.735-1.040, I<sup>2</sup> = 0%), and 0.941 (0.664-1.335,  $l^2 = 62\%$ ), for strata with 2,000-20,000, 20,000-200,000, and ≥200,000 IU/mL, respectively (p < 0.01). The meta-analysis of multiple viral load assessments was more limited as there were fewer studies in the high viral load strata with repeated viral load measurements. However, in the group of individuals with persistently low viremia of <2,000 IU/mL, the pooled incidence rate of HCC was relatively low (0.099, 95% CI: 0.073- $0.134, I^2 = 0\%$ ).

Importantly, in a group of individuals with persistently normal (<ULN) ALT levels (Figure 5), the incidence rates of HCC per 100 person-years were consistently low, with the exception of one outlier study with a small sample size (n=11). The pooled incidence rate in this stratum was 0.094 (95% CI: 0.045-0.196,  $I^2 = 82\%$ ).

Similarly, the pooled incidence rates of cirrhosis (per 100 person-years) were similar between the <200 IU/mL stratum (0.308, 95% CI: 0.221-0.429,  $I^2 = 54\%$ ) and <2,000 IU/mL stratum (0.301, 0.147-0.620,  $I^2 = 88\%$ ). But, there was a clear dose-response relationship between HBV DNA levels at baseline and the incidence rates of cirrhosis: 0.301 (95% CI: 0.147-0.620,  $I^2 = 88\%$ ), 0.719 (0.630-0.821,  $I^2 = 47\%$ ), 1.461 (0.990-2.155,  $I^2 = 78\%$ ), and 2.236 (1.739-2.236,  $I^2 = 84\%$ ), for strata with <2,000, 2,000-20,000, 20,000-200,000, and ≥200,000 IU/mL, respectively (p for test for subgroup differences <0.01). In individuals with persistently low viremia of <2,000 IU/mL we also found a relatively low incidence rate of cirrhosis (0.285, 95% CI: 0.132-0.615,  $I^2 = 0\%$ ).

Our results are consistent with the findings from the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer–Hepatitis B Virus (REVEAL-HBV) cohort, which reports increase in the incidence of both HCC and cirrhosis in proportion to the HBV DNA level, from <60 IU/mL (undetectable) to  $\geq$  200,000 IU/mL (22). These associations remained statistically significant in this cohort even after adjustment for age, sex, smoking, alcohol drinking, and HBeAg status (22,59). Such a dose-response relationship was also observed for liver-related mortality rates: 0.084 (95% CI: 0.053-0.133, I<sup>2</sup> = 0%), 0.224 (0.144-0.347, I<sup>2</sup> = 0%), 0.815 (0.585-1.135, only one study), and 1.056 (0.849-1.313, only one study), in the stratum of <2,000, 2,000-20,000, 20,000-200,000, and  $\geq$ 200,000 IU/mL, respectively.

Our findings are also consistent with a prior review of the literature (60) on the natural history of chronic HBV infection. That study reports high levels of HBV at enrolment and during followup as one of the best predictors for progression of clinical outcomes, including HCC and cirrhosis. However, this review limited its search to PubMed and only considered articles written in English up to June of 2007. A subsequent systematic review and meta-analysis was conducted by Raffetti *et al.* in 2016 (61), who also identified an increase in HCC incidence rates with respect to HBV DNA levels >2,000 IU /ml. Nevertheless, this study did not consider other important clinical outcomes and did not conduct further stratification based on viral load or ALT levels.

In adults, compared to the normal ALT level stratum, the pooled incidence rates of HCC (per 100 person-years) were slightly higher in the strata with ALT 1-2x ULN and ALT >2x ULN: 0.259 (95% CI: 0.125-0.537,  $I^2 = 92\%$ ), 0.741 (0.425-1.292,  $I^2 = 92\%$ ), and 0.660 (0.398-1.095,  $I^2 = 0\%$ ), respectively (p for test for subgroup difference = 0.06). But there was high heterogeneity across the studies within the normal ALT level stratum and the stratum with ALT 1-2x ULN ( $I^2 = 92\%$  for both estimates). These heterogeneities may be partially due to the difference in HBV DNA levels at baseline. For example, in the normal ALT stratum, there were four within-study groups that reported an incidence rate of more than 1.0 per 100 person-years; all of these groups recruited participants with HBV DNA levels greater than 2,000 IU/mL.

For children, we included fewer studies, and we did not observe any clear association between viral loads at baseline and clinical outcomes. In the limited number of studies included, both HCC and cirrhosis were rare events in this population, and some included studies did not document any occurrence of these outcomes despite a long follow-up in one study from The Gambia. Since chronic HBV infection is highly dynamic, and the large majority of children who were infected at birth or shortly after have a prolonged period of HBeAg-positive chronic HBV infection, a one-time assessment of viral load or ALT at baseline may be less predictive for

their natural history compared to adults. This highlights the importance of follow-up with the paediatric population, to better identify those who might benefit from receiving treatment, and not determining eligibility for treatment based on one single measurement of HBV DNA levels.

This study has several limitations. First, we only included studies that provided specific viral load strata (<2,000, 2,000-20,000, 20,000-200,000, and ≥200,000 IU/mL). However, most of these studies were conducted after wide availability of antiviral therapy as the standard of care. Although historical studies conducted before the availability of antiviral therapy may provide valuable insights on the natural history of CHB, there was no sensitive HBV DNA quantification as available nowdays. Due to the methodological challenge that this encompass, we had to include contemporary studies that were conducted in individuals who that might receive antiviral therapy if they became eligible for treatment during follow up. Both including participants who subsequently started antiviral therapy or excluding them from the analysis may result in an underestimation of the true incidence rates of clinical outcomes. Although we did not conduct a formal sensitivity analysis, we did not observe a clear tendency that studies excluding treated participants or including them provided lower incidence rates of clinical outcomes than historical studies without antiviral therapy.

This study was also limited due to the limited number of studies, we could not adequately adjust for potential sources of heterogeneity, such as the baseline distribution of fibrosis stage or the presence of comorbidities including alcohol and non-alcoholic fatty liver disease. With regards to co-infection with HCV, HIV, or HDV, many of the studies excluded participants with these infections. Thirdly, the majority of included studies were from the Western Pacific Region, particularly from mainland China and Taiwan, with a limited number of studies from South East Asia, Africa and the Eastern Mediterranean Region. Finally, many of the paediatric studies included both children ( $\leq$ 12 years) and adolescents (>12 years) and we were not able to stratify further by these age groups.

Despite these limitations, this study stands as the most extensive systematic review and metaanalysis currently available on the natural history of chronic HBV infection that quantifies the incidence rate of adverse clinical outcomes (cirrhosis, HCC, and liver related mortality) according to the viral load and ALT levels. Furthermore, it contributes to a better understanding of the natural history of the disease. This is particularly valuable to inform on the groups of patients at higher risk of disease progression, who might benefit the most from access to treatment.

# 5. Conclusion

This study represents the most comprehensive systematic review and meta-analysis to date of chronic HBV infection natural history. Cirrhosis and HCC incidence rates were low in individuals with HBV DNA <2000 IU/ml. The incidence rate of HCC was also relatively low for adults with persistently normal (<ULN) ALT levels. Additionally, we identified paucity of data in pediatric and adolescents' populations and in individuals with undetectable viral load levels. Thus, more research is needed in this specific area to further characterize the natural history of HBV.

# Appendixes

# Appendix 1. Search strategy

# <u>PubMed</u>

| #       | Searches                                                  | Posults |
|---------|-----------------------------------------------------------|---------|
| <b></b> | 01.01.2000 - 06.02.2023                                   | Nesuits |
| 1       | "hepatitis b virus"[MeSH Terms] OR "hepatitis-            | 78,291  |
|         | b"[MeSH Terms] OR "hepatitis b surface                    |         |
|         | antigens"[MeSH Terms]                                     |         |
| 2       | "hepatitis b"[Title/Abstract] OR "type b                  | 99,564  |
|         | hepatitis"[Title/Abstract] OR "hepatitis type             |         |
|         | b"[Title/Abstract] OR "hbv"[Title/Abstract] OR            |         |
|         | "vhb"[Title/Abstract] OR "hep b"[Title/Abstract] OR       |         |
|         | "hbsag"[Title/Abstract] OR "aghbs"[Title/Abstract] OR     |         |
|         | "hbs ag"[Title/Abstract] OR "hbs                          |         |
|         | antigen*"[Title/Abstract]                                 |         |
| 3       | #1 OR #2                                                  | 112,460 |
| 4       | "alanine transaminase"[MeSH Terms]                        | 33,348  |
| 5       | "alanine transaminase*"[Title/Abstract] OR "alanine       | 100,947 |
|         | aminotransferase*"[Title/Abstract] OR "glutamic           |         |
|         | pyruvic transaminase*"[Title/Abstract] OR "glutamic       |         |
|         | pyruvate transaminase*"[Title/Abstract] OR                |         |
|         | "glutamate pyruvic transaminase*"[Title/Abstract] OR      |         |
|         | "glutamate pyruvate transaminase*"[Title/Abstract]        |         |
|         | OR "alt"[Title/Abstract] OR "alat"[Title/Abstract] OR     |         |
|         | "gpt"[Title/Abstract] OR "sgpt"[Title/Abstract] OR "liver |         |
|         | function test*"[Title/Abstract] OR "Ift"[Title/Abstract]  |         |
|         | OR "liver enzyme*"[Title/Abstract]                        |         |
| 6       | #4 OR #5                                                  | 113,768 |
| 7       | "viral load"[MeSH Terms] OR "viremia"[MeSH Terms]         | 132,711 |
|         | OR "dna, viral"[MeSH Terms]                               |         |
| 8       | "viral load*"[Title/Abstract] OR "virus                   | 70,056  |
|         | load"[Title/Abstract] OR "viremi*"[Title/Abstract] OR     |         |
|         | "viraemi*"[Title/Abstract] OR "hbv dna"[Title/Abstract]   |         |
|         | OR "hepatitis b virus dna"[Title/Abstract]                |         |
| 9       | #7 OR #8                                                  | 167,833 |

| 10 | "liver cirrhosis"[MeSH Terms] OR ("liver"[MeSH          | 791,869   |
|----|---------------------------------------------------------|-----------|
|    | Terms] AND "fibrosis"[MeSH Terms]) OR                   |           |
|    | ("liver"[MeSH Terms] AND "biopsy"[MeSH Terms])          |           |
|    | OR "elasticity imaging techniques"[MeSH Terms] OR       |           |
|    | "carcinoma, hepatocellular"[MeSH Terms] OR              |           |
|    | "hepatic insufficiency"[MeSH Terms] OR                  |           |
|    | "mortality"[MeSH Terms] OR "death"[MeSH Terms]          |           |
| 11 | "cirrho*"[Title/Abstract] OR "liver                     | 2,048,275 |
|    | fibrosis"[Title/Abstract] OR "hepatic                   |           |
|    | fibrosis"[Title/Abstract] OR "advanced                  |           |
|    | fibrosis"[Title/Abstract] OR "significant               |           |
|    | fibrosis"[Title/Abstract] OR "liver                     |           |
|    | biops*"[Title/Abstract] OR "hepatic                     |           |
|    | biops*"[Title/Abstract] OR "liver                       |           |
|    | histolog*"[Title/Abstract] OR "hepatic                  |           |
|    | histolog*"[Title/Abstract] OR "liver                    |           |
|    | histopatholog*"[Title/Abstract] OR "hepatic             |           |
|    | histopatholog*"[Title/Abstract] OR                      |           |
|    | "metavir"[Title/Abstract] OR "ishak"[Title/Abstract] OR |           |
|    | "elastograph*"[Title/Abstract] OR                       |           |
|    | "fibroscan"[Title/Abstract] OR "liver                   |           |
|    | stiffness"[Title/Abstract] OR "liver                    |           |
|    | ultrasound"[Title/Abstract] OR "liver                   |           |
|    | ultrasonography"[Title/Abstract] OR "hepatic            |           |
|    | ultrasound"[Title/Abstract] OR "hepatic                 |           |
|    | ultrasonography"[Title/Abstract] OR "abdominal          |           |
|    | ultrasound"[Title/Abstract] OR "abdominal               |           |
|    | ultrasonography"[Title/Abstract] OR "abdomen            |           |
|    | ultrasound"[Title/Abstract] OR "abdomen                 |           |
|    | ultrasonography"[Title/Abstract] OR "ultrasound         |           |
|    | abdomen"[Title/Abstract] OR "ultrasonography            |           |
|    | abdomen"[Title/Abstract] OR "fibrosis-                  |           |
|    | 4"[Title/Abstract] OR "fib-4"[Title/Abstract] OR        |           |
|    | "fib4"[Title/Abstract] OR "apri"[Title/Abstract] OR     |           |
|    | "fibrotest*"[Title/Abstract] OR "liver                  |           |
|    | carcinom*"[Title/Abstract] OR "hepatocellular           |           |

|    | carcinom*"[Title/Abstract] OR "liver                   |           |
|----|--------------------------------------------------------|-----------|
|    | cancer*"[Title/Abstract] OR "liver                     |           |
|    | neoplasm*"[Title/Abstract] OR "liver                   |           |
|    | tumor*"[Title/Abstract] OR "hepatic                    |           |
|    | tumor*"[Title/Abstract] OR "liver                      |           |
|    | tumour*"[Title/Abstract] OR "hepatic                   |           |
|    | tumour*"[Title/Abstract] OR "hepatoma"                 |           |
|    | [Title/Abstract] OR "hcc" [Title/Abstract] OR "liver   |           |
|    | failure"[Title/Abstract] OR "hepatic                   |           |
|    | failure"[Title/Abstract] OR "liver                     |           |
|    | decompensat*"[Title/Abstract] OR "hepatic              |           |
|    | decompensat*"[Title/Abstract] OR "end stage liver      |           |
|    | disease*"[Title/Abstract] OR "death*"[Title/Abstract]  |           |
|    | OR "mortality"[Title/Abstract] OR "active hepatitis"   |           |
|    | [Title/Abstract] OR "active chronic                    |           |
|    | hepatitis"[Title/Abstract] OR "active                  |           |
|    | CHB"[Title/Abstract] OR "active CH"[Title/Abstract]    |           |
|    | OR "hbeag negative hepatitis"[Title/Abstract] OR       |           |
|    | "hbeag negative chronic hepatitis"[Title/Abstract] OR  |           |
|    | "hbeag negative CHB"[Title/Abstract] OR "hbeag         |           |
|    | negative CH"[Title/Abstract] OR "hbeag (-)             |           |
|    | hepatitis"[Title/Abstract] OR "hbeag (-) chronic       |           |
|    | hepatitis"[Title/Abstract] OR "hbeag (-)               |           |
|    | CHB"[Title/Abstract] OR "hbeag (-) CH"[Title/Abstract] |           |
|    | OR "hepatitis flare*"[Title/Abstract] OR "hepatic      |           |
|    | flare*"[Title/Abstract]                                |           |
| 12 | #10 OR #11                                             | 2,384,016 |
| 13 | "cohort studies"[MeSH Terms] OR "clinical studies as   | 2,948,170 |
|    | topic"[MeSH Terms] OR "survival analysis"[MeSH         |           |
|    | Terms]                                                 |           |
| 14 | "observational study"[Publication Type] OR "clinical   | 3,169,523 |
|    | study"[Publication Type] OR "comparative               |           |
|    | study"[Publication Type] OR "evaluation                |           |
|    | study"[Publication Type] OR "meta                      |           |
|    | analysis"[Publication Type]                            |           |
| 15 | #13 OR #14                                             | 5,291,666 |

| 16 | #3 AND (#6 OR #9) AND #12 AND #15                 | 4,052 |
|----|---------------------------------------------------|-------|
| 17 | #16 NOT ("animals"[MeSH Terms] NOT                | 4,032 |
|    | "humans"[MeSH Terms])                             |       |
| 18 | #17 NOT ("letter"[Publication Type] OR            | 4,011 |
|    | "news"[Publication Type] OR "comment"[Publication |       |
|    | Type] OR "editorial"[Publication Type] OR         |       |
|    | "congress"[Publication Type])                     |       |
| 19 | #18 AND 2000/01/01:3000/12/31[Date - Publication] | 3,365 |

#### Embase

| #  | Searches                                                    | Results   |
|----|-------------------------------------------------------------|-----------|
|    | 01.01.2000 – 06.02.2023                                     |           |
| 1  | 'hepatitis b virus'/exp OR 'hepatitis b'/exp OR             | 186,584   |
|    | 'hepatitis b antigen'/exp                                   |           |
| 2  | 'hepatitis b':ti,ab OR 'type b hepatitis':ti,ab OR          | 148,714   |
|    | 'hepatitis type b':ti,ab OR 'hbv':ti,ab OR 'vhb':ti,ab OR   |           |
|    | 'hep b':ti,ab OR 'hbsag':ti,ab OR 'aghbs':ti,ab OR 'hbs     |           |
|    | ag':ti,ab OR 'hbs antigen*':ti,ab                           |           |
| 3  | #1 OR #2                                                    | 197,294   |
| 4  | 'alanine aminotransferase'/exp                              | 154,150   |
| 5  | 'alanine transaminase*':ti,ab OR 'alanine                   | 167,955   |
|    | aminotransferase*':ti,ab OR 'glutamic pyruvic               |           |
|    | transaminase*':ti,ab OR 'glutamic pyruvate                  |           |
|    | transaminase*':ti,ab OR 'glutamate pyruvic                  |           |
|    | transaminase*':ti,ab OR 'glutamate pyruvate                 |           |
|    | transaminase*':ti,ab OR 'alt':ti,ab OR 'alat':ti,ab OR      |           |
|    | 'gpt':ti,ab OR 'sgpt':ti,ab OR 'liver function test*':ti,ab |           |
|    | OR 'lft':ti,ab OR 'liver enzyme*':ti,ab                     |           |
| 6  | #4 OR #5                                                    | 254,666   |
| 7  | 'virus load'/exp OR 'viremia'/exp OR 'virus dna'/exp        | 192,800   |
| 8  | 'load*':ti,ab OR 'virus load':ti,ab OR 'viremi*':ti,ab OR   | 659,396   |
|    | 'viraemi*':ti,ab OR 'hbv dna':ti,ab OR 'hepatitis b virus   |           |
|    | dna':ti,ab                                                  |           |
| 9  | #7 OR #8                                                    | 766,107   |
| 10 | 'liver cirrhosis'/exp OR ('liver'/exp AND 'fibrosis'/exp)   | 2,402,384 |
|    | OR ('liver'/exp AND 'biopsy'/exp) OR                        |           |

|    | 'elastography'/exp OR 'liver cell carcinoma'/exp OR          |           |
|----|--------------------------------------------------------------|-----------|
|    | 'liver failure'/exp OR 'mortality'/exp OR 'death'/exp        |           |
| 11 | 'cirrho*':ti,ab OR 'liver fibrosis':ti,ab OR 'hepatic        | 2,931,434 |
|    | fibrosis':ti,ab OR 'advanced fibrosis':ti,ab OR              |           |
|    | 'significant fibrosis':ti,ab OR 'liver biops*':ti,ab OR      |           |
|    | 'hepatic biops*':ti,ab OR 'liver histolog*':ti,ab OR         |           |
|    | 'hepatic histolog*':ti,ab OR 'liver histopatholog*':ti,ab    |           |
|    | OR 'hepatic histopatholog*':ti,ab OR 'metavir':ti,ab         |           |
|    | OR 'ishak':ti,ab OR 'elastograph*':ti,ab OR                  |           |
|    | 'fibroscan':ti,ab OR 'liver stiffness':ti,ab OR 'liver       |           |
|    | ultrasound':ti,ab OR 'liver ultrasonography':ti,ab OR        |           |
|    | 'hepatic ultrasound':ti,ab OR 'hepatic                       |           |
|    | ultrasonography':ti,ab OR 'abdominal ultrasound':ti,ab       |           |
|    | OR 'abdominal ultrasonography':ti,ab OR 'abdomen             |           |
|    | ultrasound':ti,ab OR 'abdomen ultrasonography':ti,ab         |           |
|    | OR 'ultrasound abdomen':ti,ab OR 'ultrasonography            |           |
|    | abdomen':ti,ab OR 'fibrosis-4':ti,ab OR 'fib-4':ti,ab OR     |           |
|    | 'fib4':ti,ab OR 'apri':ti,ab OR 'fibrotest*':ti,ab OR 'liver |           |
|    | carcinom*':ti,ab OR 'hepatocellular carcinom*':ti,ab         |           |
|    | OR 'liver cancer*':ti,ab OR 'liver neoplasm*':ti,ab OR       |           |
|    | 'liver tumor*':ti,ab OR 'hepatic tumor*':ti,ab OR 'liver     |           |
|    | tumour*':ti,ab OR 'hepatic tumour*':ti,ab OR                 |           |
|    | 'hepatoma':ti,ab OR 'hcc':ti,ab OR 'liver failure':ti,ab     |           |
|    | OR 'hepatic failure':ti,ab OR 'liver decompensat*':ti,ab     |           |
|    | OR 'hepatic decompensat*':ti,ab OR 'end stage liver          |           |
|    | disease*':ti,ab OR 'death*':ti,ab OR 'mortality':ti,ab OR    |           |
|    | 'active hepatitis':ti,ab OR 'active chronic hepatitis':ti,ab |           |
|    | OR 'active chb':ti,ab OR 'active ch':ti,ab OR 'hbeag         |           |
|    | negative hepatitis':ti,ab OR 'hbeag negative chronic         |           |
|    | hepatitis':ti,ab OR 'hbeag negative chb':ti,ab OR            |           |
|    | 'hbeag negative ch':ti,ab OR 'hbeag (-) hepatitis':ti,ab     |           |
|    | OR 'hbeag (-) chronic hepatitis':ti,ab OR 'hbeag (-)         |           |
|    | chb':ti,ab OR 'hbeag (-) ch':ti,ab OR 'hepatitis             |           |
|    | flare*':ti,ab OR 'hepatic flare*':ti,ab                      |           |
| 12 | #10 OR #11                                                   | 2,692,517 |
|    |                                                              |           |

| 13 | 'cohort analysis'/exp OR 'clinical study'/exp OR | 12,010,669 |
|----|--------------------------------------------------|------------|
|    | 'survival analysis'/exp                          |            |
| 14 | #3 AND (#6 OR #9) AND #12 AND #13                | 16,604     |
| 15 | #14 AND ('article':it OR 'review':it)            | 11,259     |
| 16 | #15 AND [humans]/lim                             | 11,174     |
| 17 | #16 AND [2000-2023]/py                           | 10,092     |

# Web of science

| # | Searches                                                | Results   |
|---|---------------------------------------------------------|-----------|
|   | - 06.02.2023                                            |           |
| 1 | TS=("hepatitis b" OR "hepatitis b virus" OR "hepatitis  | 117 201   |
|   | b" OR "hepatitis b antigen" OR "type b hepatitis" OR    |           |
|   | "hepatitis type b" OR "hbv" OR "vhb" OR "hep b" OR      |           |
|   | "hbsag" OR "aghbs" OR "hbs ag*" OR "hbs antigen*")      |           |
| 2 | TS=("alanine aminotransferase" OR "alanine              | 101 159   |
|   | transaminase*" OR "alanine aminotransferase*" OR        |           |
|   | "glutamic pyruvic transaminase*" OR "glutamic           |           |
|   | pyruvate transaminase*" OR "glutamate pyruvic           |           |
|   | transaminase*" OR "glutamate pyruvate                   |           |
|   | transaminase*" OR " alt" OR "alat" OR "gpt" OR "sgpt"   |           |
|   | OR "liver function test*" OR "Ift" OR "liver enzyme*")  |           |
| 3 | TS= ("load*" OR "virus load" OR "viremi*" OR            | 1 683 883 |
|   | "viraemi*" OR "virus dna" OR "hbv dna" OR "hepatitis    |           |
|   | b virus dna")                                           |           |
| 4 | TS=("liver cirrho*" OR "cirrho*" OR "liver fibrosis" OR | 2 531 918 |
|   | "hepatic fibrosis" OR "advanced fibrosis" OR            |           |
|   | "significant fibrosis"OR "liver biops*" OR "hepatic     |           |
|   | biops*" OR "liver histolog*" OR "hepatic histolog*" OR  |           |
|   | "liver histopatholog*" OR "hepatic histopatholog*" OR   |           |
|   | "metavir" OR "ishak" OR "elastograph*" OR               |           |
|   | "fibroscan" OR "liver stiffness" OR "liver ultrasound"  |           |
|   | OR "liver ultrasonography" OR "hepatic ultrasound"      |           |
|   | OR "hepatic ultrasonography" OR "abdominal              |           |
|   | ultrasound" OR "abdominal ultrasonography" OR           |           |
|   | "abdomen ultrasound" OR "abdomen                        |           |
|   | ultrasonography" OR "ultrasound abdomen" OR             |           |
|   | "ultrasonography abdomen" OR "fibrosis-4" OR "fib-4"    |           |

|   | OR "fib4" OR "apri" OR "fibrotest*" OR "liver         |           |
|---|-------------------------------------------------------|-----------|
|   | carcinom*" OR "hepatocellular carcinom*" OR "liver    |           |
|   | cancer*" OR "liver neoplasm*" OR "liver tumor*" OR    |           |
|   | "hepatic tumor*" OR "liver tumour*" OR "hepatic       |           |
|   | tumour*" OR "hepatoma" OR "hcc" OR "liver failure"    |           |
|   | OR "hepatic failure" OR "liver decompensat*" OR       |           |
|   | "hepatic decompensat*" OR "end stage liver disease*"  |           |
|   | OR "death*" OR "mortality" OR "active hepatitis" OR   |           |
|   | "active chronic hepatitis" OR "active chb" OR "active |           |
|   | ch" OR "hbeag negative hepatitis" OR "hbeag           |           |
|   | negative chronic hepatitis" OR "hbeag negative chb"   |           |
|   | OR "hbeag negative ch" OR "hbeag (-) hepatitis" OR    |           |
|   | "hbeag (-) chronic hepatitis" OR "hbeag (-) chb" OR   |           |
|   | "hbeag (-) ch" OR "hepatitis flare*" OR "hepatic      |           |
|   | flare*")                                              |           |
| 5 | TS=("cohort" OR "longitud*" OR "observational stud*"  | 8 622 303 |
|   | OR "survival analysis" OR "follow*" OR "random*" OR   |           |
|   | "blind*" OR "placebo*" OR "RCT " OR "meta             |           |
|   | analysis")                                            |           |
| 6 | #1 AND (#2 OR #3) AND #4 AND #5                       | 4919      |

# **Cochrane**

| # | Searches                                                | Results |
|---|---------------------------------------------------------|---------|
|   | 01.01.2000 - 06.02.2023                                 |         |
| 1 | MeSH descriptor: [Hepatitis B] explode all trees        | 3,171   |
| 2 | MeSH descriptor: [Hepatitis B virus] explode all trees  | 936     |
| 3 | MeSH descriptor: [Hepatitis B Antigens] explode all     | 1,229   |
|   | trees                                                   |         |
| 4 | ("hepatitis b" OR "type b hepatitis" OR "hepatitis type | 10,765  |
|   | b" OR "hbv" OR "vhb" OR "hep b" OR "hbsag" OR           |         |
|   | "aghbs" OR "hbs ag" OR "hbs antigen*"):ti,ab,kw         |         |
| 5 | #1 OR #2 OR #3 OR #4                                    | 10,765  |
| 6 | MeSH descriptor: [Alanine Transaminase] explode all     | 1,796   |
|   | trees                                                   |         |
| 7 | ("alanine transaminase*" OR "alanine                    | 23,309  |
|   | aminotransferase*" OR "glutamic pyruvic                 |         |
|   | transaminase*" OR "glutamic pyruvate transaminase*"     |         |

|    | OR "glutamate pyruvic transaminase*" OR "glutamate       |         |
|----|----------------------------------------------------------|---------|
|    | pyruvate transaminase*" OR "alt" OR "alat" OR "gpt"      |         |
|    | OR "sgpt" OR "liver function test*" OR "Ift" OR "liver   |         |
|    | enzyme*"):ti,ab,kw                                       |         |
| 8  | #6 OR #7                                                 | 23,309  |
| 9  | MeSH descriptor: [Viral Load] explode all trees          | 2,927   |
| 10 | MeSH descriptor: [Viremia] explode all trees             | 439     |
| 11 | MeSH descriptor: [DNA Viruses] explode all trees         | 3,466   |
| 12 | ("viral load*" OR "virus load" OR "viremi*" OR           | 10,201  |
|    | "viraemi*" OR "hbv dna" OR "hepatitis b virus            |         |
|    | dna"):ti,ab,kw                                           |         |
| 13 | #9 OR #10 OR #11 OR #12                                  | 13,062  |
| 14 | MeSH descriptor: [Fibrosis] explode all trees            | 7,118   |
| 15 | MeSH descriptor: [Liver Cirrhosis] explode all trees     | 3,474   |
| 16 | MeSH descriptor: [Biopsy] explode all trees              | 6,805   |
| 17 | MeSH descriptor: [Liver Neoplasms] explode all trees     | 3,835   |
| 18 | MeSH descriptor: [Hepatic Insufficiency] explode all     | 1,078   |
|    | trees                                                    |         |
| 19 | MeSH descriptor: [Death] explode all trees               | 2,965   |
| 20 | MeSH descriptor: [Mortality] explode all trees           | 16,600  |
| 21 | ("liver cirrhosis" OR "cirrhosis" OR "cirrhosis hepatis" | 173,236 |
|    | OR "fibrosis stage" OR "advanced fibrosis" OR            |         |
|    | "significant fibrosis" OR "liver biopsy" OR "hepatic     |         |
|    | biopsy" OR "liver histolog*" OR "hepatic histolog*" OR   |         |
|    | "liver histopatholog*" OR "hepatic histopatholog*" OR    |         |
|    | "metavir" OR "ishak" OR "elastograph*" OR                |         |
|    | "fibroscan" OR "liver stiffness" OR "liver ultrasound"   |         |
|    | OR "liver ultrasonography" OR "hepatic ultrasound"       |         |
|    | OR "hepatic ultrasonography" OR "abdominal               |         |
|    | ultrasound" OR "abdominal ultrasonography" OR            |         |
|    | "abdomen ultrasound" OR "abdomen                         |         |
|    | ultrasonography" OR "ultrasound abdomen" OR              |         |
|    | "ultrasonography abdomen" OR "fibrosis-4" OR "fib-4"     |         |
|    | OR "fib4" OR "apri" OR "fibrotest*" OR "liver            |         |
|    | carcinom*" OR "hepatocellular carcinom*" OR "liver       |         |
| •  | •                                                        |         |

|    | "hepatic tumor*" OR "liver tumour*" OR "hepatic        |         |
|----|--------------------------------------------------------|---------|
|    | tumour*" OR "hepatoma" OR "hcc" OR "liver failure"     |         |
|    | OR "hepatic failure" OR "liver decompensat*" OR        |         |
|    | "hepatic decompensat*" OR "end stage liver disease*"   |         |
|    | OR "death*" OR "mortality" OR "active hepatitis" OR    |         |
|    | "active chronic hepatitis" OR "active chb" OR "active  |         |
|    | ch" OR "hbeag negative hepatitis" OR "hbeag            |         |
|    | negative chronic hepatitis" OR "hbeag negative chb"    |         |
|    | OR "hbeag negative ch" OR "hepatitis flare*" OR        |         |
|    | "hepatic flare*"):ti,ab,kw                             |         |
| 22 | #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20          | 187,057 |
|    | OR #21                                                 |         |
| 23 | MeSH descriptor: [Cohort Studies] explode all trees    | 181,114 |
| 24 | MeSH descriptor: [Clinical Studies as Topic] explode   | 82,353  |
|    | all trees                                              |         |
| 25 | MeSH descriptor: [Survival Analysis] explode all trees | 25,893  |
| 26 | ("cohort" OR "longitud*" OR "observational stud*" OR   | 855,586 |
|    | "survival analysis" OR "follow*" OR "random*" OR       |         |
|    | "blind*" OR "placebo*" OR "RCT" OR "meta               |         |
|    | analysis"):ti,ab,kw                                    |         |
| 27 | #23 OR #24 OR #25 OR #26                               | 939,521 |
| 28 | #5 AND (#8 OR #13) AND #22 AND #27                     | 823     |
| 29 | #28 [Publication year from 2000 to 2023]               | 744     |

# Appendix 2. Newcastle-Ottawa Quality Assessment Form for Cohort Studies of Q1

Note: A study can be given a maximum of one star for each numbered item within the Selection and Outcome categories. Comparability category is not applicable for Q1.

Selection

# 1) Representativeness of the exposed cohort

- a) Truly representative (one star)
  - Participants identified to carry HBsAg through general population testing (i.e. routine testing throughout the entire population without attempting to identify high-risk behaviours or characteristics)<sup>16</sup>
- b) Somewhat representative (one star)
  - Participants identified to carry HBsAg as clinically indicated for suspected liver disease
  - Participants known to carry HBsAg through general population testing or clinically indicated and have been followed by specialist services
- c) Selected group
  - Participants identified to carry HBsAg through focused testing of high-risk groups (e.g., men who have sex with men (MSM), people who inject drugs (PWID), people in prisons and other closed settings, sex workers, transgender people, etc)<sup>16</sup>
- d) No description of the derivation of the cohort

# 2) Selection of the non-exposed cohort

Not applicable since Q1 is primarily descriptive.

# 3) Ascertainment of exposure

a) Clearly defined how participants were categorized based on HBV DNA levels and

# ALT levels (one star)

- b) No description
- c) Other

# 4) Demonstration that outcome of interest was not present at start of study

- a) Yes (one star)
  - All participants screened for the presence of cirrhosis and HCC
- b) No

# Comparability

Not applicable since Q1 is primarily descriptive.

# Outcome

# 1) Assessment of outcome

- a) Independent blind assessment (one star)
  - Examiner of clinical outcomes (e.g., research physician) was blinded to the baseline HBV DNA and ALT levels
- b) Record linkage (one star)
  - E.g., HCC event was ascertained by cancer registry, death was ascertained by death registry.
- c) Self report
- d) No description
- e) Other

# 2) Was follow-up long enough for outcomes to occur

- a) Yes (one star)
  - ≥5 years
- b) No
  - <5 years</li>

# 3) Adequacy of follow-up of cohorts

- a) Complete follow up (one star)
  - All subject accounted for and lost to follow-up reported clearly as zero
- b) Subjects lost to follow up unlikely to introduce bias (one star)
  - Follow-up rate ≥80% or description of those lost suggested no different from those followed
- c) Follow-up rate <80% and no description of those lost
- d) No statement
  - If not reporting any lost to follow-up, and also not mentioning clearly that "there were no cases lost to follow-up", then we should assume that lost to follow-up was not well reported and this should not be given a star.

Thresholds for converting the Newcastle-Ottawa scales to AHRQ standards (good, fair, and poor):

Good quality: 3 stars in selection domain AND 2 or 3 stars in outcome domain

Fair quality: 2 stars in selection domain AND 2 or 3 stars in outcome domain

Poor quality: 0 or 1 star in selection domain OR 0 or 1 starsin outcome domain

# References

- 1. World Health Organization (WHO). Hepatitis B [Internet]. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b
- Centers for Disease Control and Prevention (CDC). Fast Facts on Global Hepatitis B [Internet]. 2022. Available from: https://www.cdc.gov/globalhealth/immunization/diseases/hepatitis-b/data/fastfacts.html
- 3. Sheena BS, Hiebert L, Han H, Ippolito H, Abbasi-Kangevari M, Abbasi-Kangevari Z, et al. Global, regional, and national burden of hepatitis B, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol Hepatol. 2022 Sep 1;7(9):796–829.
- 4. World Health Organization (WHO). Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection [Internet]. 2015. Available from: https://www.who.int/publications/i/item/9789241549059
- 5. Terrault NA, Lok ASF, McMahon BJ, Chang KM, Hwang JP, Jonas MM, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018 Apr 1;67(4):1560–99.
- 6. Sarin SK, Kumar M, Lau GK, Abbas Z, Chan HLY, Chen CJ, et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int. 2016;10(1):1–98.
- European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol. 2017;67(2):370–98.
- 8. Huang DQ, Lim SG. Hepatitis B: Who to treat? A critical review of international guidelines. Liver Int. 2020 Feb 1;40 Suppl 1(S1):5–14.
- 9. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372.
- 10. WHO. Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. Geneva, Switzerland; 2015.
- 11. Evans A, Connell APO, Pugh JC, Mason S. Geographic variation in viral load among hepatitis B carriers with differing risks of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev. 1998;7:559–65.
- 12. Liu M, Tseng TC, Jun DW, Yeh ML, Trinh H, Wong GLH, et al. Transition rates to cirrhosis and liver cancer by age, gender, disease and treatment status in Asian chronic hepatitis B patients. Hepatol Int. 2021;15(1):71–81.
- 13. WHO. Guidelines on hepatitis B and C testing. Geneva, Switzerland; 2017.
- 14. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M TP. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. The Ottawa Hospital. 2014.
- 15. Johannessen A, Stockdale AJ, Henrion MYR, Okeke E, Seydi M, Wandeler G, et al. Systematic review and individual-patient-data meta-analysis of non-invasive fibrosis markers for chronic hepatitis B in Africa. Nat Commun. 2023;14(1):45.
- Ahn JM, Sinn DH, Gwak G-Y, Paik Y-H, Choi MS, Lee JH, et al. Prediction of clinical outcomes in hepatitis B e antigen negative chronic hepatitis B patients with elevated hepatitis B Virus DNA levels. PLoS One [Internet]. 2015;10(12). Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L608044846&fro m=export
- 17. Akbulut UE, Çakir M. Long-term prognosis of chronic hepatitis B virus infection in the childhood. Turk Pediatr Ars. 2014;49(2):117–23.
- 18. Bonacci M, Lens S, Mariño Z, Londoño M-C, Rodríguez-Tajes S, Mas A, et al. Antiviral therapy can be delayed or avoided in a significant proportion of HBeAg-negative Caucasian patients in the Grey Zone. Aliment Pharmacol Ther. 2018;47(10):1397–

408.

- Brouwer WP, Chan HL-Y, Brunetto MR, Martinot-Peignoux M, Arends P, Cornberg M, et al. Repeated Measurements of Hepatitis B Surface Antigen Identify Carriers of Inactive HBV During Long-term Follow-up. Clin Gastroenterol Hepatol. 2016;14(10):1481-1489.e5.
- 20. Chang Y, Choe WH, Sinn DH, Lee J-H, Ahn SH, Lee H, et al. Nucleos(t)ide analogue treatment for patients with hepatiThis B virus (HBV) e antigen-positive chronic HBV genotype C infection: A Nationwide, Multicenter, Retrospective Study. J Infect Dis. 2017;216(11):1407–14.
- 21. Chen Y-C, Huang S-F, Chu C-M, Liaw Y-F. Serial HBV DNA levels in patients with persistently normal transaminase over 10 years following spontaneous HBeAg seroconversion. J Viral Hepat. 2012;19(2):138–46.
- 22. Chen C-J, Yang H-I, Su J, Jen C-L, You S-L, Lu S-N, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA Level. JAMA. 2006;295(1):65–73.
- 23. Chen J, Yang H, Iloeje UH, You S, Lu S, Wang L, et al. Carriers of Inactive Hepatitis B Virus Are Still at Risk for Hepatocellular Carcinoma and Liver-Related Death. Gastroenterology. 2010;138(5):1747-1754.e1.
- 24. Cho JY, Paik YH, Sohn W, Cho HC, Gwak GY, Choi MS, et al. Patients with chronic hepatitis B treated with oral antiviral therapy retain a higher risk for HCC compared with patients with inactive stage disease. Gut. 2014;63(12):1943–50.
- 25. Choi GH, Kim G-A, Choi J, Han S, Lim Y-S. High risk of clinical events in untreated HBeAg-negative chronic hepatitis B patients with high viral load and no significant ALT elevation. Aliment Pharmacol Ther [Internet]. 2019;50(2):215–26. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L628310126&fro m=export
- 26. Farzi H, Daryani NE, Mehrnoush L, Salimi S, Alavian SM. Prognostic values of fluctuations in serum levels of alanine transaminase in inactive carrier state of HBV infection. Hepat Mon. 2014;14(5).
- 27. Hsu Y-C, Chen C-Y, Chang I-W, Chang C-Y, Wu C-Y, Lee T-Y, et al. Once-daily tenofovir disoproxil fumarate in treatment-naive Taiwanese patients with chronic hepatitis B and minimally raised alanine aminotransferase (TORCH-B): a multicentre, double-blind, placebo-controlled, parallel-group, randomised trial. Lancet Infect Dis. 2021;21(6):823–33.
- 28. Hsu H-Y, Chang M-H, Ni Y-H, Jeng Y-M, Chiang C-L, Chen H-L, et al. Long-term follow-up of children with postnatal immunoprophylaxis failure who were infected with hepatitis B virus surface antigen gene mutant. J Infect Dis. 2013;207(7):1047–57.
- 29. Huang DQ, Li X, Le MH, Le AK, Yeo YH, Trinh HN, et al. Natural History and Hepatocellular Carcinoma Risk in Untreated Chronic Hepatitis B Patients With Indeterminate Phase. Clin Gastroenterol Hepatol. 2021;((Huang D.Q.) Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore(Huang D.Q.) Division of Gastroenterology and Hepatology, National University Health System, Singapore(Li X.; Le M.H.; Le A.K.; Yeo Y.H.; Cheu).
- 30. Iloeje UH, Yang H, Jen C, Su J, Wang L, You S, et al. Risk and Predictors of Mortality Associated With Chronic Hepatitis B Infection. Clin Gastroenterol Hepatol. 2007;5(8):921–31.
- 31. Jeon MY, Kim BK, Lee JS, Lee HW, Park JY, Kim DY, et al. Negligible risks of hepatocellular carcinoma during biomarker-defined immune-tolerant phase for patients with chronic hepatitis B. Clin Mol Hepatol. 2021;27(2):295–304.
- 32. Kim G-A, Lim Y-S, Han S, Choi J, Shim JH, Kim KM, et al. High risk of hepatocellular carcinoma and death in patients with immune-tolerant-phase chronic hepatitis B. Gut. 2018;67(5):945–52.
- 33. Kim G-A, Han S, Choi GH, Choi J, Lim Y-S. Moderate levels of serum hepatitis B virus DNA are associated with the highest risk of hepatocellular carcinoma in chronic hepatitis B patients. Aliment Pharmacol Ther. 2020;51(11):1169–79.

- 34. Koc ÖM, Verbeek J, Koek GH, Bielen R, Busschots D, Gamil M, et al. A long-term study of liver-related events in Caucasian hepatitis B patients with normal ALT values and high viremia. Acta Gastroenterol Belg. 2022;85(1):56–61.
- 35. Kumada T, Toyoda H, Yasuda S, Ito T, Tanaka J. Mortality of inactive hepatitis B virus carriers in Japan is similar to that of the general population. Hepatol Res. 2022;52(1):81–92.
- 36. Kusakabe A, Tanaka Y, Inoue M, Kurbanov F, Tatematsu K, Nojiri S, et al. A population-based cohort study for the risk factors of HCC among hepatitis B virus mono-infected subjects in Japan. J Gastroenterol. 2011;46(1):117–24.
- 37. Lee HW, Kim EH, Lee J, Kim SU, Park JY, Kim DY, et al. Natural History of Untreated HBeAg-Positive Chronic HBV Infection With Persistently Elevated HBV DNA but Normal Alanine Aminotransferase. Clin Transl Gastroenterol. 2020 Mar;11(3):e00140.
- 38. Lee HA, Lee HW, Kim IH, Park SY, Sinn DH, Yu JH, et al. Extremely low risk of hepatocellular carcinoma development in patients with chronic hepatitis B in immune-tolerant phase. Aliment Pharmacol Ther. 2020;52(1):196–204.
- Lee HW, Kim SU, Baatarkhuu O, Park JY, Kim DY, Ahn SH, et al. Progression of Untreated Minimally Active Chronic HBV Infection Compared to Inactive Infection. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2019 Dec;17(13):2808-2810.e2.
- 40. Liu J, Yang H-I, Lee M-H, Jen C-L, Batrla-Utermann R, Lu S-N, et al. Serum Levels of Hepatitis B Surface Antigen and DNA Can Predict Inactive Carriers With Low Risk of Disease Progression. Hepatology. 2016;64(2):381–9.
- 41. Lok AS, Perrillo R, Lalama CM, Fried MW, Belle SH, Ghany MG, et al. Low Incidence of Adverse Outcomes in Adults With Chronic Hepatitis B Virus Infection in the Era of Antiviral Therapy. Hepatology. 2021;73(6):2124–40.
- 42. Nakazawa T, Shibuya A, Takeuchi A, Shibata Y, Hidaka H, Okuwaki Y, et al. Viral level is an indicator of long-term outcome of hepatitis B virus e antigen-negative carriers with persistently normal serum alanine aminotransferase levels. J Viral Hepat. 2011;18(7):e191–9.
- 43. Ormeci A, Aydın Y, Sumnu A, Baran B, Soyer OM, Pınarbasi B, et al. Predictors of treatment requirement in HBeAg-negative chronic hepatitis B patients with persistently normal alanine aminotransferase and high serum HBV DNA levels. Int J Infect Dis. 2016;52:68–73.
- 44. Raptopoulou-Gigi M, Goulis I, Orphanou H, Lalla T, Sinakos E, Vakolas L, et al. Long term follow-up of a large cohort of asymptomatic HBeAg-negative chronic hepatitis B carriers. J Hepatol. 2002;36 MA-6:179.
- 45. Sali S, Keshvari M, Seghatoleslami ZS, Manshouri S. Outcome of Inactive Carriers of HBV in 10 Years Follow-Up in Iran. Res J Pharm Biol Chem Sci. 2016;7(4):1390-1395 WE-Emerging Sources Citation Index (E.
- 46. Seong G, Sinn DH, Kang W, Gwak G-Y, Choi MS, Lee JH, et al. Age and fibrosis index for the prediction of hepatocellular carcinoma risk in patients with high hepatitis B virus DNA but normal alanine aminotransferase. Eur J Gastroenterol Hepatol. 2022;34(1):69–75.
- 47. Shimakawa Y, Lemoine M, Njai HF, Bottomley C, Ndow G, Goldin RD, et al. Natural history of chronic HBV infection in West Africa: a longitudinal population-based study from The Gambia. Gut. 2016;65(12):2007-U115.
- 48. Sinn DH, Kim SE, Kim BK, Kim JH, Choi MS. The risk of hepatocellular carcinoma among chronic hepatitis B virus-infected patients outside current treatment criteria. J Viral Hepat [Internet]. 2019; Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2002476962&fro m=export
- 49. Suzuki T, Matsuura K, Nagura Y, Iio E, Ogawa S, Fujiwara K, et al. Development of hepatocellular carcinoma from various phases of chronic hepatitis B virus infection. PLoS One. 2021;16(12).
- 50. Tseng TC, Liu CJ, Chen CL, Wang CC, Su TH, Kuo SF., et al. Serum hepatitis B

virus-DNA levels correlate with long-term adverse outcomes in spontaneous hepatitis B e antigen seroconverters. J Infect Dis. 2012;205(1):54–63.

- 51. Tseng T-C, Liu C-J, Yang H-C, Su T-H, Wang C-C, Chen C-L, et al. High levels of hepatitis B surface antigen increase risk of hepatocellular carcinoma in patients with low HBV load. Gastroenterology. 2012;142(5):1140-1149.e3.
- 52. Tseng T-C, Hosaka T, Liu C-J, Suzuki F, Hong C-M, Kumada H, et al. Hepatitis B Core-Related Antigen Stratifies the Risk of Liver Cancer in HBeAg-Negative Patients with Indeterminate Phase. Am J Gastroenterol. 2022;117(5):748–57.
- 53. Tohme RA, Bulkow L, Homan CE, Negus S, McMahon BJ. Rates and risk factors for hepatitis B reactivation in a cohort of persons in the inactive phase of chronic hepatitis B-Alaska, 2001-2010. J Clin Virol. 2013;58(2):396–400.
- 54. Tong MJ, Trieu J. Hepatitis B inactive carriers: Clinical course and outcomes. J Dig Dis. 2013;14(6):311–7.
- 55. Tseng T-C, Liu C-J, Chen C-L, Yang H-C, Su T-H, Wang C-C, et al. Risk stratification of hepatocellular carcinoma in hepatitis B virus e antigen-negative carriers by combining viral biomarkers. J Infect Dis. 2013;208(4):584–93.
- 56. Tseng T-Č, Liu C-J, Yang W-T, Hsu C-Y, Hong C-M, Su T-H, et al. Serum hepatitis B core-related antigen level stratifies risk of disease progression in chronic hepatitis B patients with intermediate viral load. Aliment Pharmacol Ther. 2021;53(8):908–18.
- 57. Yasunaka T, Ikeda F, Wada N, Morimoto Y, Fujioka S, Toshimori J, et al. Entecavir Reduces Hepatocarcinogenesis in Chronic Hepatitis B Patients. Acta Med Okayama. 2016;70(1):1–12.
- 58. Kaur SP, Talat A, Karimi-Sari H, Grees A, Chen HW, Lau DTY, et al. Hepatocellular Carcinoma in Hepatitis B Virus-Infected Patients and the Role of Hepatitis B Surface Antigen (HBsAg). J Clin Med. 2022;11(4).
- 59. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012 May;142(6):1264-1273.e1.
- 60. Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J Hepatol. 2008 Feb;48(2):335-52.
- 61. Raffetti E, Fattovich G, Donato F. Incidence of hepatocellular carcinoma in untreated subjects with chronic hepatitis B: a systematic review and meta-analysis. Liver Int. 2016 Sep;36(9):1239-51.