Evaluation des risques sanitaires liés aux éléments traces métalliques, composés traces organiques et agents pathogènes dans le cadre de l’épandage des boues urbaines et des boues issues d’industries agroalimentaires

Présenté par :
Hélène MORIN
Diplômée de l’ENSCR

Lieu de stage :
SEDE Environnement

Maître de stage :
M. BRUNET Hubert

Référent pédagogique :
M. CARRE Jean
Remerciements

Je souhaite tout d’abord remercier SEDE Environnement pour m’avoir accueilli au stage au sein de son entreprise. Je souhaite remercier plus particulièrement M. BRUNET H. pour la confiance dont il m’a témoignée, l’autonomie de travail qu’il m’a laissée et enfin, pour les différents conseils qu’il m’a donnés.

Je souhaite également remercier la direction régionale Ouest de SEDE Environnement pour son accueil.

Je souhaite, enfin, remercier M. CARRE J. pour le temps qu’il m’a consacré, pour ses précieux conseils et pour sa disponibilité.
Sommaire

INTRODUCTION .. 1

PREMIERE PARTIE : INFORMATIONS GENERALES SUR LES BOUES ISSUES DE STEP ET D’IAA .. 3

I- NATURE DES BOUES D’ÉPURATION ET LEUR TRAITEMENT .. 3
I.1. Origine des boues ... 3
I.2. Types de boues et leur traitement ... 3
I.3. Caractéristiques des boues ... 5
 I.3.1. Boues urbaines produites en France ... 5
 I.3.2. Boues d’industries agroalimentaires (IAA) .. 5

II- RÉGLEMENTATION APPLICABLE EN FRANCE .. 6

II.1. Catégories de boues définies dans la réglementation .. 6
 II.1.1. Boues urbaines et issues des ICPE soumises à déclaration ... 7
 II.1.2. Les boues issues des ICPE soumises à autorisation ... 8
II.2. Réglementation visant les agents pathogènes dans les boues .. 8
II.3. Volet sanitaire des études d’impact ... 8

III- ÉVOLUTIONS RÉGLEMENTAIRES PROPOSÉES PAR L’EUROPE .. 9

DEUXIEME PARTIE : EVALUATION DES RISQUES ... 13

I- DEMARCHE DE L’INERIS ET SES LIMITES .. 13
I.1. Démarche de l’INERIS .. 13
I.2. Aspects non traités .. 13

II- MICRO-POLLUANTS CHIMIQUES .. 14

II.1. Identification des dangers .. 14
 II.1.1. Micro-polluants métalliques .. 14
 II.1.2. Micropolluants organiques ... 17
 II.1.3. Substances retenues pour l’évaluation .. 26
II.2. Choix des valeurs toxicologiques de référence ... 28
II.3. Evaluation de l’exposition .. 30
 II.3.1. Sélection d’un scénario d’épandage .. 30
 II.3.2. Schéma conceptuel d’exposition ... 31
 II.3.3. Autres paramètres ... 31
II.4. Caractérisation des risques .. 33
 II.4.1. Principes de caractérisation ... 33
 II.4.2. CAS 1 : Exposition aux boues seules ... 33
 II.4.3. CAS 2 : Prise en compte du bruit de fond en zone rurale et de l’apport par les boues .. 36
 II.4.4. CAS 3 ... 39
 II.4.5. Synthèse .. 40

III- AGENTS PATHOGENES ... 45

III.1. La réglementation ... 45
III.2. Généralités sur les agents pathogènes en lien avec l’épandage de boues

III.2.1. Principales informations issues du document de l’INERIS [6].....45
III.2.2. Autres informations ...50
III.3. Position de l’INERIS ..51

TROISIEME PARTIE : GESTION DES RISQUES- MESURES COMPENSATOIRES.....53
I- MICRO-POLLUANTS CHIMIQUES...53
II- AGENTS PATHOGENES..54
II.1. En général ..54
II.2. Cas particuliers identifiés par l’INERIS ..55
 II.2.1. Mesures de précaution à prendre pour l’agriculteur55
 II.2.2. Dans le cas où il existerait des consommateurs de produits de
 jardins potagers riverains de la parcelle épandue (inf. 100 m).................55
 II.2.3. procédés hygiénisants ..56
III- ORGANISATION DE LA VEILLE ..57
III.1. En général ..57
III.2. Veille scientifique ...57
III.3. Veille réglementaire ...58

CONCLUSION...59

BIBLIOGRAPHIE..61
Liste des tableaux et des figures

Tableaux :
Tableau 1: Les différents types de boues produites en France par les stations d’épuration urbaines [9] ... 5
Tableau 2: Masses ou volumes de boues épandues pour les différents secteurs agroalimentaires en 2001 [9] ... 6
Tableau 3: Evolution des teneurs limites en concentrations des différents micro-polluants chimiques .. 10
Tableau 4: Evolution des teneurs limites en flux maximum cumulé des différents micro-polluants chimiques ... 11
Tableau 5: Bruit de fond dans les sols en éléments traces métalliques 14
Tableau 6: Concentrations en ETM dans les boues françaises d’après l’étude de l’A.G.H.T.M. .. 17
Tableau 7: Concentrations en HAP, PCB et dioxines dans les sols français 19
Tableau 8: Concentrations en ETM dans les boues françaises d’après l’étude de l’A.G.H.T.M. ... 20
Tableau 9: Concentrations en ETM dans les boues françaises d’après l’étude de l’A.G.H.T.M. ... 22
Tableau 10: Récapitulatif des principales informations sur les composés étudiés 27
Tableau 11: VTR sélectionnées pour les effets chroniques à seuil des substances retenues dans la présente étude .. 29
Tableau 12: VTR sélectionnées pour les effets chroniques sans seuil des substances retenues dans la présente étude ... 29
Tableau 13: répartition des surfaces amendées en fonction du type de culture 30
Tableau 14: Caractéristiques d’exposition des différentes cibles adultes et enfants aux parcelles amendées .. 31
Tableau 15: Synthèse des effets à seuil dans le cas 1)A.................................... 34
Tableau 16: Synthèse des effets sans seuil dans le cas 1)A.............................. 35
Tableau 17: Synthèse des effets à seuil dans le cas 1)B................................. 35
Tableau 18: Synthèse des effets sans seuil dans le cas 1)B............................ 36
Tableau 19: Synthèse des effets à seuil dans le cas 2) 37
Tableau 20: Synthèse des effets sans seuil dans le cas 2)............................. 38
Tableau 21: Part des boues dans les concentrations totales en micropolluants des sols dans le cas 2) ... 38
Tableau 22: Synthèse des effets à seuil dans le cas 3) 39
Tableau 23: Synthèse des effets sans seuil dans le cas 3).............................. 40
Tableau 24: Part des boues dans le risque total pour les effets à seuil 40
Tableau 25: Part des boues dans le risque total pour les effets à seuil 41
Tableau 26: Comparaison de la valeur du risque selon la prise en compte ou non des effets sans seuil du plomb ... 43
Tableau 27: Comparaison des flux de salmonelles et Cryptosporidium épandus en France provenant, soit des boues d’épuration, soit d’effluents agricoles ... 48
Tableau 28: teneurs maximales souhaitables dans les sols ... 53
Tableau 29: Procédés hygiénisants décrits dans le Draft 4. 56

Figures :

Figure 1 : Schéma conceptuel d’exposition dans le cas de l’épandage des boues..... 31
Liste des sigles utilisés

ADEME : Agence de l’Environnement et de la Maîtrise de l’Énergie

AFSSA : Agence Française de Sécurité Sanitaire des Aliments

ASTEE : Association Scientifique et Technique pour l’Eau et l’Environnement

BAF : Facteur de bio-accumulation chez les animaux

BCF : Facteur de bio-concentration dans les végétaux

CIRC : Centre International de la Recherche sur le Cancer (= IARC en anglais)

CTO : Composés traces Organiques

DGS : Direction Générale de la Santé

ETM : Eléments Traces Métalliques

EVR : Evaluation des Risques Sanitaires

INRA : Institut National de Recherche Agronomique

INSERM : Institut National de la Santé et de la Recherche Médicale

NPP : Nombre le Plus Probable

NPPUC : Nombre le Plus Probable d’Unités Cytopathogènes

OEHHA : Office of Environmental Health Hazard Assessment

OMS : Organisation Mondiale de la Santé (= WHO, en anglais)

STEP : Station d’Épuration des eaux résiduaires

SYPREA : Syndicat des Professionnels du Recyclage en Agriculture

UE : Union Européenne

UFC : Unités Formant Colonie

US EPA : United States Environmental Protection Agency

VTR : Valeur Toxicologique de Référence
Introduction

En France, au moins 95% des matières organiques épandues sur les sols agricoles sont des produits issus de déjections animales (lisiers, fumiers…) Dans une moindre mesure, les boues de stations d’épuration urbaines ou industrielles sont également utilisées pour l’amendement organique des sols. Par exemple, la surface concernée par l’épandage des boues des stations d’épuration urbaines représente au plus 1 % de la surface agricole utile (SAU), soit environ 300 000 ha de terres agricoles.

Du fait de la présence de substances chimiques (éléments traces métalliques, composés traces organiques…) et d’organismes pathogènes, dans les boues de stations d’épuration urbaines et industrielles, les précautions prises vis-à-vis des pratiques d’épandage, pour garantir la sécurité alimentaire et le maintien des fonctions environnementales des sols, sont encadrées réglementairement par les lois n°92-3 du 3 janvier 1992, dite loi sur l’eau, et, n°76-663 du 19 juillet 1976, relative aux installations classées pour la protection de l’environnement. Par ailleurs, une directive européenne est actuellement en cours d’élaboration.

Ainsi, en application de ces lois, les filières d’épandage des boues urbaines et industrielles sont soumises à autorisation à partir de certains seuils. Le dossier d’autorisation des plans d’épandage de boues de stations d’épuration comporte un volet relatif à l’éventuel impact sur la santé humaine de ces filières de valorisation. Aux termes de l’article 19, doivent désormais être étudiés et présentés dans l’étude d’impact, les effets du projet sur la santé humaine et les mesures envisagées pour supprimer, réduire et, si possible, compenser les conséquences dommageables du projet pour l’environnement et la santé.

Dans ce contexte législatif, le Syndicat des professionnels du recyclage en agriculture (SYPREA) a souhaité que soit mise en place une méthodologie générale d’évaluation des risques sanitaires potentiellement engendrés dans le cadre du plan d’épandage de boues urbaines et industrielles. Répondant à cette demande, l’INERIS a produit plusieurs outils :

- Une méthodologie d’évaluation des risques sanitaires liés à la présence de substances chimiques [1]
- L’application de cette méthodologie à une filière de boues issues d’une STEP urbaine [2]
- L’application de cette méthodologie à une filière de boues issues d’une STEP industrielle [3]
- L’application de cette méthodologie aux seuils réglementaires [4]
- Une méthodologie d’évaluation des risques liés à la présence d’agents pathogènes [5, 6, 7]

Compte tenu des spécificités respectives de l’évaluation des risques liés aux substances chimiques et de l’évaluation des risques liés aux organismes pathogènes, ces deux aspects ont été doivent être traités distinctement.
Les objectifs de ce mémoire comprenaient tout d’abord la réalisation d’une synthèse sur l’origine et la nature des boues épandues, ainsi que sur la réglementation existante et notamment sur les évolutions proposées pour celle-ci au niveau européen.

Dans un second temps, il semblait utile de faire le point sur les acquis et les manques de la démarche INERIS. Ensuite, le travail a consisté à compléter les informations apportées par l’INERIS, grâce notamment à une étude bibliographique.

Cette dernière étape achevée, l’évaluation des risques sanitaires liés aux éléments traces métalliques, aux composés traces organiques et aux agents pathogènes a été reprise en intégrant les nouveaux éléments.

L’établissement d’une grille d’évaluation multicritères, permettant d’identifier les situations d’épandage les plus critiques, a ensuite été tenté.

Enfin, des mesures de gestion du risque relatives à ces situations sont proposées. Quelques éléments permettant d’organiser la veille scientifique en lien avec ces risques sanitaires sont également indiqués.
Première partie : Informations générales sur les boues issues de STEP et d’IAA

I- Nature des boues d’épuration et leur traitement

I.1. Origine des boues

Selon le type de traitement des eaux usées, une station d’épuration peut produire, trois grandes catégories de boues [8] :

- Les boues de traitement primaire : elles sont produites par une simple décantation des matières en suspension (MES) contenues dans les eaux usées. 70% des MES peuvent ainsi être retenues. Ces boues ne sont pas stabilisées. Les stations ne traitant que la pollution particulaire sont de plus en plus rares en France ou alors associées à des filières complémentaires de traitement. Ces boues ne concernent pas les pré-traitements qui sont effectués, c’est à dire, le dégrillage, le dessablage et le déshuilage-dégraissage des eaux usées

- Les boues de traitement physico-chimique : ces boues sont une variante du type précédent, les matières organiques particulières ou colloïdales contenues dans les eaux usées sont coagulées par addition d’un réactif (sels de fer ou d’aluminium.) 90% des MES peuvent ainsi être captées. Séparées par décantation, les boues obtenues renferment une partie importante des sels minéraux issus des eaux brutes et de l’agent coagulant. Les boues physico-chimiques étaient précédemment produites dans les stations du littoral, balnéaires ou touristiques, aux variations de population très grandes sur une courte période. Aujourd’hui, la plupart d’entre elles ont été remplacées par des stations biologiques.

- Les boues de traitement biologique : ces boues sont essentiellement formées par les corps bactériens produits dans les ouvrages d’épuration. Ces bactéries se développent aux dépens des matières organiques contenues dans les eaux usées. Pour maintenir l’activité biologique de la station à un bon niveau, une partie de la masse des bactéries ou « biomasse en excès » doit être soutirée régulièrement, entretenant la dynamique de reproduction bactérienne.

I.2. Types de boues et leur traitement

Il existe deux types principaux de traitement des boues : ceux qui visent à réduire la teneur en eau des boues et ceux qui visent à les stabiliser [8, 9] : Parmi ces traitements certains permettent d’obtenir l’hygiénisation des boues, notion définie dans l’arrêté du 8 janvier 1998, comme « un traitement qui réduit à un niveau non détectable les agents pathogènes présents dans les boues. »

Les traitements visant à réduire la teneur en eau des boues sont l’épaississement, la déshydratation et le séchage. La stabilisation biologique, la stabilisation chimique, le séchage thermique et le compostage permettent de stabiliser les boues, voire de les hygiéniser. Tous ces traitements sont présentés à l’annexe I.

Aucun traitement d’hygiénisation n’est décrit dans la réglementation française qui ne définit que des critères d’hygiénisation : concentrations pour 10 grammes de matières sèches ne doivent pas dépasser 8 NPP pour Salmonella, 3 NPPUC pour entérovirus et 3 œufs d’helminthes pathogènes viables.
Les traitements d’hygiénisation résultent souvent d’une conduite particulière des traitements de stabilisation : des boues correctement chaulées, séchées thermiquement ou encore compostées peuvent être considérées comme des boues hygiénisées. Cette liste de traitement n’est pas limitative. Des traitements comme la pasteurisation ou l’ionisation (d’ailleurs non pratiqués en France) hygiénisent les boues sans les stabiliser.

D’après les définitions données par l’Office International de l’Eau [9], on entend par :

- Boue liquide, une boue dont la siccité varie de 0 à 10 % ;
- Boue pâteuse, une boue dont la siccité varie de 12 à 25 % ;
- Boue solide, une boue dont la siccité est supérieure à 25% ;
- Boue sèche, une boue dont la siccité est supérieure à 85%.

Cependant, les articles 12 et 16 de l’arrêté du 8 janvier 1998 viennent compléter la définition de certains types de boues ; on entend par :

- Boues traitées, des boues ayant fait l’objet d’un traitement physique, biologique, chimique ou thermique, par entreposage à long terme ou par tout autre procédé approprié de manière à réduire, de façon significative, leur pouvoir fermentescible et les risques sanitaires liés à leur utilisation. Le traitement des boues est obligatoire sauf dans deux cas particuliers (définis eux-aussi dans la réglementation) ;
- Boues solides, des boues déshydratées qui, entreposées sur une hauteur de 1 mètre, forment une pente au moins égale à 30% ;
- Boues stabilisées, des boues qui ont subi un traitement de stabilisation, c’est à dire une filière de traitement qui conduit à une production de boues dont la fermentation est soit achevée, soit bloquée entre la sortie du traitement et la réalisation de l’épandage ; la notion de stabilisation renseigne sur le niveau d’odeur de la boue (absence d’odeur, ou odeur faible, moyenne, forte.) À noter qu’une boue peut être traitée, tout en n’étant pas stabilisée au sens défini ci-dessus (circulaire du ministère de l’environnement du 16 mars 1999.)
- Boues hygiénisées, des boues qui ont subi un traitement permettant de respecter les critères d’hygiénisation.
I.3. Caractéristiques des boues

I.3.1. Boues urbaines produites en France

<table>
<thead>
<tr>
<th></th>
<th>Capacité des STEP émettrices</th>
<th>Quantité générée (en % des tonnages de MS)</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boues liquides</td>
<td>Petites STEP rurales et péri-urbaines</td>
<td>15 %</td>
<td></td>
</tr>
<tr>
<td>Boues pâteuses</td>
<td>STEP moyennes</td>
<td>35 %</td>
<td>Difficiles à stocker et à manipuler, favorisent les fermentations anaérobies</td>
</tr>
<tr>
<td>Boues chaulées (consistance pâteuse ou solide)</td>
<td>STEP moyennes et grandes</td>
<td>30 %</td>
<td>200 STEP en France, soit 2 % du parc français</td>
</tr>
<tr>
<td>Boues compostées</td>
<td>STEP moyennes</td>
<td>2 %</td>
<td>30 STEP en France</td>
</tr>
<tr>
<td>Boues solides non chaulées</td>
<td>Grandes STEP</td>
<td>15 %</td>
<td></td>
</tr>
<tr>
<td>Boues séchées</td>
<td>Grandes STEP</td>
<td>Négligeable</td>
<td>3- 4 STEP en France</td>
</tr>
</tbody>
</table>

Tableau 1: Les différents types de boues produites en France par les stations d’épuration urbaines [9]

I.3.2. Boues d’industries agroalimentaires (IAA)

Tous les secteurs agroalimentaires ne sont pas concernés par l’épandage en agriculture, que ce soit sous forme d’effluents ou de boues. En effet, seuls des secteurs, tels que la filière viande (abattage et charcuterie), la filière betteravière (sucre), le secteur de la distillerie (betteraves, brasseries, malteries, vitivinicoles), le secteur des fruits et légumes, le secteur des boissons non alcoolisées, le secteur amidonneries/féculeries et le secteur laitier, pratiquent couramment l’épandage. D’autres secteurs pratiquent l’épandage comme un mode de valorisation annexe. Les volumes épandus sont faibles et n’ont donc pas été quantifiés dans l’étude ; il s’agit des secteurs de la biscuiterie, des produits avicoles, des produits de la mer, des condiments, des oléagineux, des aliments pour animaux et du chocolat/confiserie. [9]

Le volume global de sous produits et boues épandues en 2000 s’élève à environ 8,5 millions de tonnes en équivalent matière brute et celui qui concerne les effluents à 13 millions de m3 en équivalent matière brute. Mais tous les secteurs agroalimentaires ne génèrent pas de boues : c’est le cas du secteur viti-vinicole et de l’industrie betteravière.

Par contre, pour de nombreux secteurs constitués par une multitude d’entreprises ne possédant pas une structure et une logistique suffisante pour abriter leur propre station de traitement, les effluents sont dirigés vers une station de traitement des eaux usées urbaines. C’est le cas des abattoirs publics (les abattoirs privés, de taille plus grande, représentent 10 % des abattoirs en activité, 30 % des entreprises de ce secteur possèdent leur propre station d’épuration.) Le secteur de la charcuterie et le secteur laitier (effluents de fromageries principalement car la production de lait engendre peu de sous-produits) sont constitués de beaucoup de petites structures reliées à une station d’épuration collective. Ainsi, il est possible de considérer qu’une grande partie des stations urbaines traite des effluents issus d’industries agroalimentaires et concentrent les agents pathogènes présents dans les effluents.
Les donnés étant exprimées en matière brute, en unité de masse ou de volume, il est difficile d’apporter un commentaire quant à l’importance de chaque filière en terme de production de boues.

II- Réglementation applicable en France

En France, peu de contraintes sont imposées pour le traitement des boues et il n’en existe aucune concernant la composition finale de celles-ci au sortir des STEP. Par contre, pour pouvoir valoriser ces boues en agriculture, de nombreuses règles d’utilisation sont édictées. Au niveau européen, le texte fondateur est la directive n°86/627/CEE du 12 juin 1986 relative à la protection de l’environnement, et notamment des sols, lors de l’utilisation des boues d’épuration en agriculture. Cette directive est actuellement en cours de révision.

La réglementation relative aux épandages des boues est intégrée au Code permanent de l’environnement, dans le chapitre 129 de la section II du chapitre II de la rubrique Eau et dans le chapitre 62 de la section II du chapitre III de la rubrique Déchets. L’utilisation de boues en agriculture est réglementée soit au titre de la police des eaux (boues de stations d’épuration), soit au titre de la police des installations classées (boues industrielles.)

Qu’ils s’agissent de boues issues de stations d’épuration urbaines ou d’installations industrielles, les boues ont un caractère de déchets (article 2 du décret du 8 décembre 1997) et doivent donc répondre à la loi du 15 juillet 1975 (codifiée dans l’article L541-2 du Code de l’Environnement), qui impose au producteur ou au détenteur de déchets d’en assurer ou d’en faire assurer l’élimination dans des conditions propres à éviter les effets nocifs sur l’environnement.

II.1. Catégories de boues définies dans la réglementation

Au sein du statut « déchet », quatre catégories de boues sont distinguées au niveau réglementaire.

- Les boues urbaines et issues des ICPE (Installations Classées pour la Protection de l’Environnement) soumises à déclaration
- les boues issues des ICPE soumises à autorisation
- Les boues issues d’industries papetières
- Les boues issues d’établissements vinicoles

Tableau 2 : Masses ou volumes de boues épandues pour les différents secteurs agroalimentaires en 2001 [9]

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Boues épandues (équivalents matière brute) en 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filière viande (abattage)</td>
<td>300 000 à 420 000 m³</td>
</tr>
<tr>
<td>Filière viande (charcuterie)</td>
<td>195 000 à 345 000 m³</td>
</tr>
<tr>
<td>Filière distillerie (secteur brasserie)</td>
<td>25 à 58 kT</td>
</tr>
<tr>
<td>Filière distillerie (secteur cidrerie)</td>
<td>1 kT</td>
</tr>
<tr>
<td>Filière distillerie (secteur malterie)</td>
<td>10 à 12 kT</td>
</tr>
<tr>
<td>Secteur fruits et légumes</td>
<td>Faibles quantités</td>
</tr>
<tr>
<td>Secteur boissons non alcoolisées</td>
<td>10 à 15 kT</td>
</tr>
<tr>
<td>Secteur amidonneries/ féculeries (45 % de MS)</td>
<td>100 à 125 kT</td>
</tr>
<tr>
<td>Secteur laitier</td>
<td>70 kT</td>
</tr>
</tbody>
</table>
Une autre catégorie de boue existe, ce sont les boues issues d’ICPE soumises à déclaration sous la rubrique 2170 (compostage des matières organiques.) Ces dernières appartiennent au statut «produit » qui s'adresse à des produits fabriqués à base de déchets (par ex compost) et dont les exigences en terme de qualité agronomique, environnementale et sanitaire sont beaucoup plus élevées.

Parmi les catégories du statut « déchet », seules les deux premières nous intéressent, puisque les établissements vinicoles ne produisent quasiment pas de boues et que les boues industrielles d’intérêt pour ce mémoire sont les boues issues des industries agroalimentaires.

II.1.1. Boues urbaines et issues des ICPE soumises à déclaration

L’entité législative qu’englobe « les boues urbaines » représentent toutes les boues d’épuration issues du traitement d’eaux usées, hormis celles qui sont issues des ICPE soumises à autorisation (dont établissements viticoles et industries papetières) et les produits composés en tout ou partie de boues satisfaisant aux règles du statut « produit. »

Les deux textes principaux qui régissent l’épandage des boues urbaines sont :

- Le décret n°97-1133 du 8 décembre 1997
- L’arrêté du 8 janvier 1998

La circulaire du 16 mars 1999 apporte les réponses aux questions soulevées par l’application de ces deux textes. La circulaire du 16 avril 2005, quant à elle, donne des instructions et des éléments d’appréciation pour l’interprétation de certains points de la réglementation liée à l’épandage agricole des boues urbaines.

Le décret n°97-1133 du 8 décembre 1997

Ce décret précise de façon globale les obligations du producteur de boues.

Il indique notamment que l’épandage est interdit dans certaines conditions (gel, forte pluviométrie etc.....) et qu’il doit respecter des distances minimales par rapport aux cours d’eau, aux habitations etc....

L’arrêté du 8 janvier 1998

Cet arrêté fixe les prescriptions techniques applicables aux épandages de boues. Il précise notamment la façon de concevoir et de gérer la qualité des boues et les précautions d’usage et enfin les modalités de surveillance.

Ainsi, sont indiqués (Annexe II) les seuils en éléments traces métalliques et en composés-traces organiques à respecter dans les boues et dans les sols avant épandage , les distances d'isolement et les délais de réalisation des épandages , les éléments de caractérisation de la valeur agronomique des boues et des sols et la fréquence d’analyse des boues. Ce texte définit également le type de boues d’un point de vue réglementaire. Ainsi, sont précisées les définitions de boues traitées, boues solides ou stabilisées, boues hygiénisées....
II.1.2. Les boues issues des ICPE soumises à autorisation

La circulaire du 17 décembre 1998 précise certaines dispositions de cet arrêté.

II.2. Réglementation visant les agents pathogènes dans les boues

La réglementation pour les boues dites « hygiénisées » établit des seuils concernant les salmonelles, les œufs d'helminthes et les entérovirus. Les seuils établis pour ces trois types d'agents sont présentés dans l'annexe II. Aucun traitement spécifique n’est défini, le producteur de boues a pour seule obligation de prouver que ces boues sont hygiénisées et que son procédé de traitement d'hygiénisation est performant.

Il faut également remarquer que l'hygiénisation des boues n'est pas obligatoire lors de l'épandage. Le législateur a préféré insister sur une mise en place de mesures de gestion. En effet, l'épandage de boues non hygiénisées est seulement soumis à certaines précautions plus restrictives que lorsque les boues sont hygiénisées. Ces précautions sont multiples et variées : respect de distances précises par rapport à certaines ressources, respect de délais avant la remise à l'herbe d'animaux, respect de délais par rapport à certaines cultures.

II.3. Volet sanitaire des études d’impact

Les autorisations instruites au titre de la loi sur l’eau ne sont théoriquement pas concernées. En effet, seul un document d’incidence est exigé au titre de cette loi, mais ce dernier s’apparente très fortement à une étude d’impact, il est donc recommandé d’appliquer les guides établis par l’administration aux autorisations « loi sur l’eau ».

Ce guide intitulé « guide pour l’analyse du volet sanitaire des études d’impact » décrit entre autre le contenu des études d’impact et propose une grille de lecture, à destination de l’administration, mais aussi, des professionnels.
L’étude d’impact se décompose en cinq parties : les trois premières correspondent à l’évaluation des risques, la quatrième à la décision et la dernière à la gestion des risques :

- Analyse de l’état initial du site ;
- Présentation détaillée du projet, comportant plusieurs alternatives, tant durant la phase de travaux que durant la phase d’exploitation, mais également lors de la cessation d’activité (ceci s’applique surtout aux centres de stockage de déchets d’enfouissement technique) ;
- Présentation du parti finalement retenu par le pétitionnaire entre les différentes alternatives avec justification de ce choix ;
- Analyse des effets résiduels sur l’environnement pour la solution retenue, avec présentation (chiffrée) des mesures complémentaires nécessaires à mettre en œuvre pour minimiser ces effets résiduels.

III- Evolutions réglementaires proposées par l’Europe

Les réflexions des experts européens sur l’épandage des boues ont conduit à l’élaboration, en 2000, d’un document intitulé « Working Document on Sludge, 3rd Draft. » Ce dernier propose, entre autres, de nouveaux seuils pour les éléments-trace métalliques et organiques déjà réglementés. Si le seuil du nickel est plus élevé, ceux du plomb et du zinc sont abaissés. Il suggère également la prise en compte de nouvelles substances et propose des seuils correspondants. Les nouveaux composés à prendre en compte seraient les composés organiques halogénés (AOX), les alkyl benzènes sulfonates linéaires (LAS), le phtalate de di(2-éthylhexyle) (DEHP), les nonylphénol et nonylphénol-éthoxylates avec un ou deux groupements éthoxy (NPE), la totalité des hydrocarbures aromatiques polycycliques) (HAP) et enfin, les polychlordibenzodioxines et polychlorodibenzofuranes (PCDD et PCDF), encore appelés dioxines.

Ce projet introduit la notion de boues hygiénisées et de boues non-hygiénisées de la même façon que dans la réglementation française. Pour cela, il définit deux grands types de traitement des boues : les traitements avancés et les traitements conventionnels. Les traitements avancés sont comparables aux traitements dits « hygiénisants » au sens de la réglementation française, alors que les traitements conventionnels, sont des traitements non-hygiénisants, mais qui permettent une stabilisation des boues. Cette fois-ci, une liste exhaustive des traitements avancés et conventionnels est associée. On peut également noter que le caractère hygiénisé des boues est défini à travers deux critères : les concentrations en Escherichia Coli et Salmonella spp.

Enfin, comme dans la réglementation française, il existe des restrictions pour les délais de réalisation des épandages, les délais de remise à l’herbe, de réalisation de la récolte ou encore d’accès au public. La différence majeure par rapport à la réglementation française réside dans le fait que pratiquement aucune restriction n’existe pour l’épandage de boues ayant subi un traitement avancé.

Les deux grands types de traitements (avancés et conventionnels) sont également repris dans ce document. Le caractère hygiénisé des boues est de nouveau redéfini à travers, cette fois-ci, trois critères : les concentrations en *Escherichia Coli*, en *Clostridium perfringens* et en *Salmonella spp*. La nature des traitements conventionnels apparaît dans ce Draft, non plus sous la forme d’une liste exhaustive, mais à travers la définition d’un critère micro biologique relatif au *Escherichia Coli* qui doit être respecté.

Récapitulatif :

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (mg/kg MS)</td>
<td>10 (1)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Chrome (total) (mg/kg MS)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Chrome (VI) (mg/kg MS)</td>
<td>/</td>
<td>/</td>
<td>10</td>
</tr>
<tr>
<td>Cuivre (mg/kg MS)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Mercure (mg/kg MS)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Nickel (mg/kg MS)</td>
<td>200</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Plomb (mg/kg MS)</td>
<td>800</td>
<td>750</td>
<td>450</td>
</tr>
<tr>
<td>Zinc (mg/kg MS)</td>
<td>3000</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>HAP (mg/kg MS)</td>
<td>(2) F : 5 ; Bf : 2,5 ; Bp : 2</td>
<td>(4) 6</td>
<td>(4) 6</td>
</tr>
<tr>
<td>PCB (mg/kg MS)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>PCDD/F (ng ITEQ/kg MS)</td>
<td>/</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>LAS (mg/kg MS)</td>
<td>/</td>
<td>2600</td>
<td>5000</td>
</tr>
<tr>
<td>NPE (mg/kg MS)</td>
<td>/</td>
<td>50</td>
<td>450</td>
</tr>
<tr>
<td>DEHP (mg/kg MS)</td>
<td>/</td>
<td>100</td>
<td>/</td>
</tr>
<tr>
<td>AOX (mg/kg MS)</td>
<td>/</td>
<td>500</td>
<td>/</td>
</tr>
</tbody>
</table>

(1) Valeur en usage depuis le 1er janvier 2004.
(2) F : fluoranthène ; Bf : benzo(b)fluoranthène ; Bp : benzo(a)pyrène
(3) 7 PCB communs à la réglementation française et au Drafts 3 & 4
(4) 11 HAP : 8 propres aux Drafts 3 & 4, 3 communs à la réglementation française et aux Drafts 3 & 4.

Tableau 3 : Evolution des teneurs limites en concentrations des différents micro-polluants chimiques
<table>
<thead>
<tr>
<th>Micropolluant</th>
<th>Réglementation française en g/m² (g/ha/an) apporté par les boues en 10 ans</th>
<th>DRAFT 3 (2000) en g/ha/an apporté annuellement, basé sur une moyenne de 10 ans</th>
<th>DRAFT 4 (2003) en g/ha/an apporté annuellement, basé sur une moyenne de 3 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.015 (150) (1)</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Chrome (total)</td>
<td>1.5 (15000)</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Chrome (IV)</td>
<td>/</td>
<td>/</td>
<td>15</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1.5 (15000)</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Mercure</td>
<td>0.015 (150)</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.3 (3000)</td>
<td>900</td>
<td>750</td>
</tr>
<tr>
<td>Plomb</td>
<td>1.5 (15000)</td>
<td>2250</td>
<td>1500</td>
</tr>
<tr>
<td>Zinc</td>
<td>4.5 (45000)</td>
<td>7500</td>
<td>7500</td>
</tr>
<tr>
<td>Chrome + cuivre + nickel + zinc</td>
<td>6 (60000)</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Tableau 4 : Evolution des teneurs limites en flux maximum cumulé des différents micro-polluants chimiques
Deuxième partie : Évaluation des risques

I- Démarche de l’INERIS et ses limites

I.1. Démarche de l’INERIS

L’INERIS a élaboré des guides sur l’évaluation des risques sanitaires liés à l’épandage des boues d’épuration. Concernant les agents pathogènes, l’INERIS a établi un dossier composé de trois documents. Ce dossier offre une synthèse des différentes informations connues à ce sujet, mais également, il propose un guide d’évaluation qualitative des risques sanitaires relatifs aux agents pathogènes.

Il existe par ailleurs un document de l’INERIS non diffusée actuellement portant sur une évaluation des risques sur une partie des micro-polluants chimiques susceptibles d’être réglementés dans l’avenir. Cette étude estime le risque associé au DEHP, à la totalité des HAP ou encore aux dioxines.

I.2. Aspects non traités

Le principal manque qui apparaît dans le travail de l’INERIS, vis-à-vis des micro-polluants chimiques, est la prise en compte de l’état initial du site. D’autres sources que les boues existent pour la plupart des ces micro-polluants : fond géochimique pour les ETM, la pollution atmosphérique et l’utilisation anthropique lors des décennies précédentes pour les CTO. Il est alors indispensable de tenir compte du risque cumulé pour les populations exposées.

Des substances comme les AOX, les LAS et les NPE n’ont pas été étudiées par l’INERIS et le seront dans notre travail.

Pour information et parce que la question relative à la présence des oestrogènes dans les boues apparaît comme une question récurrente ces dernières années, un point sera effectué sur ce type de composés.

Enfin, pour les agents pathogènes, en raison de l’évolution des connaissances dans le domaine, de la densité du travail à réaliser et du temps imparti pour réaliser ce mémoire, seules des recommandations et des mesures compensatoires seront discutées vis à vis de ces agents, au regard des documents produits par l’INERIS.
II- Micro-polluants chimiques

Le but de cette partie consiste à compléter les informations obtenues par l’INERIS afin de nous permettre de mener à bien une évaluation des risques sanitaires, basée sur celles qui ont été menées par l’INERIS pour les boues issues des stations d’épuration urbaines et industrielles, en prenant en compte des éléments supplémentaires.

Les substances étudiées sont celles proposées dans le projet européen relatif à l’épandage des boues, et, également les composés estrogéniques. Par ailleurs, certaines informations utilisées ne sont pas reprises dans le détail puisqu’elles sont extraites des documents de l’INERIS cités.

L’INERIS a appliqué la méthodologie d’évaluation à des nouveaux polluants comme le DEHP et les 11 HAP présents dans la nouvelle réglementation européenne (phase C.) Certaines informations de cette version, non diffusée, vont être utilisées par la suite. Toutefois, les différentes références dont elles sont issues seront mentionnées afin de permettre au lecteur de pouvoir s’y référer si besoin et ceci même s’il n’a pas accès au document de l’INERIS.

II.1. Identification des dangers

II.1.1. Micro-polluants métalliques

A) PRESENCE DANS LES SOLS

Le comportement des micro-polluants dans les sols est bien connu à ce jour, de plus, la législation impose avant l’épandage une analyse des sols afin de déterminer leurs concentrations en ETM, pour pouvoir déceler des teneurs anormalement élevées en ces éléments et l’existence d’une pollution particulière.

Le travail porte essentiellement sur la connaissance des sources d’ETM dans les sols et sur la connaissance des teneurs en ETM dans les sols avant épandage des boues. [10]

Concentrations dans les sols

Les concentrations dans les sols sont issues d’une étude réalisée en collaboration entre l’ADEME et l’INRA en 1997.[11]

<table>
<thead>
<tr>
<th>Substances</th>
<th>Minimum (mg/kg MS)</th>
<th>Médiane (mg/kg MS)</th>
<th>9° décile (mg/kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.01</td>
<td>0.30</td>
<td>0.69</td>
</tr>
<tr>
<td>Chrome</td>
<td>0.40</td>
<td>37.60</td>
<td>69.40</td>
</tr>
<tr>
<td>Cuivre</td>
<td>0.20</td>
<td>13.8</td>
<td>28.00</td>
</tr>
<tr>
<td>Mercure</td>
<td>0.01</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.10</td>
<td>20.40</td>
<td>41.80</td>
</tr>
<tr>
<td>Plomb</td>
<td>0.60</td>
<td>30.30</td>
<td>41.80</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.40</td>
<td>59.00</td>
<td>102.00</td>
</tr>
</tbody>
</table>

Tableau 5 : Bruit de fond dans les sols en éléments traces métalliques
Sources d’enrichissement des sols

Outre la variabilité liée au fond géochimique, les trois voies principales d’enrichissement des sols en micro-polluants métalliques sont les suivantes [10] :

- Les retombées atmosphériques
- L’utilisation de matières fertilisantes et de pesticides
- Les autres voies : déchets industriels, miniers ou pétroliers, effluents liquides d’industries agroalimentaires (conserveries, vinasses de distilleries, sucreries...), irrigation par des eaux usées traitées, vases de curage de ports et de cours d’eau.

La contribution des différentes voies conduisant à l’enrichissement des sols en micro-polluants métalliques est variée. Elle est très dépendante du type d’activité qui existe au voisinage de la parcelle.

Dans le cadre de la réglementation, il y a obligation d’une analyse des sols dans le cadre de l’étude préalable, puis tous les dix ans. Pour cette raison, des excès de concentrations qui pourraient être dus à des apports liés au fond géochimique, à l’utilisation lors des dernières décennies de matières fertilisantes, de pesticides, de déchets industriels ou miniers, seront détectés. Concernant les retombées atmosphériques, il convient d’être plus prudent. En effet, les retombées atmosphériques d’éléments métalliques ont lieu aussi bien avant l’épandage des boues, que pendant la croissance des plantes sur les parcelles amendées. Ainsi, est souhaitable d’identifier les zones où les dépôts atmosphériques peuvent être importants.

Retombées atmosphériques

Les retombées correspondent à l’émission atmosphérique de micro-polluants par les principales sources suivantes : les usines d’incinération, les hautes fourneaux, la production de briques, la combustion du charbon et du pétrole (ministère de l’Environnement, 1995.) Cependant, il faut noter que l’essentiel des émissions retombe sous forme de poussières dans un rayon relativement proche du site industriel émetteur (3 à 5 km.)

Les rejets de plomb par les gaz d’échappement sont une cause évidente de contamination des sols situés à proximité des grands axes routiers. 40 % du plomb particulaire émis est dispersé dans l’atmosphère, le reste se dépose sur la chaussée ou en bordure de celle-ci sur une largeur qui n’excède pas une centaine de mètres (pour un trafic de 8 à 10 000 voitures par jour.)

La directive européenne du 13/10/1998 a proscrit, sauf dérogation, l’usage du plomb dans les carburants à compter du 1/1/2000. Cette mesure devrait conduire à une baisse accélérée des émissions de plomb dans l’atmosphère. La directive du 22/4/1999 a fixé la valeur limite à 0,5 µg/m³, valeur qui était déjà respectée dans de la majorité des villes, sauf influence directe de sources industrielles (INSERM 1999.) En site éloigné de toute source d’émission, les concentrations mesurées sont typiquement inférieures à 0,15 µg/m³. [12]

Les particules qui résultent de l’usure des pneus sont aussi une cause d’accroissement des teneurs en zinc et cadmium des sols et de la végétation le long de ces axes (le zinc entre dans la composition des pneumatiques, le cadmium l’accompagne comme impureté.)
Les estimations des émissions de cadmium dans l’atmosphère d’origine naturelle sont de l’ordre de 10 à 15 % des émissions totales, notamment du fait de l’activité volcanique. Les sources anthropiques principales sont liées à l’industrie des métaux non ferreux (en particulier la fonderie de zinc), la sidérurgie, la combustion de charbon et de fiouls, et l’incinération des déchets. La plus grande part du cadmium atmosphérique est liée aux particules fines (diamètre de 1 µm), ce qui autorise son transport sur de longues distances.

Les émissions atmosphériques en zone éloignée de sources d’émission sont de l’ordre de 0,1 ng/m3. Les valeurs typiques urbaines sont de 0,5 à 5 ng/m3, et peuvent atteindre 100 ng/m3 au voisinage de sites industriels majeurs (UE 1999.) Le Bureau européen de l’OMS a proposé une valeur guide pour la concentration du cadmium dans l’air (5 ng/m3.) L’Union européenne n’a pas encore publié la directive ‘fille’ de la directive cadre de 1996 pour les métaux ; le cadmium est dans la liste des métaux qui feront l’objet d’une valeur limite dans l’air. [12]

Quelle situation à risque ?

Ainsi, la mise en service, dans les dix ans qui suivent l’étude préalable, d’une installation industrielle ou d’un grand axe de circulation pourrait générer le dépôt d’ETM sur les cultures situées jusqu’à 3 kilomètres autour du site ; dépôt qui n’aurait pas été identifié au préalable lors de l’analyse des sols nécessaire à l’étude préalable.

Mobilité des micro-éléments dans le sol

De nombreux facteurs influencent la mobilité des micro-polluants dans le sol, notamment le pH, qui est sûrement le facteur le plus déterminant dans la mobilité des micro-polluants. Cependant, la réglementation impose avant l’épandage la détermination de nombreux paramètres du sol et impose également des valeurs limites associées à ces paramètres. Ainsi, il ne semble pas nécessaire de développer cette partie puisque la réglementation s’est basée sur les nombreuses connaissances accumulées depuis des années sur les micro-polluants métalliques. Il faut également noter qu’il n’y a aucune dégradation des micro-polluants métalliques dans les sols. [10]

B) PRESENCE DANS LES BOUES

La concentration des éléments repris dans le 3e DRAFTa fait l’objet d’une étude menée par l’AGHTM (Association Générale des Hygiénistes Techniciens Municipaux, aujourd’hui l’ASTEEl) qui renseigne donc sur les teneurs moyennes des boues françaises. [13]

La campagne d’analyse des boues s’est déroulée, de novembre 2000 à janvier 2001, sur 60 stations d’épuration de capacités différentes réparties géographiquement sur toute la France. Les unités STEPs étudiées produisent indifféremment des boues destinées à la valorisation agricole, à l’incinération ou à la mise en décharge.

L’étude AGHTM réalisée en 2002 a estimé les concentrations dans les boues d’épuration des micro polluants chimiques présents dans le Draft 3. Elle indique notamment les concentrations moyennes en micro-polluants des boues françaises mais également les valeurs extrêmes correspondantes. Les résultats sont présentés dans le tableau 6 suivant, et également dans l’annexe VIII. Cette étude ne montre aucune corrélation entre concentrations dans les boues, taille de la station, type de traitement et origine des effluents.
<table>
<thead>
<tr>
<th>Substances</th>
<th>Concentration minimale (en mg/kg MS)</th>
<th>Concentration maximale (en mg/kg MS)</th>
<th>Concentration moyenne (en mg/kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0</td>
<td>78</td>
<td>< 3.32</td>
</tr>
<tr>
<td>Chrome</td>
<td>0</td>
<td>23000</td>
<td>66</td>
</tr>
<tr>
<td>Cuivre</td>
<td>0</td>
<td>12000</td>
<td>299</td>
</tr>
<tr>
<td>Mercure</td>
<td>0</td>
<td>2.31</td>
<td>2.3</td>
</tr>
<tr>
<td>Nickel</td>
<td>0</td>
<td>6000</td>
<td>29.48</td>
</tr>
<tr>
<td>Plomb</td>
<td>0</td>
<td>6539</td>
<td>94</td>
</tr>
<tr>
<td>Zinc</td>
<td>0</td>
<td>51181</td>
<td>774</td>
</tr>
</tbody>
</table>

Tableau 6 : Concentrations en ETM dans les boues françaises d’après l’étude de l’A.G.H.T.M.

II.1.2. Micropolluants organiques

A) HAP, PCB et DIOXINES

- **Sources [14]**

 HAP

 Le naphtalène est utilisé dans l’industrie des colorants, comme composant des produits de traitement du bois et comme antimité domestique. Les autres HAP (fluorène, anthracène, chrysène, pyrène, benzo(b)fluoranthène…) se forment lors de la pyrolyse des matières organiques contenant du carbone et de l’hydrogène. Ainsi certains secteurs industriels en génèrent particulièrement : cokéfaction et liquéfaction du charbon, craquage du pétrole, sidérurgie, fabrication de caoutchouc, fabrication d’électrodes de carbone, utilisation de goudrons et des brais, utilisation à haute température de creusets en carbure de silicium, de briques réfractaires imprégnées, de sables de fonderies ou d’huiles de coupe. On en retrouve de très fortes concentrations dans le pétrole brut, le charbon, le brai de goudron de houille, le créosote, le goudron routier et les enduits de couverture.

 On dénombre au total plus de 150 HAP rejétés par les gaz d’échappement des véhicules automobiles. L’usure des pneus, les dépôts d’huile sont aussi des sources diffuses d’émissions de HAP dans l’environnement. Tout comme dans l’industrie, les HAP sont aussi émis par la combustion domestique de produit pétrolier, charbon et bois. On en trouve aussi dans la fumée de cigarette et dans les produits alimentaires fumés.

 Mais les HAP n’ont pas seulement une origine anthropique, ils sont aussi présents naturellement dans l’environnement. Ils sont produits par biosynthèse enzymatique dans le phytoplankton. Ils sont aussi concentrés dans la croûte terrestre, et libérés par l’érosion. Enfin, les feux de forêt et autres combustions naturelles tels les volcans représentent le plus grand apport non anthropique de HAP dans l’environnement.

 PCB

 A partir de 1925 et jusqu’aux années 1970-1980, les PCB sont largement produits industriellement et vendus en mélange sous plusieurs dénominations commerciales : Aroclor, Kanéclor, Clophen, Phénoclor et Pyralène. Ils sont utilisés dans des circuits fermés de transformateurs, dans les peintures ou le papier carbone comme
additifs, mais aussi dans de nombreuses autres applications comme plastifiants dans certaines résines, lubrifiants et pour la protection des bois. En France, leur production commerciale est restreinte depuis 1987. Ils ne sont produits qu’en faibles quantités à l’usage des laboratoires impliqués dans les recherches sur leurs effets écotoxicologiques.

L’apport des PCB dans le milieu naturel correspondrait beaucoup plus à l’existence de sources diffuses, conséquence du large éventail d’utilisation de ces produits durant les 50 dernières années, qu’à des sources ponctuelles.

D’autre part, l’OMS (1978) avance que le séchage des boues libérerait dans l’atmosphère 1 Kg de PCB annuellement par groupe de 1 million d’habitants. Une fois que les boues sont épanouies, les PCB qu’elles contiennent sont aussi sujets à la volatilisation. Une autre source plus importante serait une mauvaise combustion de produits contenant des PCB lors de leur incinération, car les PCB les plus volatils sont vaporisés avant d’être brûlés. Notons aussi que des polychlorodibenzofurananes et des traces de polychlorodibenzodioxines se forment lorsque des PCB sont pyrolysés.

PCDD [18]

Les émissions de PCDD (polychlorodibenzodioxines) résultent principalement d’activités industrielles, notamment de procédés faisant intervenir de fortes températures tels que l’incinération des déchets (ménagers, industriels ou médicaux), la production de chaleur, les procédés métallurgiques, notamment ceux concernant les métaux ferreux et non ferreux et la réactivation du charbon actif.

A une échelle beaucoup plus petite, les combustions naturelles (feux de forêts, activité volcanique) constituent aussi des sources d’exposition.

Les PCDD sont également présentes dans les échappements des moteurs à explosion.

L’industrie du chlore et de ses dérivés est aussi responsable de la présence de PCDD dans l’environnement. Il en est de même de l’industrie de la pâte à papier associée au blanchiment utilisant du chlore, de l’industrie du textile liée à l’utilisation du coton traité au pentachlorophénol et du traitement des eaux usées.

La présence des dioxines est aussi observée dans les foyers, la fumée et les suies des cheminées résidentielles. La combustion du tabac produit également des dioxines résultant soit de la combustion des additifs, soit d’une contamination du tabac. Des PCDD sont d’autre part produits accidentellement lors d’incendies.

La plupart des PCDD issues de combustion sont dispersées dans l’air, associées aux particules libérées lors de ces combustions. L’utilisation de pesticides et les décharges industrielles contaminées sont responsables de contaminations ponctuelles sur des surfaces bien localisées. Le dépôt de particules atmosphériques constituait la source de pollution prédominante.

Comme les PCB, les PCDD constituent des polluants des écosystèmes terrestres et aquatiques dans tous les pays industrialisés, mais aussi de l’ensemble de la planète par leur dissémination aérienne. Les données scientifiques démontrent que cette contamination environnementale tend à s’accroître depuis quelques décennies, et qu’à l’instar de la contamination par les PCB, elle atteint les êtres humains et les animaux par l’intermédiaire de la chaîne alimentaire De caractère lipophile, ils s’accumulent dans les graisses. C’est pour cela que la contamination par la chaîne alimentaire est la première source de contamination des animaux et des êtres humains avec plus de 90%.
Présence dans les sols [15, 16, 17]

Concentrations dans les sols

L’étude bibliographique menée et présentée en détail dans l’annexe IV nous montre que les concentrations de ces trois types de composés dans les sols français dépendent des activités et infrastructures qui existent autour des parcelles. Ainsi, il est possible de distinguer quatre types de zones : les zones rurales ou reculées, les zones suburbaines, les zones urbaines et les zones à proximité des sites industriels. Le tableau 7 montre que les concentrations les plus fortes pour ces micro-polluants sont retrouvées dans les sols à proximité des sites industriels, et, les concentrations les plus faibles sont retrouvées pour les zones rurales ou reculées. Les zones urbaines et suburbaines ont des concentrations intermédiaires.

<table>
<thead>
<tr>
<th>Substances</th>
<th>Zones rurales ou reculées Concentrations en mg/kg MS</th>
<th>Zones suburbaines Concentrations en mg/kg MS</th>
<th>Zones urbaines Concentrations en mg/kg MS</th>
<th>Sites industriels Concentrations en mg/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxines</td>
<td>1.10^{-6} (TEQ)</td>
<td>(pas de valeur)</td>
<td>17.10^{-6} (TEQ)</td>
<td>60.10^{-6} (TEQ)</td>
</tr>
<tr>
<td>PCB</td>
<td>$6.63 .10^{-3}$</td>
<td>$1.08 .10^{-2}$</td>
<td>$5.73 .10^{-2}$</td>
<td>$7.22 .10^{-1}$</td>
</tr>
<tr>
<td>HAP</td>
<td>0.94</td>
<td>2.69</td>
<td>2.78</td>
<td>5.65</td>
</tr>
</tbody>
</table>

Tableau 7 : Concentrations en HAP, PCB et dioxines dans les sols français

Il faut noter que les valeurs, retenues dans le tableau 7, sont les valeurs les plus élevées trouvées lors de l’étude bibliographique.

Persistance dans les sols

La persistance dans les sols de ces micro-polluants organiques, et par conséquent leur dégradation, s’expriment à travers une caractéristique particulière : le temps de demi-vie dans les sols. Les temps de demi-vie des ces micro-polluants sont extraits de l’étude confidentielle de l’INERIS, ils sont égaux pour les HAP et les dioxines respectivement à 8,6 ans et 12 ans. Aucune dégradation n’est observée pour les PCB.

Présence dans les boues [14]

L’étude AGHTM de 2002 montre que les concentrations les plus élevées pour ces trois types de micro-polluants sont trouvées dans des boues provenant de stations d’épuration avec des unités de traitement très importantes (>100 000 EqH.) Par contre, il ne semble pas exister de corrélation entre concentration dans les boues en ces micro-polluants, et type de processus d’épuration ou type de traitement des boues, ou encore origine des effluents.
La synthèse de cette étude, disponible dans l’annexe VIII, fournit des valeurs minimales, moyennes et maximales pour ces trois micro-polluants. Seuls les HAP dépassent la valeur seuil de 6 mg/kg de matières sèches (cfr tableau 8).

<table>
<thead>
<tr>
<th>Substances</th>
<th>Concentration minimale (en mg/kg MS)</th>
<th>Concentration maximale (en mg/kg MS)</th>
<th>Concentration moyenne (en mg/kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxines</td>
<td>0.32×10^{-6} I-TEQ</td>
<td>98.95×10^{-6} I-TEQ</td>
<td>11.10^{-6} I-TEQ</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>0.07</td>
<td>0.38</td>
<td>0.12</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>0.55</td>
<td>11.7</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Tableau 8 : Concentrations en ETM dans les boues françaises d'après l'étude de l'A.G.H.T.M.

B) NPE et LAS

- **Sources [19, 20, 22, 26, 27, 28]**

NPE

Le nonylphénol (NP) et les dérivés éthoxylés du nonylphénol (NPE) sont des composés chimiques produits en masse qui ont été utilisés pendant plus de 40 ans comme détergents, émulsifiants, agents de mouillage et agents dispersants dans de nombreux secteurs industriels. Ils sont aussi utilisés dans divers produits de consommation, dont les cosmétiques, les produits de nettoyage et les peintures, et pour différentes applications mais en quantité moins importante que dans l'industrie.

Selon les mêmes auteurs, une investigation préliminaire d’Environnement Canada identifie les secteurs des pâtes et papier et celui des textiles comme étant les principaux utilisateurs d’alkylphénols (phénols avec des groupements alkyl dont les nonylphénols font partie).

LAS

Les surfactants dans les eaux usées peuvent s’adsorber sur la surface des matières particulières. Ils peuvent aussi précipiter en présence de certains ions comme le
calcium par exemple. Un tel comportement induit la concentration de ces produits dans la fraction particulaire des eaux usées brutes. En raison de leur utilisation massive, les LAS sont présents dans certains compartiments de l’environnement. On en retrouve surtout dans les sédiments. Le LAS qui est le plus utilisé sur le marché européen (98%) est l’acide benzenesulphonique, ses dérivés alkyls C_{10-13}, et ses sels de sodium (numéro CAS : 68411-30-3). Les informations suivantes, relatives au comportement des LAS dans l’environnement et sur la santé humaine sont basées principalement sur ce produit.

Présence dans les sols [19, 20, 23, 24, 25, 26, 27, 28]

Concentration dans les sols

L'OMS indique une concentration en nonylphénol inférieure à 0,02 mg/kg de MS dans des sols recouverts d’herbe et qui n’ont pas été traités par des boues. Cette valeur a été choisie pour la concentration correspondant au bruit de fond.

Une expérimentation menée aux USA a montré que le bruit de fond concernant la présence des LAS dans les sols, était de 50 ng/kg MS. Les LAS peuvent en effet être utilisés comme agents de dispersion et d’épandage dans les processus de fertilisation ou lors de l’application de pesticides.

Persistance dans les sols

L'étude bibliographique menée indique une valeur de demi-vie dans le sol pour la totalité des NPE de 150 jours, soit de 0.41 an. Pour les LAS, la valeur retenue est de 30 jours, soit 0.082 an.

Présence dans les boues [14]

Comportement dans les boues

NPE

Le NP (en particulier) ainsi que le NP1EO et le NP2EO (alkylphénols éthoxylés avec u ou deux composés éthoxy) sont plus lipophiles que les NPE mères et tendent à s’accumuler dans les boues et les sédiments, tandis que les NPEC (acides carboxyliques correspondants) se retrouvent dans les effluents.

Les NPE subissent une dégradation presque complète en présence d’oxygène. Une étude menée sur leur dégradation dans des boues digérées montre que les concentrations en NPE sont plus importantes dans des boues digérées de façon anaérobie que dans celles digérées de manière aérobie.

Les résultats de l’étude AGHTM mettent en évidence plusieurs points. Les boues les plus chargées en NPE sont issues principalement du procédé de traitement de boues basé sur une digestion anaérobie. Le lagunage génère également des boues à forte teneur en NPE, cela peut s’expliquer par l’existence de conditions anaérobies au fond des bassins de lagunage. Enfin, il semblerait qu’un stockage en silos, ou autre, des boues permet d’obtenir des boues pauvres en NPE.

1 Le terme Matières Sèches n’est pas spécifié dans la publication. Afin de rester le plus prudent possible, on estime que la concentration donnée dans les sols s’exprime par kilogramme de matières sèches.
On remarque également que la concentration en NPE est légèrement plus importante avec la taille de la station.

LAS

Les LAS sont rapidement dégradés dans des conditions aérobies alors que dans des conditions anaérobies, ils ne le sont pas, excepté dans certaines conditions. En effet, il est indispensable d’avoir une initiation en conditions aérobies ensuite, la dégradation peut se poursuivre dans des conditions anaérobies.

La plupart du temps, pendant, le stockage des boues, leur transport jusqu’au lieu d’épandage et leur application sur les sols, des conditions aérobies sont instaurées, et une rapide dégradation des LAS en résulte.

De plus, il semble que la nature des boues ait son importance. Une étude de Carlsen, en 2002, montre que les concentrations en LAS dans des boues séchées et âgées chutaient de 74 % par rapport à des boues fraîchement produites. Les systèmes de compostage sont également reconnus comme étant effectifs dans la réduction des niveaux de xénobiotiques dans les boues et par extension des niveaux de LAS.

L’étude AGHTM montre que les boues les plus chargées en LAS sont issues principalement d’un traitement des boues basé sur une digestion anaérobie. Les boues produites par les stations de traitement supérieures à 30 000 EqH présentent des concentrations mesurées beaucoup plus importantes que les autres unités de traitement et justes inférieures à la valeur seuil de 5000 mg/kg de MS.

Concentrations dans les boues

L’étude AGHTM indique comme pour les HAP, PCB et les dioxines les valeurs minimales, moyennes et maximales.

Les concentrations maximales en NPE et LAS trouvées dans les boues dépassent largement les valeurs seuils autorisées dans les projets européens. Par contre, les valeurs moyennes représentent seulement 50 % des seuils. *(cf. tableau 9 suivant)*

Tableau 9 : Concentrations en ETM dans les boues françaises d’après l’étude de l’A.G.H.T.M.

<table>
<thead>
<tr>
<th>Substances</th>
<th>Concentration minimale (en mg/kg MS)</th>
<th>Concentration maximale (en mg/kg MS)</th>
<th>Concentration moyenne (en mg/kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPE</td>
<td>7.5</td>
<td>963</td>
<td>145</td>
</tr>
<tr>
<td>LAS</td>
<td>100</td>
<td>16710</td>
<td>2018</td>
</tr>
</tbody>
</table>

Remarque : Des informations complémentaires sont disponibles pour ces deux types de composés dans l’annexe V.

C) AOX et DEHP

Le DEHP et les AOX étaient présents dans le projet de 2000 sur la réglementation européenne de l’épandage des boues. Cependant, dans la version de 2003, les législateurs européens n’ont pas jugé pertinent de réglementer leurs teneurs dans les boues. Toutefois, il est intéressant de faire un point sur ces produits, sur leur occurrence.
dans les boues et dans les sols, sur leur éventuelle toxicité. L’étude bibliographique détaillée de ces deux composés est disponible dans l’annexe VI.

DEHP [24]

Les phtalates en général doivent leur présence dans les sols à d’autres sources que les boues. Ils sont présents dans la déposition atmosphérique, les fertilisants artificiels et même dans les fumiers. De plus, les phtalates sont utilisés dans les peintures et les vernis, dans les tuyaux en plastique et les conteneurs utilisés pour l’eau potable.

Sa toxicité et sa forte utilisation notamment comme plastifiant pour le polychlorure de vinyle, le DEHP est entré dans le projet de réglementation européenne de 2000. En outre, ils présentent une forte affinité pour la matière organique et est donc susceptible d’être présent dans les phases solides (matières en suspension, sédiments et boues résiduaires (ADEME 1995.) Une étude a été réalisée sur la présence, en autrues, du DEHP dans des sols danois de différents types. La valeur retenue est la valeur la plus forte pour encore une fois rester le plus prudent possible, soit 40 µg/kg MS.

Le temps de demi-vie de cette substance est égal à un an ; cette valeur est issue de l’étude de l’INERIS.

AOX

Sources [29, 30, 31, 32]

AOX est l’abréviation du paramètre qui somme les halogènes (X) organiques (O) chlorés, bromés ou iodés adsorbables (A.) Le détail des informations recueillies est disponible dans l’annexe VI.

Après l’introduction de la notion de AOX en 1976, ce paramètre a été correctement utilisé pour les constituants AOX « réels » (DDT et ses métabolites, PCBs, etc …) mais aussi, utilisé de manière incorrecte pour des composés organo-halogénés non adsorbables, principalement des composés de haut poids moléculaire présents dans les plantes et même dans des composés inorganiques qui ne sont ni organiques ni adsorbables.

La question des AOX naturels formés par les organismes vivants et/ou durant des processus abiotiques naturels a été définitivement résolue par la mise en évidence de plus de 3650 composés organo-halogénés.

Comme on peut le constater, les origines des AOX sont diverses, elles se répartissent en trois grandes catégories : L’industrie chimique, les plantes et les autres sources naturelles.

Il faut noter toutefois que les composés organiques halogénés adsorbables sur charbon actif sont très fréquemment retrouvés dans les effluents d’hôpitaux. Les sources de ces AOX sont les produits de contraste iodés pour rayons X, les solvants, les désinfectants, les nettoyants et médicaments contenant du chlore.

Les plantes sont reconnues comme étant une source majeure de composés organo-halogénés. Ainsi, il a été montré que des plantes ayant grandi dans des environnements marins, liminiques ou encore terrestres sont des sources naturelles d'organohalogénés insolubles dans l'eau.
Les autres sources naturelles sont les composés inorganiques contenant du chlore et se retrouvent principalement liés à des silicates et à des alumino-silicates dans les réseaux des argiles (phyllosilicates) tels que le kaolin ou du groupe de la montmorillonite.

Présence dans les boues [14]

Selon l’étude AGHTM, les composés organiques halogénés sont présents dans toutes les boues urbaines étudiées. Pour l’ensemble des boues étudiées, la concentration en AOX varie entre 50 mg/kg de MS et 1800 mg/kg de MS avec une moyenne de 314 mg/kg de MS. Les données moyennées les moins élevées sont obtenues avec les boues des stations d’épurations de capacité importante.

Il faut noter que l’analyse des AOX dans les boues n’est pas comparable à celle décrite dans la norme NF ISO 15009, qui est indiquée dans le Draft 3 pour la détermination des teneurs en AOX dans les boues. Même si ce projet n’a pas été repris dans le Draft 4, il nous a semblé intéressant d’approfondir les caractéristiques de cette norme afin de connaître les composés dosés lors cette détermination.

Analyse des AOX [29, 33]

Les composés dosés lors de l’application de la norme NF ISO 15009 à l’analyse des AOX présents dans les sédiments et dans les boues sont des composés utilisés aussi bien dans le domaine agricole, industriel, médical et domestique. Ils entraînent tous un effet délétère sur la santé de l’homme. Il faut noter que la norme envisage des interférences possibles et préconise de nombreux re-traitements des informations, voire même des analyses complémentaires pour supprimer ces interférences.

D’après Müller (2003), la notion de somme des AOX est un paramètre qui doit être laissée de côté. En effet, il est impossible de classer les AOX selon qu’ils sont naturels, d’origine anthropique, biotique, abiotique, dangereux ou non-dangereux.

Evaluation des risques liés aux AOX présents dans les boues d’épuration

Les diverses informations recueillies mettent en exergue plusieurs difficultés dans l’évaluation des risques liés aux AOX présents dans les boues. Tout d’abord, la notion d’AOX représente une famille très vaste voire « trop » vaste. Selon l’origine des boues, la nature de ces composés peut être très différente. Les sources en AOX ne sont pas uniquement anthropiques, elles sont aussi naturelles ; il est donc possible que des teneurs non-négligeables soient retrouvées dans les sols avant épandage (Müller, 2003.) Cet auteur conclut que ce paramètre n’est pas conséquent pas viable.

Ceci étant, aucune information n’est disponible quant à leur dégradation dans les sols et leur teneur dans les sols français. Enfin, même si l’AGHTM possède quelques données sur leur présence dans les boues, les informations sont minces sur ce thème. Pour le moment, le comportement de ces composés dans les stations d’épuration et par extension dans les boues n’est pas bien connu.

Au vu de ces observations, il semble difficile de mener, même sommairement, une évaluation des risques liés aux AOX présents dans les boues d’épuration. De plus, ses difficultés d’interprétation et d’analyse font de lui un paramètre difficile à réglementer.
D) Les ostrogènes

Les ostrogènes sont en train de devenir un sujet d'intérêt, du fait notamment de leurs effets connus sur l’environnement et de la large utilisation des contraceptifs oraux.

Sources [34, 35, 39, 40]

Les produits pharmaceutiques sont prescrits principalement pour le contrôle des naissances et le remplacement thérapeutique des ostrogènes naturels. Parmi eux, les ostrogènes synthétiques le 17α-éthinylestradiol (EE2), le mestranol (MeEE2) ou l’estradiol valerate (sel ou ester de l’acide pentanoïque) sont largement utilisés.

Ces composés sont excrétés par la femme, en plus des hormones naturelles que sont le 17β-estradiol (E2), l’estrone (E1) et l’estriol (E3) et sont ainsi retrouvés dans les eaux résiduaires (Aheme and Briggs, 1989. Lee & Peart, 1998.) Les hommes aussi excrètent des ostrogènes mais en quantités beaucoup moins importantes (Fotsis and Adleercreutz, 1987.)

Les animaux sont une source non-négligeable d’excrétion d’ostrogènes. Cependant, même si depuis des centaines d’années déjà, les hormones endogènes d’origine humaine et animale gagnent l’environnement, le développement de la population et de l’agriculture intensive augmente considérablement les quantités produites et relarguées.

Présence dans les boues [36, 37, 39]

Les études sur la présence de ces composés dans les boues de stations d’épuration ne sont pas nombreuses. En effet, ce sont plus les performances d’élimination des procédés de traitement qui ont été étudiées. Seules quelques résultats sporadiques existent. Dans des boues d’épuration issues d’un procédé de digestion, ont été détectées des concentrations en E2 et E1 égales respectivement à 49 ng/g et de 37 ng/g MS.

Une étude réalisée sur des stations d’épuration parisiennes, montre que dans les affluents, les ostrogènes naturels sont prédominants avec une valeur moyenne comprise entre 9,6 et 17,6 ng/L. Ces valeurs correspondent à celles trouvées dans d’autres études bibliographiques qui indiquent des concentrations de l’ordre de 10 ng/L.

Pour l’ostrogène synthétique, le EE2, il est moins détecté que les ostrogènes naturels dans les quatre effluents étudiés. La valeur moyenne est comprise entre 4,9 et 7,1 ng/L, ce qui représente environ 11 à 15 % de la totalité des stéroïdes détectés.

Le taux d’enlèvement moyen trouvé est égal à 50 %.

Présence dans les sols [38, 40]

La concentration en E2 dans les sols est de 55 ng par kg de matières sèches, cette valeur est relative à l’épandage de fumiers et lisiers. [39, 35, 36]

Cependant, les études montrent des fluctuations dans les concentrations en hormones dans les sols. Elles peuvent être dues au pâturage par des animaux sauvages, à des applications de lisiers variables et à des dilutions par les eaux de pluie.
Dangers pour l’environnement [42]

Les dangers de ces composés sont relatifs au monde aquatique. Ils sont reconnus comme pouvant générer un dérèglement endocrinien chez les poissons.

Dangers pour la santé humaine [43, 44, 45, 46]

Les estrogènes stéroïdaux sont classés dans le groupe 1 au sens de le CIRC, c’est à dire, que leur carcinogénicité est reconnue et a été prouvée de manière causale.

Il a été démontré que les contraceptifs oraux augmentent sensiblement les risques de cancer du sein et de maladies cardiovasculaires, mais l’essentiel du risque est concentré dans certains sous-groupes d’utilisateurs comme les femmes les plus âgées, les fumeuses et celles qui ont une pression sanguine haute.

Une étude a été réalisée dans le cadre de l’évaluation de la sécurité des additifs alimentaires contenus dans les l’alimentation, notamment dans des denrées animales issues des états unies, pays où la réglementation autorise l’utilisation des hormones de croissance. Le comité chargé de ce travail a établi une dose quotidienne acceptable pour E2. Cette dose est de 0 à 50 ng/kg (de poids corporel) par jour.

Conclusion sur l’évaluation des risques

L’occurrence et le comportement de ces composés dans les boues et dans l’environnement en général sont aujourd’hui mal connus. De même, la toxicité de ces produits, même si elle est avérée, n’est pas connue précisément en terme de quantification du danger. Ces divers éléments rendent difficile l’évaluation précise des risques qui pourraient y être associés dans le cadre de l’épandage de boues agricoles. Il semble toutefois que d’une part, ces composés se dégradent rapidement, et, d’autre part, que l’épandage des lisiers soit une source non-négligeable de composés estrogéniques dans l’environnement. Enfin, a priori, le risque le plus important serait davantage lié à un risque environnemental et notamment pour le monde aquatique.

II.1.3. Substances retenues pour l’évaluation

Les substances considérées sont les substances présentes dans le projet européen de 2003 à savoir : les ETM suivants : Cadmium, Chrome, Cuivre, Mercure, Nickel, Plomb et Zinc ; les PCB (7 de la réglementation française), les HAP (11 du projet européen), les NPE et les LAS décrits également dans le projet européen de 2003. Le risque associé au DEHP sera également considéré afin d’évaluer son importance relative dans le risque global. Par contre, il est impossible de réaliser une EVR pour les AOX et les composés oestrogéniques.
Le tableau suivant résume les principales informations disponibles

<table>
<thead>
<tr>
<th></th>
<th>Temps ½ vie (an)</th>
<th>Bruit de fond (mg/kg MS) (valeur min-valeur max ou valeur moyenne)</th>
<th>Concentration moyenne dans les boues (mg/kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.30</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td>37.60</td>
<td>66.0</td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>13.8</td>
<td>299.0</td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>0.0495</td>
<td>2.277</td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>0.0005</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>20.40</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>Plomb</td>
<td>30.30</td>
<td>94.0</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>59.00</td>
<td>774.0</td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td>12</td>
<td>1.10^-8 - 60.10^-6 (TEQ)</td>
<td>11.10^-6 (TEQ)</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>6,63 .10^-3 - 7,22.10^-1</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>HAP11 européens)</td>
<td>8,6</td>
<td>0.94-5.65</td>
<td>2.3</td>
</tr>
<tr>
<td>DEHP</td>
<td>1</td>
<td>0.04</td>
<td>42.2</td>
</tr>
<tr>
<td>NPE</td>
<td>0,41</td>
<td>0.02</td>
<td>145</td>
</tr>
<tr>
<td>LAS</td>
<td>0.082</td>
<td>50. 10^-6</td>
<td>2018</td>
</tr>
</tbody>
</table>

Tableau 10 : Récapitulatif des principales informations sur les composés étudiés

Il faut remarquer que le bruit de fond dans les sols est inférieur aux valeurs seuils autorisées pour les sols, dans le Draft 4 de 2003 ; Ces seuils sont les plus restrictifs de tous ceux proposés jusqu’à maintenant.

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
II.2. Choix des valeurs toxicologiques de référence

Il est nécessaire de distinguer, pour chaque substance, les effets à seuil des effets sans seuil. Pour une substance donnée, les effets à seuil ou effets déterministes, sont des effets pour lesquels il existe des seuils d’action, et pour lesquels il est possible de trouver la dose sans effet.

Pour une substance donnée, les effets sans seuil ou effets probabilistes, sont des effets pour lesquels il n’existe pas de seuil et pour lesquels il est possible de trouver le risque correspondant à une dose, puisque chaque dose aussi minime qu’elle soit génère un risque, ce qui n’est pas le cas des effets à seuil.

Il faut savoir qu’une même substance peut entraîner à la fois des effets à seuil et des effets sans seuil.

Pour les HAP, PCB, dioxines et le DEHP, les valeurs toxicologiques de référence utilisées (VTR) sont issues de l’étude de l’INERIS non diffusée.

Les VTR retenues pour les LAS et les NPE sont issues d’une étude bibliographique, présentée en annexe V. Ces valeurs ont été calculées à partir de données issues d’expérimentations animales auxquelles ont été appliqués des facteurs d’incertitudes liées aux incertitudes entre les espèces et au sein des espèces.

Pour les effets à seuil, l’innocuité d’une substance s’exprime grâce à la notion de dose journalière tolérable pour la voie orale (DJTo) et grâce à la notion de concentration tolérable (CT) pour la voie inhalation. Ces deux termes représentent les concentrations maximales pour lesquelles aucun effet délétère pour la santé n’a été observé.

Pour les effets sans seuil, le danger s’exprime à travers la notion d’excès de risque unitaire (ERU) quelle que soit la voie d’exposition considérée. Il traduit le danger associé à une dose définie.
<table>
<thead>
<tr>
<th></th>
<th>Voie orale</th>
<th>Voie inhalation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DJTo (mg/kg.j)</td>
<td>Effet critique</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,0E-03</td>
<td>rein</td>
</tr>
<tr>
<td>chrome III</td>
<td>1,5E+00</td>
<td>ingestion de chrome</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,4E-01</td>
<td>ingestion de cuivre</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>nc</td>
<td>3,0E-04</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1,0E-04</td>
<td>développement neuropsychologique</td>
</tr>
<tr>
<td>Nickel</td>
<td>2,0E-02</td>
<td>croissance</td>
</tr>
<tr>
<td>Plomb</td>
<td>3,5E-03</td>
<td>plombémie</td>
</tr>
<tr>
<td>Zinc</td>
<td>3,0E-01</td>
<td>sang</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,0E-09</td>
<td>système immunitaire</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>2,0E-05</td>
<td>système immunitaire</td>
</tr>
<tr>
<td>HAP(11 eutopéens)</td>
<td>3,0E-02</td>
<td>rien (pyrène)</td>
</tr>
<tr>
<td>DEHP</td>
<td>2,0E-02</td>
<td>foie</td>
</tr>
<tr>
<td>NPE</td>
<td>4,4E-02</td>
<td>reproduction, foie, rein</td>
</tr>
<tr>
<td>LAS</td>
<td>8,5E-01</td>
<td>Foie, rate, rein, cœur, thymus, reproduction, développement</td>
</tr>
</tbody>
</table>

Tableau 11 : VTR sélectionnées pour les effets chroniques à seuil des substances retenues dans la présente étude

<table>
<thead>
<tr>
<th></th>
<th>Voie orale</th>
<th>Voie inhalation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERUₓ (mg/kg.j)⁻¹</td>
<td>ERUᵧ (mg/m³)⁻¹</td>
</tr>
<tr>
<td>Cadmium</td>
<td>nc</td>
<td>1,8E+00</td>
</tr>
<tr>
<td>Nickel</td>
<td>nc</td>
<td>3,8E-01</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>4,0E-01</td>
<td>1,1E-01</td>
</tr>
<tr>
<td>HAP(11 eutopéens)</td>
<td>2,0E-01</td>
<td>1,1E+00</td>
</tr>
<tr>
<td>DEHP</td>
<td>1,4E-02</td>
<td>nc</td>
</tr>
</tbody>
</table>

nc : non concerné

Tableau 12 : VTR sélectionnées pour les effets chroniques sans seuil des substances retenues dans la présente étude
II.3. Evaluation de l’exposition

La majorité des paramètres d’exposition repris dans cette évaluation est issue, du document non publié de l’INERIS de novembre 2005, relatif à l’application de la méthodologie aux seuils réglementaires liés aux substances chimiques. Seules quelques paramètres importants et quelques hypothèses spécifiques à cette application vont être mentionnés dans la suite.

II.3.1. Sélection d’un scénario d’épandage

Dans le cadre de cette étude, un plan d’épandage fictif a été construit à partir de statistiques d’épandage issues de l’étude réalisée par Piqué. [2004] Sur la base d’une surface épandable de 100 ha, les huit cultures sont présentes selon les pourcentages mentionnés au tableau 13. Les 10,22 ha restants sont arbitrairement consacrés à la prairie et à la culture du ray-grass italien, chacun pour moitié de cette surface restante. Ce choix vise à permettre une quantification de la voie d’exposition par consommation d’animaux élevés sur des parcelles amendées.

<table>
<thead>
<tr>
<th>Culture</th>
<th>Surface amendée</th>
<th>Culture</th>
<th>Surface amendée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blé</td>
<td>29,71 %</td>
<td>Tournesol</td>
<td>2,12 %</td>
</tr>
<tr>
<td>Orge +escourgeon</td>
<td>7,80 %</td>
<td>Betterave</td>
<td>14,27 %</td>
</tr>
<tr>
<td>Maïs</td>
<td>17,69 %</td>
<td>Chicorée</td>
<td>0,31 %</td>
</tr>
<tr>
<td>Colza</td>
<td>15,50 %</td>
<td>Pomme de terre</td>
<td>2,38 %</td>
</tr>
</tbody>
</table>

Tableau 13 : répartition des surfaces amendées en fonction du type de culture

Cette surface épandable de 100 ha se répartit arbitrairement à parts égales en deux types de sol : un sol limoneux et un sol argilo-limoneux. Pour ces deux sols, un pH moyen de 7,6 a été considéré ainsi qu’une teneur en matières organiques de 2,1%. Les textures différentes de ces deux sols permettent de prendre en compte une plus grande diversité de facteurs de bioconcentration entre le sol et les végétaux cultivés et donc d’être plus représentatif des typologies de sols cultivés français.

Comme décrit dans la méthodologie d’évaluation du risque sanitaire [INERIS, 2005 a], les boues de station d’épuration sont épandues et donc diluées dans les sols amendés. L’apport théorique annuel des boues au sol dépend de plusieurs paramètres.

Dans le cadre de cette application, la quantité de boues apportée par an est de 10 t MS par hectare. Cette valeur se base, d’une part, sur un rythme d’épandage de 30 tonnes de matières sèches par hectare sur 10 ans et, d’autre part, sur le fait que généralement chaque parcelle du plan d’épandage est épandue tous les trois ans pendant la durée moyenne de l’autorisation, estimée à dix ans. Ainsi, il est considéré que chaque année, un tiers de la surface épandable est utilisée. La profondeur d’enfouissement des boues est estimée à 0,3 m, ce qui correspond à une pratique moyenne. La densité du sol en place est prise égale à 1,5 t/m3, ce qui représente une valeur raisonnablement majorante pour une majorité de sols français.

Pour la quantification du risque, la contribution théorique des boues aux teneurs en éléments traces organiques dans les sols doit être intégrée en fonction de la durée d’épandage, de l’éventuelle dégradation des substances et des durées d’exposition de cibles. [INERIS, 2005a]

La durée d’épandage considérée est de 70 ans, cette valeur est raisonnablement majorante et a été utilisé dans l’application de l’INERIS. [2]
II.3.2. Schéma conceptuel d’exposition

Le schéma conceptuel d’exposition est identique à celui utilisé dans le cadre de l’application de la méthodologie au cas des boues de station d’épuration urbaine et à celui des boues de station d’épuration industrielle. Ce schéma est présenté dans la figure 1.[2]

![Diagram of exposure schema](image)

Figure 1 : Schéma conceptuel d’exposition dans le cas de l’épandage des boues

Telles que définies dans le guide méthodologique, trois cibles principales sont considérées dans le cas de la présente étude :

- Les consommateurs de produits issus de parcelles amendées
- Les riverains des parcelles amendées
- Les exploitants de parcelles amendées

Pour les riverains et les consommateurs, une distinction est faite conventionnellement entre les enfants (0 et 6 ans), soit 6 ans d’exposition, et les adultes (de 6 à 70 ans), soit 64 ans d’exposition. Les exploitants sont considérés comme des adultes, exposés pendant 40 ans d’activité professionnelle. Pour chacune de ces cibles, les fréquences d’exposition journalière aux parcelles amendées sont résumées dans le tableau 14.

<table>
<thead>
<tr>
<th>Consommateurs</th>
<th>Riverains</th>
<th>Agriculteurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adultes</td>
<td>Enfants</td>
<td>Adultes</td>
</tr>
<tr>
<td>Durée journalière d’exposition aux parcelles amendées (h/j)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Durée d’exposition annuelle (j/an)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fréquence d’exposition (-)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 14 : Caractéristiques d’exposition des différentes cibles adultes et enfants aux parcelles amendées

II.3.3. Autres paramètres

A) TRANSFERT VERS LES PRODUITS ISSUS DES PARCELLES AMENDEES

Concernant le transfert vers les végétaux cultivés, la modélisation du transfert des sols vers les plantes par les facteurs de bioconcentration (BCF) a été retenue, comme...
dans les rapports de l’INERIS. Les différentes cultures du plan d’épandage sont regroupées par catégorie de végétaux : céréales, légumes feuilles, légumes racines, pommes de terre et herbes (pour animaux.) Quand les informations sont disponibles, une valeur de BCF a été calculée pour chacune de ces catégories, par pondération à partir des surfaces cultivées respectives de chaque culture. Quand aucune valeur de la bibliographie ne peut être exploitée, alors, la valeur du BCF est estimée selon plusieurs relations empiriques prenant en compte le transfert racinaire et le transfert suite à un dépôt foliaire de particules du sol amendé. Ces relations se basent sur l’utilisation de plusieurs caractéristiques physico-chimiques des substances et notamment, pour les produits organiques, sur la valeur du coefficient de partage octanol-eau (Kow), et, pour les produits inorganiques, sur le coefficient de partage sol-solution (Kd.)

Concernant le transfert vers les animaux élevés avec les végétaux cultivés sur des parcelles amendées, la modélisation de ce transfert par les facteurs de bioaccumulation a été retenue, de la même manière que l’INERIS. Cette modélisation se base également sur l’utilisation du coefficient de partage octanol-eau de la substance.

Les caractéristiques physico-chimiques utilisées pour modéliser ces transferts sont issues pour les ETM et les PCB du document de l’INERIS 2005b, pour les dioxines, les HAP, et le DEHP du document de l’INERIS, 2005c. Pour les LAS et les NPE, la recherche bibliographique, présentée en annexe X, nous amène à retenir pour l’ensemble des LAS, un coefficient de partage octanol-eau de \(10^{3.7}\) et pour l’ensemble des NPE une valeur de \(10^{5.76}\).

Les facteurs de bio-concentration et de bio-accumulation ainsi que pour les taux d’absorption dermique, sont également issus des différents documents de l’INERIS précédemment cités. Pour les NPE et les LAS, le taux d’absorption dermique a été pris égal à 1 par défaut.

B) Paramètres d’exposition

Les paramètres d’exposition restent globalement inchangés par rapport aux applications INERIS. [2, 3]

Toutefois, il est important de rappeler un paramètre, qui est sujet à débat et qui sera discuté dans la partie incertitudes : le volume de poussières inhalé par un agriculteur travaillant sur ces terres. En effet, on considère que 50 % des particules présentes dans l’air sont issues des terres amendées.

Il est également important de rappeler la fraction d’aliments concernés par l’épandage des boues. En partant d’une surface agricole utile épandue d’environ 3 % au niveau national :

- 3 % des végétaux consommés proviennent de parcelles amendées, quelle que soit la cible considérée, (la production en autarcie n’étant pas considérée comme concernée par l’épandage des boues) ;
- 3 % des animaux consommés sont concernés par l’épandage de boues pour les cibles « consommateurs » ;
- 3 % des animaux consommés auxquels s’ajoute le pourcentage d’animaux élevés en autarcie sont concernés par l’épandage de boues pour les cibles « riverains » et « agriculteurs ».
II.4. Caractérisation des risques

II.4.1. Principes de caractérisation

Ainsi, pour les effets avec seuil, l’évaluation se base sur le calcul d’un quotient de danger (QD). Lorsque le quotient de danger est inférieur à 1, la survenue d’un effet toxique est considérée comme exclue, même pour les populations sensibles, au regard des connaissances scientifiques disponibles. Au-delà du niveau de référence de 1, la possibilité d’apparition d’un effet toxique ne peut plus être exclue.

Pour les effets à seuil, l’additivité des indices de risque ou des quotients de danger entre voies et substances est retenue comme hypothèse pour des substances produisant le même effet toxique sur le même organe par le même mécanisme d’action.

Pour les effets sans seuil, l’évaluation se base sur le calcul d’un excès de risque individuel (ERI). Les niveaux de référence pour les effets sans seuil varient d’un pays à l’autre. La gamme des seuils d’acceptabilité du risque s’étend de 10^{-6} à 10^{-2}. La décision finale relative à l’acceptabilité du risque relève du gestionnaire du risque c’est à dire des services déconcentrés de l’Etat. Pour ces derniers, le cumul des ERI correspond à l’hypothèse d’une indépendance des effets cancérigènes des différentes substances.

Suivant une approche prudente, l’INERIS propose en première approche une sommation systématique des indices de risque d’une part et des excès de risque individuel d’autre part sur les différentes substances présentes.

Les modalités de calcul des ces deux indices (IR et ERI) sont indiquées dans la méthodologie développée par l’INERIS. [1]

II.4.2. CAS 1 : Exposition aux boues seules

Dans un premier temps, il est souhaitable de considérer une exposition exclusive aux boues seules sans considérer le bruit de fond afin de déterminer si la prise en compte du bruit de fond par la suite est déterminante.
A) PRISE EN COMPTE DES CONCENTRATIONS MOYENNES

Pour cela, les valeurs de concentrations dans les boues retenues sont les valeurs moyennes obtenues dans l’étude de l’AGHTM de 2002.

Effets à seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD Riverain enfant</th>
<th>QD Riverain adulte</th>
<th>QD Agriculteur</th>
<th>QD Consommateur Enfant</th>
<th>QD Consommateur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2,31E-02</td>
<td>4,58E-03</td>
<td>8,27E-03</td>
<td>2,33E-02</td>
<td>5,03E-03</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,50E-04</td>
<td>4,95E-05</td>
<td>8,46E-05</td>
<td>2,52E-04</td>
<td>5,43E-05</td>
</tr>
<tr>
<td>Cuivre</td>
<td>3,20E-02</td>
<td>6,53E-03</td>
<td>2,20E-02</td>
<td>2,83E-02</td>
<td>6,11E-03</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2,09E-07</td>
<td>1,70E-08</td>
<td>7,01E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1,95E-03</td>
<td>3,84E-04</td>
<td>5,13E-04</td>
<td>1,96E-03</td>
<td>4,16E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>8,70E-03</td>
<td>1,72E-03</td>
<td>7,95E-03</td>
<td>8,78E-03</td>
<td>1,89E-03</td>
</tr>
<tr>
<td>Plomb</td>
<td>1,58E-01</td>
<td>3,17E-02</td>
<td>5,20E-02</td>
<td>1,58E-01</td>
<td>3,41E-02</td>
</tr>
<tr>
<td>Zinc</td>
<td>4,88E-02</td>
<td>1,02E-02</td>
<td>4,99E-02</td>
<td>3,50E-02</td>
<td>7,59E-03</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,79E-02</td>
<td>5,19E-03</td>
<td>9,80E-03</td>
<td>1,72E-02</td>
<td>5,39E-03</td>
</tr>
<tr>
<td>PCB (congéneres)</td>
<td>3,47E-02</td>
<td>6,86E-03</td>
<td>1,11E-02</td>
<td>3,47E-02</td>
<td>7,47E-03</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>8,68E-05</td>
<td>2,69E-05</td>
<td>3,28E-05</td>
<td>8,77E-05</td>
<td>2,95E-05</td>
</tr>
<tr>
<td>DEHP</td>
<td>5,61E-04</td>
<td>3,07E-04</td>
<td>3,77E-04</td>
<td>4,64E-04</td>
<td>2,72E-04</td>
</tr>
<tr>
<td>NPE</td>
<td>3,59E-04</td>
<td>1,21E-04</td>
<td>2,07E-04</td>
<td>3,49E-04</td>
<td>1,32E-04</td>
</tr>
<tr>
<td>LAS</td>
<td>2,83E-04</td>
<td>9,63E-05</td>
<td>1,42E-04</td>
<td>2,79E-04</td>
<td>1,05E-04</td>
</tr>
<tr>
<td>Sommation</td>
<td>3,27E-01</td>
<td>6,78E-02</td>
<td>1,63E-01</td>
<td>3,09E-01</td>
<td>6,86E-02</td>
</tr>
</tbody>
</table>

Tableau 15 : Synthèse des effets à seuil dans le cas 1)A

Analyse et commentaires

Pour chacune des cibles considérées, le risque lié aux effets à seuil des différentes substances émises lors de l’épandage des boues est acceptable, quelle que soit la substance considérée. Pour les consommateurs et les riverains, la voie d’exposition la plus importante est la consommation de végétaux cultivés sur des terrains amendés (entre 87 % et 95% du risque.) Pour l’agriculteur, la consommation de végétaux participe à environ 47% du risque, vient ensuite la consommation d’animaux participant à hauteur de 43 % et enfin, l’inhalation de poussières à hauteur de 7%. Pour les riverains et les consommateurs, le risque est principalement dû, tout d’abord au plomb (environ 50 % du risque), ensuite au zinc (environ 12 %), puis aux PCB (environ 10%), puis au cuivre (environ 9 %), et enfin, aux dioxines (environ 7%.) (cf. annexe XI)

Pour les agriculteurs, le risque est dû au plomb (32 %), au zinc (30, 7%) et au cuivre (13,5%) principalement.
Effets sans seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERI riverain enfant</th>
<th>ERI Riverain adulte</th>
<th>ERI Agriculteur</th>
<th>ERI Consommateur Enfant</th>
<th>ERI Consommateur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1,65E-10</td>
<td>1,34E-11</td>
<td>5,52E-08</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>Nickel</td>
<td>3,09E-10</td>
<td>2,52E-11</td>
<td>1,04E-07</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>1,39E-06</td>
<td>5,49E-08</td>
<td>8,89E-08</td>
<td>1,39E-06</td>
<td>5,97E-08</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>5,21E-07</td>
<td>1,61E-07</td>
<td>2,03E-07</td>
<td>5,26E-07</td>
<td>1,77E-07</td>
</tr>
<tr>
<td>DEHP</td>
<td>1,66E-07</td>
<td>8,44E-08</td>
<td>1,02E-07</td>
<td>1,30E-07</td>
<td>7,62E-08</td>
</tr>
<tr>
<td>SOMME</td>
<td>2,08E-06</td>
<td>3,01E-07</td>
<td>5,52E-07</td>
<td>2,04E-06</td>
<td>3,13E-07</td>
</tr>
</tbody>
</table>

Tableau 16 : Synthèse des effets sans seuil dans le cas 1)

Analyse et commentaires

Les enfants riverains et consommateurs de produits issus des sols amendés sont exposés à un risque compris dans la gamme d’acceptabilité, ce risque reste inférieur à la valeur moyenne de 10^-5. Les calculs (disponibles en annexe XI) montrent que cette valeur d’excès de risque est liée à plus de 95 % à la consommation de végétaux issus des parcelles amendées. Les substances incriminées sont, à hauteur de 70 %, les PCB et à hauteur de 30 %, les HAP, lors de la consommation de ces végétaux.

B) PRISE EN COMPTE DES CONCENTRATIONS RÉGLEMENTAIRES

Les valeurs réglementaires du Draft 4 de 2003 sont prises en compte concernant les concentrations maximales autorisées dans les boues.

Effets à seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD Riverain enfant</th>
<th>QD Riverain adulte</th>
<th>QD Agriculteur</th>
<th>QD Consommateur Enfant</th>
<th>QD Consommateur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>6,97E-02</td>
<td>1,38E-02</td>
<td>2,49E-02</td>
<td>7,03E-02</td>
<td>1,51E-02</td>
</tr>
<tr>
<td>Chrome</td>
<td>3,78E-03</td>
<td>7,49E-04</td>
<td>1,28E-03</td>
<td>3,82E-03</td>
<td>8,23E-04</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,26E-01</td>
<td>1,96E-02</td>
<td>7,36E-02</td>
<td>9,46E-02</td>
<td>2,04E-02</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>9,10E-07</td>
<td>7,41E-08</td>
<td>3,05E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>8,46E-03</td>
<td>1,67E-03</td>
<td>2,23E-03</td>
<td>8,51E-03</td>
<td>1,81E-03</td>
</tr>
<tr>
<td>Nickel</td>
<td>8,85E-02</td>
<td>1,76E-02</td>
<td>8,09E-02</td>
<td>8,94E-02</td>
<td>1,93E-02</td>
</tr>
<tr>
<td>Plomb</td>
<td>1,30E+00</td>
<td>2,49E-01</td>
<td>4,15E-01</td>
<td>1,26E+00</td>
<td>2,72E-01</td>
</tr>
<tr>
<td>Zinc</td>
<td>2,19E-01</td>
<td>2,55E-02</td>
<td>1,61E-01</td>
<td>1,13E-01</td>
<td>2,45E-02</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,65E-01</td>
<td>4,70E-02</td>
<td>8,73E-02</td>
<td>1,56E-01</td>
<td>4,90E-02</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>2,32E-01</td>
<td>4,57E-02</td>
<td>7,40E-02</td>
<td>2,31E-01</td>
<td>4,98E-02</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2,26E-04</td>
<td>7,01E-05</td>
<td>8,56E-05</td>
<td>2,29E-04</td>
<td>7,69E-05</td>
</tr>
<tr>
<td>DEHP</td>
<td>5,03E-03</td>
<td>2,57E-03</td>
<td>3,09E-03</td>
<td>3,95E-03</td>
<td>2,31E-03</td>
</tr>
<tr>
<td>NPE</td>
<td>1,12E-03</td>
<td>3,76E-04</td>
<td>6,41E-04</td>
<td>1,08E-03</td>
<td>4,09E-04</td>
</tr>
<tr>
<td>LAS</td>
<td>7,01E-04</td>
<td>2,39E-04</td>
<td>3,53E-04</td>
<td>6,91E-04</td>
<td>2,61E-04</td>
</tr>
<tr>
<td>Sommation</td>
<td>2,21E+00</td>
<td>4,24E-01</td>
<td>9,25E-01</td>
<td>2,04E+00</td>
<td>4,56E-01</td>
</tr>
</tbody>
</table>

Tableau 17 : Synthèse des effets à seuil dans le cas 1)
Analyse et commentaires

Les enfants sont exposés à un risque inacceptable, qu’ils soient riverains ou consommateurs. Pour les adultes et les enfants riverains ou consommateurs, la voie d’exposition préférentielle est l’ingestion de végétaux (entre 87 % et 96 % du risque.) Pour ces cibles, le plomb est responsable de 60 % du risque environ alors que les dioxines, le zinc et les PCB participent chacun à hauteur de 10 % du risque. Pour l’agriculteur, le risque est également lié à la consommation de végétaux (56 % du risque), mais également à la consommation d’animaux (32 %.) Les substances incriminées sont le plomb (45 %), le zinc (17 %), puis, le cuivre, les PCB, le nickel et les dioxines (9 % chacun) (cf. annexe XII)

Effets sans seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERI riverain enfant</th>
<th>ERI Riverain adulte</th>
<th>ERI Agriculteur</th>
<th>ERI Consommateur Enfant</th>
<th>ERI Consommateur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>4,96E-10</td>
<td>4,04E-11</td>
<td>1,66E-07</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>Nickel</td>
<td>3,14E-09</td>
<td>2,56E-10</td>
<td>1,05E-06</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>9,27E-06</td>
<td>3,66E-07</td>
<td>5,92E-07</td>
<td>3,25E-06</td>
<td>3,98E-07</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>1,36E-06</td>
<td>4,21E-07</td>
<td>5,29E-07</td>
<td>1,37E-06</td>
<td>4,61E-07</td>
</tr>
<tr>
<td>DEHP</td>
<td>1,41E-06</td>
<td>7,18E-07</td>
<td>8,65E-07</td>
<td>1,11E-06</td>
<td>6,48E-07</td>
</tr>
<tr>
<td>SOMME</td>
<td>1,20E-05</td>
<td>1,50E-06</td>
<td>3,21E-06</td>
<td>8,17E-06</td>
<td>1,51E-06</td>
</tr>
</tbody>
</table>

Tableau 18 : Synthèse des effets sans seuil dans le cas 1)B

Analyse et commentaires

Seuls les enfants sont exposés à un risque supérieur à la valeur moyenne de 10⁻⁵. La voie d’exposition majeure pour les riverains et les consommateurs, qu’ils soient adultes ou enfants est la consommation de végétaux (entre 82 % et 96 % du risque.) Pour les enfants, les substances incriminées sont les PCB (80 % du risque), les HAP et le DEHP (10 % du risque chacun.) Pour les adultes, le DEHP participe à 45 % du risque alors que les HAP et les PCB participent respectivement à 30 % et à 25 % du risque.

Pour l’agriculteur, les substances et les voies d’exposition au risque diffèrent quelque peu. En effet, la consommation de végétaux est responsable de 35 % du risque, la consommation d’animaux de 25 % et l’inhalation de 40 % du risque (Inhalation de nickel.) Les substances incriminées sont le nickel (33 % du risque), le DEHP (27 %), les PCB et les HAP (20 % chacun) (cf. annexe XII)

II.4.3. CAS 2 : Prise en compte du bruit de fond en zone rurale et de l’apport par les boues

Le deuxième cas envisageable est de considérer les concentrations moyennes de ces micro-polluants dans les boues d’épuration et de considérer le bruit de fond dans le sol de chaque substance. Les valeurs de bruit de fond correspondent pour les ETM aux valeurs médianes et pour les CTO aux zones rurales et/ ou reculées. Pour cela, on considère que 3 % des végétaux sont exposés à la fois aux boues et au bruit de fond et que les 97 % restants sont exposés seulement au bruit de fond. On applique le même principe aux produits animaux : tout ce qui a été produit sur sol amendé est exposé au bruit de fond et aux boues, le reste seulement au bruit de fond.
A) EFFETS À SEUIL

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD Riverain enfant</th>
<th>QD Riverain adulte</th>
<th>QD Agriculteur</th>
<th>QD Consommateur Enfant</th>
<th>QD Consommateur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>3.11E+01</td>
<td>8.21E+00</td>
<td>3.24E+00</td>
<td>8.17E+01</td>
<td>8.82E+00</td>
</tr>
<tr>
<td>Chrome</td>
<td>2.11E+00</td>
<td>4.22E-01</td>
<td>5.59E-01</td>
<td>2.15E+00</td>
<td>4.64E-01</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1.93E+01</td>
<td>3.89E+00</td>
<td>5.18E+00</td>
<td>1.98E+01</td>
<td>1.24E+00</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2.26E-06</td>
<td>1.84E-07</td>
<td>7.56E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>6.36E-01</td>
<td>1.26E-01</td>
<td>1.65E-01</td>
<td>6.40E-01</td>
<td>1.36E-01</td>
</tr>
<tr>
<td>Nickel</td>
<td>8.95E+01</td>
<td>1.79E+01</td>
<td>2.52E+01</td>
<td>9.12E+01</td>
<td>1.97E+01</td>
</tr>
<tr>
<td>plomb</td>
<td>7.51E+02</td>
<td>1.50E+02</td>
<td>1.97E+02</td>
<td>7.65E+02</td>
<td>1.65E+02</td>
</tr>
<tr>
<td>Zinc</td>
<td>3.95E+01</td>
<td>6.12E+00</td>
<td>1.07E+01</td>
<td>4.01E+01</td>
<td>5.69E+00</td>
</tr>
<tr>
<td>Dioxines</td>
<td>2.31E+01</td>
<td>6.72E+00</td>
<td>7.68E+00</td>
<td>2.35E+01</td>
<td>7.36E+00</td>
</tr>
<tr>
<td>PCB (congénérès)</td>
<td>2.82E+01</td>
<td>5.64E+00</td>
<td>7.43E+00</td>
<td>2.88E+01</td>
<td>5.19E+00</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>5.28E-01</td>
<td>1.64E-01</td>
<td>1.81E-01</td>
<td>5.38E-01</td>
<td>1.81E-01</td>
</tr>
<tr>
<td>DEHP</td>
<td>7.07E-03</td>
<td>3.90E-03</td>
<td>1.78E-03</td>
<td>7.06E-03</td>
<td>4.14E-03</td>
</tr>
<tr>
<td>NPE</td>
<td>1.07E-03</td>
<td>3.69E-04</td>
<td>4.60E-04</td>
<td>1.07E-03</td>
<td>4.04E-04</td>
</tr>
<tr>
<td>LAS</td>
<td>2.83E-04</td>
<td>9.63E-05</td>
<td>1.42E-04</td>
<td>2.79E-04</td>
<td>1.05E-04</td>
</tr>
<tr>
<td>Sommation</td>
<td>9.95E+02</td>
<td>1.99E+02</td>
<td>2.63E+02</td>
<td>1.00E+03</td>
<td>2.19E+02</td>
</tr>
</tbody>
</table>

nc : non concerné

Tableau 19 : Synthèse des effets à seuil dans le cas 2)

Analyse et commentaires

Les risques sont élevés et inacceptables pour de nombreuses substances. Le cadmium, le cuivre, le nickel, le plomb, le zinc, les dioxines et les PCB engendrent des risques inacceptables pour toutes les cibles considérées. Les enfants sont en plus exposés à un risque inacceptable vis à vis du chrome.

Les voies d’exposition responsables sont la consommation de végétaux (99.5%) et la consommation d’animaux (0.5%) pour le plomb et le zinc, la consommation de végétaux seule pour le cadmium, les PCB et le chrome. Concernant le nickel, la consommation de végétaux est responsable de ce risque pour toutes les cibles, sauf pour l’agriculteur, pour lequel l’inhalation participe également à 50% du risque.

Enfin, les agriculteurs et les autres adultes sont exposés au cuivre et aux dioxines, via la consommation de végétaux alors que les enfants, même s’ils sont exposés à 90% du risque via cette voie, le sont également via la consommation d’animaux.

Au final, pour chacune des cibles, le plomb participe à environ 75% du risque, le nickel à environ 10% et le zinc à 4%. (cf. annexe XIII)
B) EFFETS SANS SEUIL

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERI riverain enfant</th>
<th>ERI Riverain adulte</th>
<th>ERI Agriculteur</th>
<th>ERI Consommateur Enfant</th>
<th>ERI Consommateur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>6,86E-09</td>
<td>5,59E-10</td>
<td>2,30E-06</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>Nickel</td>
<td>9,65E-08</td>
<td>7,86E-09</td>
<td>3,23E-05</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>3,59E-05</td>
<td>1,42E-06</td>
<td>2,31E-06</td>
<td>3,59E-05</td>
<td>1,54E-06</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>9,63E-05</td>
<td>2,98E-05</td>
<td>3,75E-05</td>
<td>9,73E-05</td>
<td>3,27E-05</td>
</tr>
<tr>
<td>DEHP</td>
<td>2,24E-07</td>
<td>1,23E-07</td>
<td>1,51E-07</td>
<td>1,85E-07</td>
<td>1,09E-07</td>
</tr>
<tr>
<td>SOMME</td>
<td>1,32E-04</td>
<td>3,14E-05</td>
<td>7,46E-05</td>
<td>1,33E-04</td>
<td>3,44E-05</td>
</tr>
</tbody>
</table>

nc: non concerné

Tableau 20 : Synthèse des effets sans seuil dans le cas 2)

Analyse et commentaires

Le risque est inacceptable pour toutes les cibles considérées. Ce risque est dû à plus de 90 % aux HAP pour le riverain et le consommateur adulte, et l’agriculteur. Pour les enfants riverains et consommateurs, ce risque est dû aux HAP (70%) mais également aux PCB (26%). Le nickel, engendre également un risque inacceptable par inhalation chez l’agriculteur.

La voie d’exposition générant ce risque élevé est en majorité (99,5 %) la consommation de végétaux pour les PCB et les HAP, et l’inhalation de particules par l’agriculteur pour le nickel (100%).

Afin de mieux estimer la part de risque imputable aux boues et celle imputable au bruit de fond des sols, il est intéressant de calculer pour chaque substance la part que représente l’apport de boues dans les teneurs totales du sol en ces éléments.

<table>
<thead>
<tr>
<th>Substances</th>
<th>Part des boues dans la concentration totale des sols</th>
<th>Substances</th>
<th>Part des boues dans la concentration totale des sols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2,40%</td>
<td>zinc</td>
<td>2,83%</td>
</tr>
<tr>
<td>Chrome</td>
<td>0,39%</td>
<td>Dioxines</td>
<td>2,39%</td>
</tr>
<tr>
<td>Cuivre</td>
<td>4,59%</td>
<td>PCB (congénères)</td>
<td>3,87%</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>9,27%</td>
<td>HAP (11 européens)</td>
<td>0,54%</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>9,27%</td>
<td>DEHP</td>
<td>70,10%</td>
</tr>
<tr>
<td>Nickel</td>
<td>0,32%</td>
<td>NPE</td>
<td>94,16%</td>
</tr>
<tr>
<td>plomb</td>
<td>0,68%</td>
<td>LAS</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Tableau 21 : Part des boues dans les concentrations totales en micropolluants des sols dans le cas 2)

Il semble que les risques calculés auparavant sont imputables en majorité au bruit de fond présent dans les sols (cf. annexe XIII)
II.4.4. CAS 3

Au vu des ces résultats, il est souhaitable de calculer le risque d’une exposition exclusive des différentes cibles au bruit de fond présent dans les sols.

Afin, d’être les plus représentatifs possibles, on peut considérer que tous les végétaux sont exposés à ce bruit de fond et que par conséquent, tous les animaux le sont aussi par l’ingestion de végétaux.

A) EFFETS À SEUIL

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD Riverain enfant</th>
<th>QD Riverain adulte</th>
<th>QD Agriculteur</th>
<th>QD Consommateur enfant</th>
<th>QD Consommateur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>3,11E+01</td>
<td>6,20E+00</td>
<td>9,23E+00</td>
<td>3,16E+01</td>
<td>5,82E+00</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,11E+00</td>
<td>4,22E-01</td>
<td>5,59E-01</td>
<td>2,15E+00</td>
<td>4,64E-01</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,93E+01</td>
<td>3,89E+00</td>
<td>5,16E+00</td>
<td>1,96E+01</td>
<td>4,23E+00</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2,05E-06</td>
<td>1,67E-07</td>
<td>6,86E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>6,34E-01</td>
<td>1,25E-01</td>
<td>1,65E-01</td>
<td>6,38E-01</td>
<td>1,36E-01</td>
</tr>
<tr>
<td>Nickel</td>
<td>8,95E+01</td>
<td>1,79E+01</td>
<td>2,52E+01</td>
<td>9,12E+01</td>
<td>1,97E+01</td>
</tr>
<tr>
<td>plomb</td>
<td>7,51E+02</td>
<td>1,50E+02</td>
<td>1,97E+02</td>
<td>7,65E+02</td>
<td>1,65E+02</td>
</tr>
<tr>
<td>Zinc</td>
<td>8,95E+01</td>
<td>8,11E+00</td>
<td>1,06E+01</td>
<td>4,00E+01</td>
<td>8,68E+00</td>
</tr>
<tr>
<td>Dioxines</td>
<td>2,30E+01</td>
<td>6,72E+00</td>
<td>7,67E+00</td>
<td>2,34E+01</td>
<td>7,35E+00</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>2,82E+01</td>
<td>5,63E+00</td>
<td>7,41E+00</td>
<td>2,87E+01</td>
<td>8,19E+00</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>5,28E-01</td>
<td>1,64E-01</td>
<td>1,81E-01</td>
<td>5,38E-01</td>
<td>1,81E-01</td>
</tr>
<tr>
<td>DEHP</td>
<td>6,50E-03</td>
<td>3,59E-03</td>
<td>1,40E-03</td>
<td>6,60E-03</td>
<td>3,87E-03</td>
</tr>
<tr>
<td>NPE</td>
<td>7,09E-04</td>
<td>2,48E-04</td>
<td>2,53E-04</td>
<td>7,21E-04</td>
<td>2,72E-04</td>
</tr>
<tr>
<td>LAS</td>
<td>1,02E-07</td>
<td>3,56E-08</td>
<td>3,62E-08</td>
<td>1,04E-07</td>
<td>3,91E-08</td>
</tr>
<tr>
<td>Sommation</td>
<td>9,84E+02</td>
<td>1,99E+02</td>
<td>2,63E+02</td>
<td>1,00E+03</td>
<td>2,19E+02</td>
</tr>
</tbody>
</table>

Tableau 22 : Synthèse des effets à seuil dans le cas 3)

Analyse et commentaires

Les résultats trouvés sont légèrement inférieurs à ceux obtenus dans le cas 2, mais leur nature est exactement la même, c'est à dire, que les corrélations entre cibles, voies d'exposition et type de composés sont les mêmes (cf. annexe XIV)
B) Effets sans seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERI</th>
<th>ERI</th>
<th>ERI</th>
<th>ERI</th>
<th>ERI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>riverain enfant</td>
<td>Riverain adulte</td>
<td>Agriculteur</td>
<td>Consommateur enfant</td>
<td>Consommateur adulte</td>
</tr>
<tr>
<td>Cadmium</td>
<td>6,70E-09</td>
<td>5,46E-10</td>
<td>2,25E-06</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>Nickel</td>
<td>9,61E-08</td>
<td>7,83E-09</td>
<td>3,22E-06</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>1,13E-03</td>
<td>4,50E-05</td>
<td>5,99E-05</td>
<td>1,15E-03</td>
<td>4,95E-05</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>3,17E-03</td>
<td>9,87E-04</td>
<td>1,09E-03</td>
<td>3,23E-03</td>
<td>1,08E-03</td>
</tr>
<tr>
<td>DEHP</td>
<td>1,82E-06</td>
<td>1,01E-06</td>
<td>3,93E-07</td>
<td>1,85E-06</td>
<td>1,08E-06</td>
</tr>
<tr>
<td>SOMME</td>
<td>4,30E-03</td>
<td>1,03E-03</td>
<td>1,18E-03</td>
<td>4,38E-03</td>
<td>1,14E-03</td>
</tr>
</tbody>
</table>

nc : non concerné

Tableau 23 : Synthèse des effets sans seuil dans le cas 3)

Analyse et commentaires

Les résultats trouvés sont légèrement inférieurs à ceux obtenus dans le cas 2, mais leur nature est exactement la même, c'est à dire, que les corrélations entre cibles, voies d'exposition et type de composés sont les mêmes *(cf. annexe XIV)*

II.4.5. Synthèse

A) Part du risque du aux boues dans le risque total

Il est possible de visualiser la part du risque dû aux boues en réalisant l'opération suivante : *(risque boues et bruits de fond (cas 2) – risque bruit de fond (cas 3)) / (risque boues et bruits de fond (cas2)).* On obtient alors les résultats suivants :

Tableau 24 : Part des boues dans le risque total pour les effets à seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD (riverain enfant)</th>
<th>QD (riverain adulte)</th>
<th>QD (agriculteur)</th>
<th>QD (conso enfant)</th>
<th>QD (conso adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>0,07%</td>
<td>0,07%</td>
<td>0,10%</td>
<td>0,07%</td>
<td>0,07%</td>
</tr>
<tr>
<td>Chrome</td>
<td>0,01%</td>
<td>0,01%</td>
<td>0,02%</td>
<td>0,01%</td>
<td>0,01%</td>
</tr>
<tr>
<td>Cuivre</td>
<td>0,17%</td>
<td>0,17%</td>
<td>0,42%</td>
<td>0,14%</td>
<td>0,14%</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>9,27%</td>
<td>9,27%</td>
<td>9,27%</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>0,31%</td>
<td>0,31%</td>
<td>0,31%</td>
<td>0,31%</td>
<td>0,31%</td>
</tr>
<tr>
<td>Nickel</td>
<td>0,01%</td>
<td>0,01%</td>
<td>0,03%</td>
<td>0,01%</td>
<td>0,01%</td>
</tr>
<tr>
<td>plomb</td>
<td>0,02%</td>
<td>0,02%</td>
<td>0,03%</td>
<td>0,02%</td>
<td>0,02%</td>
</tr>
<tr>
<td>zinc</td>
<td>0,12%</td>
<td>0,13%</td>
<td>0,47%</td>
<td>0,09%</td>
<td>0,09%</td>
</tr>
<tr>
<td>Dioxines</td>
<td>0,08%</td>
<td>0,08%</td>
<td>0,13%</td>
<td>0,07%</td>
<td>0,07%</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>0,12%</td>
<td>0,12%</td>
<td>0,15%</td>
<td>0,12%</td>
<td>0,12%</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>0,02%</td>
<td>0,02%</td>
<td>0,02%</td>
<td>0,02%</td>
<td>0,02%</td>
</tr>
<tr>
<td>DEHP</td>
<td>7,94%</td>
<td>7,87%</td>
<td>21,17%</td>
<td>6,57%</td>
<td>6,57%</td>
</tr>
<tr>
<td>NPE</td>
<td>33,60%</td>
<td>32,82%</td>
<td>45,00%</td>
<td>32,58%</td>
<td>32,58%</td>
</tr>
<tr>
<td>LAS</td>
<td>99,96%</td>
<td>99,96%</td>
<td>99,97%</td>
<td>99,96%</td>
<td>99,96%</td>
</tr>
<tr>
<td>Sommation</td>
<td>0,03%</td>
<td>0,03%</td>
<td>0,06%</td>
<td>0,03%</td>
<td>0,03%</td>
</tr>
</tbody>
</table>

nc : non concerné
Analyse et commentaires

Le risque lié aux LAS est totalement imputable aux boues, c’est en partie vrai pour les NPE, mais, les risques liés à ces deux types de produits sont acceptables et largement inférieurs au seuil d’acceptabilité.

Pour des substances comme le plomb, le zinc, le nickel, le cadmium, le cuivre, les dioxines ou encore les PCB, dont on a précédemment observé que le risque était très supérieur voir très largement supérieur au seuil d’acceptabilité, le part du risque imputable aux boues est très faible.

Les effets sans seuil

Substances	ERI (riverain enfant)	ERI (riverain adulte)	ERI (agriculteur)	ERI (conso enfant)	ERI (conso adulte)
Cadmium | 2,40% | 2,40% | 2,40% | 2,40% | 2,40%
Nickel | 0,32% | 0,32% | 0,32% | 0,32% | 0,32%
PCB (congénères) | 0,12% | 0,12% | 0,15% | 0,12% | 0,12%
HAP (11 européens) | 0,02% | 0,02% | 0,02% | 0,02% | 0,02%
DEHP | 7,94% | 7,87% | 21,17% | 6,57% | 6,57%
SOMME TOTALE | 0,05% | 0,03% | 0,05% | 0,05% | 0,03%

Tableau 25 : Part des boues dans le risque total pour les effets à seuil

Analyse et commentaires

Une partie du risque lié au DEHP est imputable aux boues, mais, ce risque est acceptable, car inférieur au seuil d’acceptabilité.

Pour des substances comme les PCB, les HAP ou encore le nickel dont on a précédemment observé que le risque était très supérieur voir très largement supérieur au seuil d’acceptabilité, le part du risque imputable aux boues est très faible.

B) INCERTITUDES

Les incertitudes liées à cette méthodologie des risques sont diverses et de nature différente. La plupart des incertitudes qui vont être reprises ici ont été signalées dans les documents de l’INERIS. Il convient, tout de même, de rappeler les principales et de les compléter par quelques points particuliers.

Incertitudes relatives à la caractérisation des paramètres initiaux

Bio-disponibilité des substances pour l’homme

Une incertitude majeure dans les calculs précédemment effectués est liée à l’absence de prise en compte de la biodisponibilité pour l’homme des substances ingérées ou inhalées, à partir du sol ou des végétaux. Le risque est calculé sur la base de tests toxicologiques, à partir de matrices présentant une efficacité supérieure de l’absorption des polluants. Cela correspond à une approche pénalisante et à la pratique admise dans l’état de l’art actuel. Cette incertitude peut entraîner une surestimation de l’exposition par la voie « consommation de végétaux », qui a été trouvée comme la voie d’exposition préférentielle et celle qui génère des risques importants. Il semblerait...
important dans le futur de combler ces incertitudes afin de mieux évaluer le risque associé à ces pratiques.

Rotation des cultures

La rotation des cultures ne prend pas en compte les pratiques d'assolement qui pourraient être irrégulières dans le temps.

Le chrome [47]

Le projet de loi européen de 2003 inclut un seuil pour le chrome VI. Le chrome VI est connu comme entraînant des effets délétères pour la santé de l'homme à des doses très faibles, beaucoup plus faibles que le chrome III. La VTR pour la voie orale est de 3.10^{-3} mg/kg/jour, pour la voie inhalation, la VTR est de 8.10^{-6} mg/m³ pour du chrome VI sous forme d’aérosols et 10^{-4} mg/m³ sous forme de particules. De plus, il existe un effet cancérigène par inhalation du chrome, l’excès de risque unitaire associé est de 1.2.10^{-2} par µg/m³.

L’INERIS dans sa méthodologie d'évaluation des risques considère qu’il règne des conditions réductrices dans les sols sur lesquels sont épandues les boues. De ce fait, il a choisi de considérer le chrome sous sa forme réduite, c'est à dire, de considérer le chrome III.

Certaines façons de mener le stockage des boues pourraient établir des conditions oxydantes et permettre l'apparition de chrome VI. De même, certaines conditions d’aération suffisantes du sol pourraient permettre d’établir des conditions oxydantes favorisant l’existence du chrome sous sa forme oxydée. Ainsi, il pourrait être envisagé de considérer qu’une faible partie du chrome est présente sous forme de chrome VI afin d’être le plus prudent possible, dans notre évaluation. Toutefois, le pourcentage de chrome VI à considérer, même s’il est faible, reste à établir.

La densité du sol

La densité du sol considérée dans l’évaluation est une valeur majorante pour les sols français. La prise en compte de la valeur haute minimise les concentrations en micro-polluants dans les sols apportées par les boues. La part des boues dans la concentration totale en micro-polluants des sols augmenterait si une valeur inférieure était prise ne compte.

- **Incertitudes liées à la toxicologie**

- **Choix des VTR**

Pour le plomb, les effets sans seuil n’ont pas été retenus, alors que l’OEHAA préconise une VTR pour la voie orale de 8.5.10^{-3} (mg/kg.j)^{-1} et une VTR pour la voie respiratoire de 1.2.10^{-5} (µg/m³)^{-1}. La prise en compte des effets sans seuil du plomb fait actuellement l’objet d’un débat au niveau international. En effet, certains organismes ne reconnaissent pas l’existence d’un seuil en dessous duquel le plomb n’aurait pas d’effet. La position actuelle de l’INERIS est de ne pas retenir ces effets sans seuil.

Le tableau suivant présente l’influence du choix de la non prise en compte des effets sans seuil du plomb sur le niveau de risque obtenu pour une exposition aux boues seules.
<table>
<thead>
<tr>
<th>ERI Cumulés</th>
<th>Avec les effets sans seuil du plomb</th>
<th>sans les effets sans seuil du plomb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6,77E-06</td>
<td>2,06E-06</td>
</tr>
<tr>
<td></td>
<td>1,24E-06</td>
<td>3,02E-07</td>
</tr>
<tr>
<td></td>
<td>2,01E-06</td>
<td>5,56E-07</td>
</tr>
<tr>
<td></td>
<td>6,75E-06</td>
<td>2,04E-06</td>
</tr>
<tr>
<td></td>
<td>1,33E-06</td>
<td>3,13E-07</td>
</tr>
</tbody>
</table>

Tableau 26 : Comparaison de la valeur du risque selon la prise en compte ou non des effets sans seuil du plomb

Le choix de ne pas prendre en compte les effets sans seuil du plomb peut donc, s'il est avéré que le plomb a des effets sans seuil, conduire à minorer les excès de risque individuel, mais, cela n'entraîne pas un dépassement du seuil moyen d'acceptabilité du risque.

La pratique de la dérivation pour la voie cutanée

En l'absence de VTR pour cette voie a conduit à calculer des doses journalières d'exposition administrées par cette voie, en divisant la dose adsorbée par le taux d'absorption par voie orale. Cette démarche est effectuée, systématiquement, c'est à dire même en l'absence d'effets communs entre les voies cutané et orale. Elle est, de ce point de vue, protectrice de la santé. Cependant, certains effets spécifiques à la voie cutanée et non concernés par la voie orale peuvent exister et ne pas être pris en compte de fait de VTR « pseudo-dérivées » inadaptées (car valables pour un effet différent.) Cette démarche peut donc ne pas être forcément conservatoire pour la santé.

- **Incertitudes relatives aux voies d'exposition prises en compte**
- **Incertitudes associées au choix des paramètres d'exposition des cibles**

Les caractéristiques suivantes ont été définies de façon majorante dans le cadre de l'étude menée

- la fréquence d'exposition des cibles ; tout particulièrement pour les agriculteurs, on estime qu'ils passent 270 jours par an en extérieur à raison de 8 heures par jour. Cette hypothèse est très majorante, sachant que l'inhalation de nickel amène un risque inacceptable pour eux.
- La quantité de terre amendée sur la peau des cibles.
- La quantité de particules inhalées issues des terres amendées

L'évaluation menée considère que 50 % des particules présentes dans l’air sont issues des terres amendées, cela correspond à l'hypothèse selon laquelle les agriculteurs utilisent des machines agricoles sans cabine. Il semblerait pourtant que cette situation ne soit pas vérifiée, au contraire, la plupart des machines agricoles utilisées sont équipées de cabines.

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
A l’opposé, les caractéristiques suivantes ont été sélectionnées en tant que valeurs moyennes « représentatives de la réalité » :

- La quantité de terre ingérée ;
- Les paramètres physiologiques ;
- Les données de consommation et d’autarcie vis-à-vis des différents produits alimentaires.

Incertitudes associées au choix des paramètres de transfert

La voie « ingestion des végétaux » contribue majoritairement au risque d’apparition d’effets à seuil. C’est également cette voie qui est responsable en grande majorité des effets sans seuil pour les cibles autres que l’agriculteur. En conséquence, les incertitudes relatives aux paramètres de modélisation du transfert des substances chimiques du sol vers les végétaux influencent fortement les niveaux de risque finalement affichés.

Or, l’approche qui consiste à utiliser des facteurs de bio-concentration expérimentaux est incertaine dès que les conditions dans lesquelles cette valeur a été déterminée s’éloignent des conditions rencontrées dans le cadre du plan d’épandage étudié. L’utilisation de formules empiriques pour fournir une valeur de BCF est considérée elle aussi comme très incertaine.

L’ensemble de ces incertitudes, pouvant aussi bien être majorantes que minorantes vis-à-vis du risque, affecte donc significativement le niveau de risque final.

La voie ingestion des animaux est encore plus incertaine que la voie « ingestion d’animaux » car elle combine à la fois les incertitudes sur la modélisation du transfert sol-plante et les incertitudes sur la modélisation du transfert plante-animal.
III- Agents pathogènes

Contrairement au risque chimique pour lequel de nombreux outils et données existent, le risque biologique présente de nombreuses spécificités qui empêchent une simple transposition de la méthodologie du domaine chimique au domaine biologique.

Devant la demande croissante de la population et des décideurs, l’INERIS s’est intéressé à cette question et a tenté d’y répondre à travers un ensemble de trois documents destinés aux professionnels et aux administrateurs.[5,6,7]

III.1. La réglementation

Les boues issues des activités ne correspondant pas à la rubrique n°2210 “abattage d’animaux” sont soumises aux prescriptions de l’arrêté du 8 janvier 1998. Elles peuvent ainsi être hygiénisées ou non et devront respecter dans chacun des cas les prescriptions associées définies dans cet arrêté.

La réglementation pour ce type d’activités est décrite dans l’annexe XVI.

III.2. Généralités sur les agents pathogènes en lien avec l’épandage de boues

A) AGENTS PATHOGENES DANS LES BOUES

☐ Contamination des boues urbaines non-traitées

La contamination en agents pathogènes des boues n’ayant subi aucun traitement est inéluctable quasi-systématique, le procédé de traitement des eaux usées conduisant à leur agglomération dans les boues.

Les données rapportées dans la littérature sont assez variables du fait de nombreux facteurs conditionnant la contamination des boues (contamination des eaux usées, procédé de traitement des eaux et caractéristiques de fonctionnement, etc…) Elles sont souvent difficilement comparables du fait qu’il existe peu de techniques de dénombrement normalisées et que les procédés dont sont issues les boues analysées sont divers et parfois peu renseignés.
Les résultats de contamination des différents types de boues non traitées (boue primaire, boue secondaire, boue mixte) sont peu nombreux au niveau français. Elles portent de manière prépondérante sur les boues de station d’épuration urbaine, la contamination des boues d’abattoirs et des laiteries autonomes étant peu étudiée.

Toutefois, le peu de données françaises disponibles sur les boues issues de laiteries tend à montrer une faible contamination en pathogènes, à un degré moindre que les boues issues d’abattoirs ou de stations urbaines.

Il existe des pathogènes pour lesquels il n’existe peu ou pas de donnée de contamination des boues non traitées.

Les techniques de dénombrement normalisées dans les boues sont disponibles pour les E. Coli, les salmonelles et les œufs d’helminthes au niveau français. Des projets sont en cours pour les entérovirus.

Les agents pathogènes après le traitement des boues

Certains traitements des boues permettent d’éliminer les agents pathogènes suivants :

- Les virus entériques sont incapables de se multiplier dans l’environnement et ne présentent pas de résistance particulière vis à vis des traitements. L’élimination des entérovirus a été observée par les procédés de chaulage, et de compostage. Si des effets saisonniers sont observables sur la concentration des virus dans les eaux usées, il n’en est pas de même des boues pour lesquelles aucune tendance claire ne se dégage d’après les données disponibles ;
- Les salmonelles ne sont pas très résistantes aux différents traitements, mais elles sont susceptibles de se développer de manière importante dans les boues traitées et dans certains cas particuliers (défaut dans la conduite du procédé de fermentation et/ou durée de stockage de compost insuffisant) dans les boues compostées ; en général, le compostage, le traitement thermique, et le chaulage ont une bonne efficacité (pas de détection ultérieure des bactéries.) De la même façon que pour les virus, l’impact des saisons n’agit pas clairement sur la concentration en salmonelles dans les boues ;
- Les œufs d’helminthes sont incapables de se multiplier dans l’environnement mais ils sont assez résistants aux traitements. L’efficacité du chaulage, de la stabilisation aérobie thermophile, du lagunage, du compostage et du séchage a été observée. Aucune différence saisonnière n’a été observée dans les cas étudiés ;
- Les listeria spp. peuvent être éliminées par chaulage et compostage ;
- Pour les kystes de guardia spp., les traitements les plus efficaces sont la stabilisation aérobie thermophile, la digestion anaérobie, le chaulage et le compostage ; aucune variation saisonnière de la contamination des boues traitées n’a été observée.

Pour certains agents pathogènes (crypto sporidium sp., staphylocoque, Pseudomonas spp., Campylobacter spp., agents biologiques des composts de boue), les données sur les boues traitées sont peu nombreuses.

Quant à la contamination des boues traitées d’abattoirs, elle ne semble jamais avoir été étudiée.
Les agents pathogènes dans les boues stockées

La nécessité de stocker les boues est rendue incontournable du fait de la production continue à la STEP et de leur utilisation saisonnière en agriculture.

L’efficacité du stockage en terme de réduction des pathogènes des boues d’épuration dépend :

- De la nature du traitement des boues avant stockage qui détermine un certain nombre de caractéristiques des boues,
- Des caractéristiques du stockage : durée/température, ensoleillement/humidité

Ainsi, le stockage de boues d’aération prolongée déshydratées semble peu efficace sauf sur les salmonelles ;

Les virus et les bactéries sont peu résistants au stockage si une durée minimale d’environ 4 mois est respectée tandis que les helminthes sont résistants au stockage et ne sont inactivés que si le traitement des boues est efficace et/ou la durée de stockage supérieure à 9 mois.

B) Présence et comportement dans l’environnement

Devenir dans l’environnement après épandage

La survie dans les sols dépend de nombreux paramètres liés aux caractéristiques de la boue, aux conditions d’épandage et aux conditions climatiques.

Globalement, les virus et les bactéries ont des durées de vie assez courtes dans les sols tandis que les helminthes peuvent survivre pendant plusieurs mois après épandage. Cependant, l’action de nombreux facteurs défavorables en terre labourable limite la survie et la présence dans l’horizon superficiel à une durée comprise entre 30 et 90 jours (Gaspard 1995.) La survie de protozoaires est mal connue.

Après épandage, la majorité des pathogènes s’accumulent dans les premiers centimètres du sol. L’eau constitue la principale voie de dissémination de pathogènes dans l’environnement. La contamination des eaux souterraines est peu probable : elle n’est envisageable que dans des conditions particulières qui sont normalement maîtrisées lors de la définition du plan d’épandage et lors de sa réalisation.

La contamination des eaux de surface peut théoriquement se produire par ruissellement/lessivage des sols lors d’événements pluvieux après épandage. Le ruissellement est généralement très limité sur des bandes enherbées. Aucune étude, en l’état des connaissances actuelles, n’a mis en cause le rôle des boues épandues dans la contamination des eaux de surface.

La contamination de l’air suite à un épandage n’est possible que lors de l’utilisation de rampes équipées de buse d’aspersion pour les boues liquides et ce en conditions ventées, car en France, l’épandage est interdit à l’aide de dispositifs d’aérodispersion qui produisent des brouillards fins (article 15 du décret du 8 décembre 1997.) En conditions normales, l’aérosolisation des pathogènes est peu probable : les résultats des études disponibles indiquent que le risque lié aux aérosols pour les travailleurs et les riverains exposés est jugé relativement faible.

La survie des pathogènes sur les végétaux est souvent inférieure à 1 mois du fait de l’inactivation par le dessèchement et la lumière. En Ardèche, aucune salmonelle n’a
été détectée sur des herbes de prairies de fauche après un épandage de boues (chambre d’agriculture 07 1998), ce qu montre que les salmonelles sont fragiles.

Aucune étude publiée ne montre la transmission à l’homme de pathogènes venant d’animaux ayant pâtré sur une parcelle épandue. La cellule nationale de veille sanitaire vétérinaire des épandages de boues n’a jamais établi de lien direct entre l’épandage des boues et des accidents pathologiques depuis le début de son fonctionnement en 1997.

Autres sources de pathogènes dans l’environnement

Dans les zones agricoles, les autres sources environnementales importantes de pathogènes, autres que les boues d’épuration, sont constituées essentiellement par les effluents d’élevage, les animaux sauvages et les oiseaux qui constituent un bruit de fond dans les milieux environnementaux (salmonelles, campylobacter spp., cryptosporidium sp…).

À titre de comparaison, il est possible de calculer les flux de salmonelles et de cryptosporidium provenant des boues épandues annuellement et de les comparer aux flux de pathogènes épandus provenant des effluents agricoles. (Détail des calculs p.57 et p.82 de la base scientifique éditée par l’INERIS)

Les résultats sont présentés dans le tableau suivant :

<table>
<thead>
<tr>
<th></th>
<th>Flux de pathogènes épandus annuellement/hectare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boues d’épuration</td>
</tr>
<tr>
<td>Salmonelles</td>
<td>6.10^9 (charge maximale)</td>
</tr>
<tr>
<td>Oocystes de</td>
<td>6.10^7</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 27 : Comparaison des flux de salmonelles et Cryptosporidium épandus en France provenant, soit des boues d’épuration, soit d’effluents agricoles.

Certains pathogènes sont naturellement présents dans les milieux environnementaux (Clostridium spp., Aeronomas spp., Listeria monocytogenes…).

C) DONNEES EPIDEMIOLOGIQUES

La position des experts du groupe de travail est la suivante.

L’examen de l’ensemble des données épidémiologiques disponibles dans la littérature a mené le groupe à 3 conclusions principales :

1/ En France, l’eau potable est un milieu très surveillé et les événements sanitaires qui peuvent y être reliés sont largement étudiés. Dans cette surveillance, les épandages de boues n’ont jamais été mis en cause lors de la recherche de l’étiologie d’une épidémie liée à l’ingestion d’eau potable.

2/ de manière plus générale, aucun événement sanitaire lié aux boues, épandues dans le strict cadre de la réglementation française, n’a jamais été rapporté.

3/ Des études montrant des effets (faibles et/ou jugés bénins par les auteurs) liés à l’exposition des boues ou des eaux usées (proche dans le type de contamination) sont rares, divergentes et liées aux milieux professionnels.
L’ensemble de ces observations conduit le groupe de travail à émettre l’avis que le risque biologique des épandages de boues d’épuration pour la population générale est faible.

D) POPULATIONS CIBLES ET VOIES D’EXPOSITION

- Population cible

Dans le cadre de son travail d’étude sur les plans d’épandage soumis à autorisation, le groupe de travail, l’INERIS retient les populations cibles suivantes :

- L’agriculteur sur la parcelle amendée,
- Les riverains des sites d’épandage dont le potager jouxte la parcelle amendée et consommant leur production potagère.

Remarque : l’enfant jouant sur la parcelle amendée est plausible mais se rapproche du scénario « agriculteur »

- Les voies d’exposition considérées et population correspondante

Les voies d’exposition considérées par l’INERIS sont les suivantes :

- Ingestion de poussières de sol d’une parcelle :
 Agriculteur lors de l’activité d’épandage ou lors du travail de la terre un mois après, riverain avec potager lors de son activité de jardinage.
- Ingestion de légumes-feuilles, légumes fruits et fruits cultivés sur un jardin potager riverain de la parcelle amendée contaminés par retombées atmosphériques d’aérosols de boues sur son jardin potager (épandage par rampes d’aspiration équipées de buses et conditions de vents défavorables) et d’autre part par ingestion des poussières de sol du jardin lors de son activité de jardinage : Riverains possédant un potager

Remarque : en l’état actuel de la réglementation et dans le cadre de pratique raisonnables des épandages (limitation des nuisances olfactives), ces conditions sont habituellement interdites ou déconseillées.
- Ingestion de légumes-racines crus (sauf pommes de terre consommées cuites) cultivés sur un sol jardin potager riverain de la parcelle amendée contaminé par l’érosion des sols (pluie + vent) de la parcelle amendée : Riverains possédant un potager

Remarque sur la plausibilité des scénarios : les voies d’ingestion de produits végétaux contaminés, sans être fréquents sont plausibles. En effet, la réglementation prévoit une distance de 100 mètres par rapport aux immeubles ou au ERP (établissement recevant du public.) Les 100 mètres ne s’appliquent pas spécifiquement à la limite de propriété et il est possible qu’un potager soit inclus dans cette distance à la parcelle.

E) LE RISQUE LIE AU PRION

Le risque lié à l’agent d’origine bovine responsable des ESST(Encéphalopathies Subaigües Spongiformes Transmissibles) a été évalué par l’INERIS, en appliquant la démarche anglaise d’évaluation des risques sanitaires publiée par Gale en 2001.

Les niveaux de risque calculés pour l’agriculteur et les riverains sont extrêmement faibles et largement inférieurs au niveau de risque acceptable pour la population. Malgré les incertitudes, la très faible valeur de risque obtenu tend à conclure que le risque lié au prion est extrêmement faible.
III.2.2. Autres informations

Pour les abattoirs de porcs et de volailles, POMPEE conclut que concernant les traitements des boues, les gros abattoirs semblent dotés de systèmes efficaces (par chaulage ou séchage thermique) au regard des réglementations européenne et américaine sur l’abattement des pathogènes dans les boues urbaines. D’après l’auteur, ce sont surtout les abattoirs produisant des boues pâteuses ou liquides, voir même ayant encore recours à l’épandage direct d’effluents bruts ou prétraités qui seront les plus problématiques.

Selon l’auteur, le travail de mise en place et de suivi des épandages est largement généralisé pour les grosses structures, qui allient alors les deux fondamentaux de gestion du risque (traitements efficaces et épandage rigoureux, conforme à la réglementation.) Les manques de transparence, de données de conformité réglementaire, de contrôle et de suivi des épandages qui caractérisent les petites structures sont donc un point à améliorer qui permettra d’agir efficacement sur la réduction du risque biologique.

POMPE souligne le fait que le risque biologique lié à l’épandage des lisiers, des fientes et des fumiers reste entier au niveau des élevages.

En effet, ce risque est caractérisé par :

- La principale source de pathogènes (les déjections animales),
- L’importance du cheptel français concerné
- Le volume important de déjections récupérées
- Le faible pourcentage de traitement de ces déjections animales

Il semble donc important pour elle de se focaliser également à l’amont des abattoirs, c’est à dire au niveau des élevages, si l’on veut véritablement réduire les risques biologiques liés à la pratique d’épandage hors boues d’épuration.

De son côté, DEGLIN (2002) a tenté d’évaluer quantitativement le risque biologique lié à l’épandage des boues de stations d’épuration d’abattoirs de ruminants. Malgré un certain nombre de résultats obtenus, l’auteur souligne que cette quantification comporte de nombreuses incertitudes, trop importantes pour que les valeurs puissent être considérées comme solides. Par contre, elle met en évidence que les personnes ingérant des plantes cueillies à proximité des champs d’épandage s’exposent à un danger notoire d’infection par E. Coli pathogène ou Salmonelle (deux des cinq agents pathogènes étudiés, les autres agents non pas été retenus en l’absence de connaissance soit sur la relation dose-réponse, soit sur la contamination des boues.)
III.3. Position de l’INERIS

Ainsi, il souligne que l’évaluation des risques sanitaires liés aux agents biologiques est entourée de nombreuses incertitudes résultant notamment de l’utilisation de paramètres ou de relations biologiques peu connus. Ces lacunes ont conduit la groupe de travail à conclure qu’une évaluation quantitative des risques dans le cadre de la demande d’autorisation des plans d’épandage n’était pas faisable, ni opportune en l’état actuel des connaissances.

L’INERIS propose une démarche générale en deux temps basée sur une analyse qualitative des risques biologiques, et ensuite, une maîtrise de ces risques dans le cadre des plans d’épandage.

Ainsi, l’analyse des risques peut être menée selon le synoptique suivant qui inclut les renseignements descriptifs à fournir pour décrire les boues, les populations exposées et les mesures préventives.

Le synoptique [7] est le suivant:
Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006

Sources :
- Dossier de demande d’autorisation et chapitre I de la Base scientifique de l’évaluation

Le producteur délivre des boues :
- Caractérisation des activités raccordées
- Description des traitements propres au site
- Impact des traitements des eaux et des boues, et du stockage sur la charge en micro-organismes

Résumé comme dans le tableau ci-contre

Conclusions sur la maîtrise des risques - Fin de l’analyse qualitative

Consommateurs des produits de la parcelle épandue (cf. Base scientifique de l’évaluation)
- Non concernés

Consommateurs de produits de jardins potagers riverains de la parcelle épandue (inf. 100 m)

Etablissement raccordé
- Type boue
- Traitement des boues
- Stockage

<table>
<thead>
<tr>
<th>Activité industrielle</th>
<th>ERP</th>
<th>Primaire</th>
<th>Digestion</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abattoir</td>
<td>Hôpital</td>
<td>Secondaire</td>
<td>Chaulage</td>
<td>Durée</td>
</tr>
<tr>
<td>Laiterie</td>
<td>Maison de repos</td>
<td>Mixte</td>
<td>Séchage</td>
<td>Lieu</td>
</tr>
<tr>
<td>Industrie chimique</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Description des populations et des voies d’exposition

Consommateur des produits de la parcelle épandue (cf. Base scientifique de l’évaluation)
- Non concernés

Agriculteur exploitant la parcelle épandue

Information de l’agriculteur sur les mesures de précaution : utilisation d’un tracteur fermé, lavage de mains après le travail de la parcelle ou la maintenance des engins…

Très faible dispersion de microorganismes dans l’environnement (sous les seuils de quantification)

Discussion sur le suivi du procédé hygiénisant (Coliformes thermotolérants, pH, température…) - Existence de solutions correctives

Production d’une analyse le démontrant sur les 3 critères de la réglementation : salmonelles, entérovirus, œufs d’helminthes viables

Conclusions sur la maîtrise des risques - Fin de l’analyse qualitative

Conclusions sur la maîtrise des risques - Fin de l’analyse qualitative
Troisième partie : Gestion des risques- mesures compensatoires

I- Micro-polluants chimiques

Les risques liés aux micro-polluants chimiques sont dus à l’accumulation des risques résultant majoritairement d’une exposition aux teneurs dans les sols assimilables à un bruit de fond et de façon minoritaire aux teneurs dans les sols apportées par les boues. L’évaluation des risques menée dans le cas 3 nous montre que la population en général est exposée à un risque inacceptable par consommation de produits végétaux et d’animaux issus des terres agricoles françaises non épandues.

Le risque cumulé engendré lors de l’épandage des boues est par conséquent lui aussi inacceptable, les boues participant à une faible part de ce risque.

Il semblerait indispensable, d’opérer, conjointement à la réduction des seuils de concentrations en micro-polluants dans les boues, une réduction des seuils de concentration dans les sols agricoles français. Agir en priorité sur les sols pourrait permettre de réduire significativement le risque auquel est exposée la population française.

Ainsi, nous avons tenté d’estimer les teneurs dans les sols français permettant d’obtenir un risque acceptable minimum. Pour cela, nous avons pris en compte les données du cas 3, décrit plus haut. Le calcul s’est basé sur la prise en compte uniquement des substances qui participent de façon majoritaire au risque, à savoir toutes les substances entrant dans l’évaluation préalable sauf le mercure inorganique, les LAS et les NPE. Seule la voie d’exposition majeure a été retenue pour chaque composé (ex : effet à seuil du nickel à consommation de végétaux), selon le type d’effet considéré. Enfin, la participation de chaque composé au risque total. Cela a été fait pour les effets sans seuil et les effets à seuil, puis, la teneur minimale a été retenue. La notion de risque acceptable minimum a été prise égale à 95 % du risque inacceptable (1 pour les effets à seuil et 10^{-5} pour les effets sans seuil.) Les teneurs maximales acceptables dans les sols sont résumées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Substances</th>
<th>Teneurs mg/kg sol</th>
<th>Substances</th>
<th>Teneurs mg/kg sol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2,77E-04</td>
<td>Zinc</td>
<td>7,54E-02</td>
</tr>
<tr>
<td>Chrome</td>
<td>3,48E-02</td>
<td>Dioxines</td>
<td>9,84E-10</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,42E-02</td>
<td>PCB (congénères)</td>
<td>3,73E-06</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>4,62E-07</td>
<td>HAP (11 européens)</td>
<td>8,14E-05</td>
</tr>
<tr>
<td>Nickel</td>
<td>7,10E-04</td>
<td>DEHP</td>
<td>2,22E-08</td>
</tr>
<tr>
<td>Plomb</td>
<td>2,84E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 28 : teneurs maximales souhaitables dans les sols

Ces résultats montrent que les concentrations permettant d’exposer la population à un risque acceptable sont très faibles. Il faut noter que de nombreuses incertitudes existent sur ces résultats. Notamment, on peut noter que les teneurs en plomb dans les sols vont diminuer en raison de l’interdiction de son utilisation dans les carburants depuis 2000. La participation du plomb au risque global tend donc à diminuer, cela augmenterait la part du risque dû à d’autres micro-polluants dans les sols, augmentant ainsi, les seuils.

Il faut également souligner le fait, que les concentrations utilisées pour les calculs sont les valeurs moyennes pour chaque polluant.
En conclusion, il ne semble pas envisageable de construire une grille multicritères permettant d’identifier des situations à risque particulières générées lors de l’épandage de boues, puisque, la majorité du risque provient des sols et non des boues qui y sont ajoutées.

II- Agents pathogènes

II.1. En général

Plusieurs points sont à mettre en exergue par rapport à la gestion des risques liés aux agents pathogènes :

- Les restrictions d’épandage fixées par l’arrêté du 8 janvier 1998 en fonction du caractère hygiénisé ou non des boues, semblent assurer un risque minimal pour la population, au regard des connaissances disponibles, sauf dans les cas identifiés par l’INERIS dans son guide qualitatif du 04 novembre 2005 et reproduit ci-dessus ; Si ce risque est minimal, il n’assure pas une innocuité totale, mais le terme « minimal » traduit plus une maîtrise de ce risque en l’état des connaissances actuelles.

- L’arrêté du 30 avril 2004, relatif aux établissements d’abattage d’animaux, qui fixe la nature des déchets pouvant être épandus, semble également assurer aux populations potentiellement exposées une exposition à un risque minimal.

- Le risque majeur semble a priori lié à l’épandage des fumiers non-traités, des pailles, du contenu des fosses à lisier et des matières stercoraires.

En effet, le volume de déjections animales épandu est très important, la concentration en éléments pathogènes peut être importante et le pourcentage de traitement de ces déjections animales est faible. Ainsi, il est raisonnable de penser que le risque encouru par la population lors de l’épandage des déjections animales est plus important que celui engendré lors de l’épandage de boues.

Comme pour les micro-polluants chimiques, il semble que le risque soit à relativiser par rapport à des risques liés à d’autres pratiques. Cependant, il faut garder en tête que ce risque peut s’ajouter aux autres, voire les multiplier et créer des situations où le risque peut être très élevé pour certaines populations.

Ainsi, il est indispensable de développer la recherche sur les pratiques citées ci-dessus, d’acquérir des connaissances sur le comportement, les concentrations dans l’environnement et les relations dose-réponse de nombreux agents pathogènes afin d’évaluer les risques liés à la présence de ces pathogènes dans l’environnement direct de l’homme.
II.2. Cas particuliers identifiés par l’INERIS

II.2.1. Mesures de précaution à prendre pour l’agriculteur

Dans le cas où l’agriculteur enfouirait les boues 24 à 48 heures après épandage ou dans le cas où il interviendrait sur les parcelles dans les 30 jours qui suivent l’épandage, il est recommandé de limiter le risque par des mesures préventives efficaces telles que :

- L’intervention sur les terres à l’aide d’un tracteur avec cabine climatisée
- Le port de vêtements de travail spéciaux à ôter en dehors du lieu d’épandage, pour éviter tout transfert de contamination lors de la manipulation et de l’épandage des boues
- Le lavage sélectif des vêtements
- Le port d’un masque pourrait éviter l’inhalation de particules et d’aérosols lors de l’épandage de boues liquidides ou de boues très sèches
- Une hygiène personnelle stricte, afin d’éviter toute ingestion accidentelle de boue,
- Une surveillance médicale

II.2.2. Dans le cas où il existerait des consommateurs de produits de jardins potagers riverains de la parcelle épandue (inf. 100 m)

- Si l’épandage génère des aérosols, il est nécessaire de limiter la formation de ces derniers en :
 - Evitant l’utilisation de la buse d’épandage : et équipement est le moins cher pour épandre les boues liquides, mais, le produit tend à se vaporiser et à produire de mauvaises odeurs.
 - Limitant l’utilisation de la rampe à buse d’épandage ; La rampe permet de maîtriser la largeur du travail et les jets sont moins amples et plus près du sol que celui de la buse unique, il y a donc beaucoup d’aérosols produits. Il est également conseillé de limiter son utilisation dans des conditions ventées.
 - Favorisant l’utilisation de rampe à pendillards. Cette dernière est constituée par une rampe fixée sur la tonne à lisier, sur laquelle est placée une série de tuyaux dont l’extrémité repose au sol. Le liquide épandu ne sait pas les feuilles de la végétation, il y a moins d’odeurs émises que lors de l’utilisation d’une rampe à buses. L’inconvénient principal est dû au fait que le système est sensible au bouchage avec des produits chargés. Cet équipement est également plus coûteux à l’achat qu’une rampe à buses.
 - Favorisant l’enfouissement simultané des boues

Remarque : Il convient de rappeler que l’article 15 du décret du 8 décembre 1997 spécifie que l’épandage à l’aide de dispositifs d’aérodispersion, qui produisent des brouillards fins, est interdit.

- S’il existe un risque d’érosion, il est nécessaire de limiter ce risque en :
 - installant des bandes enherbées sur les bords des parcelles
 - installant des fossés d’isolement
 - installant des barrières naturelles végétales (haies, …) entre les parcelles et les potagers sensibles

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
II.2.3. procédés hygiénisants

La commission européenne (EC 2003) a proposé dans un nouveau document officiel des traitements avancés garantissant la réduction en pathogènes à des niveaux « non-significatifs » c’est à dire entraînant « un risque minimal » (non défini) pour l’homme, l’animal et les écosystèmes (tableau 29) :

<table>
<thead>
<tr>
<th>Procédé</th>
<th>Paramètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compostage en andains</td>
<td>55°C pendant 4 heures à chaque retournement (3 en tout), suivi d’une maturation</td>
</tr>
<tr>
<td>Compostage en andains et en tunnel</td>
<td>55 °C, 4 heures, suivi d’une stabilisation complète</td>
</tr>
<tr>
<td>Séchage thermique</td>
<td>80 °C pendant 10 minutes et réduction de l’humidité en dessous de 10%</td>
</tr>
<tr>
<td>Stabilisation thermophile (aérobie et anaérobie)</td>
<td>55 °c pendant une période continue de 4 heures et un temps e séjour suffisant pour stabiliser la boue</td>
</tr>
<tr>
<td>Traitement thermique suivi d’une digestion</td>
<td>80°C, 10 minutes ou 75°C, 20 mn ou 70°C, 30 mn suivi d’une digestion anaérobie mésophile à 35 °C avec un temps de séjour de 12 jours</td>
</tr>
<tr>
<td>Chaulage</td>
<td>12.6, 55 °C, deux heures après mélange à cœur</td>
</tr>
</tbody>
</table>

Tableau 29 : Procédés hygiénisants décrits dans le Draft 4.
III- Organisation de la veille

Il est possible d'organiser une veille permettant d'actualiser les différentes informations relatives à l'épandage des boues issues des stations d'épuration urbaines et industrielles.

III.1. En général

L'épandage des boues en agriculture peut influer sur de nombreux compartiments environnementaux. De plus, la qualité des boues demande une gestion bicéphale. En effet, il est possible d'intervenir en aval de l'épuration des eaux en traitant et en condicionnant les boues, mais aussi en amont, en maîtrisant la nature et la qualité des eaux résiduaires à épurer. Pour toutes ces raisons, de nombreux organismes interviennent dans la gestion des boues et de leur recyclage agricole et à différents niveaux.

Ainsi, la veille s'actualise auprès :

- De l’AFSSET (Agence Française de Sécurité Sanitaire de l’Environnement et du Travail) (http://www.afsse.fr/)
- De l’AFSSA (Agence française de Sécurité Sanitaire des Aliments) (http://www.afssa.fr)
- De l’OMS (Organisation Mondiale de la Santé) (http://www.who.int/en/)
- De la DGS (Direction Générale de la Santé) (http://www.sante.cfwb.be/pg001.htm)
- De l’ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie) (http://www.ademe.fr/servlet/getDoc?id=11433&m=3cid=96)
- De la cellule nationale de veille sanitaire vétérinaire des épandages de boues, intégrée à l’ADEME (http://www.ademe.fr/collectivites/bois-energie/pages/Filiere/cellule_veille/)
- De l’INVS (Institut National de Veille Sanitaire) (http://www.invs.sante.fr/)

III.2. Veille scientifique

La veille scientifique s’intéresse plus particulièrement aux avancées en terme de connaissances sur le comportement des polluants dans l’environnement, sur leur analyse, sur leur toxicité ou encore sur leur concentration dans les différents compartiments environnementaux. Les différentes bases de données et organismes à consulter sont les suivants :

- Environnement canada (http://www.ec.gc.ca/fenvhome.html)
- Science direct, qui est une base de données recensant toutes les publications scientifiques publiées dans les journaux scientifiques internationaux (http://www.sciencedirect.com/)

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
III.3. Veille réglementaire

La veille réglementaire s'effectue auprès d'organismes bien connus :

- Le site de légifrance (http://www.legifrance.gouv.fr/)
- Le site de l'union européenne (http://europa.eu/pol/agr/index_en.htm)
L'épandage de boues issues de stations d'épuration est une pratique régulière en France depuis plusieurs dizaines d'années.

Cette opération est encadrée par de nombreuses règles sanitaires éditées notamment dans l'arrêté du 8 janvier 1998.

En 1996, la loi sur l'air, modifie le contenu des études d'impact, elle impose notamment qu'une évaluation des risques (EVR) soit réalisée systématiquement. L'épandage des boues rentrant dans le champ d'application de cette loi, une évaluation des risques relatifs à cette activité devenait indispensable. Ainsi, la démarche applicable aux boues a fait l'objet de propositions de la part de l'INERIS missionnée par le Syprea entre autre.

Ce mémoire, a été réalisé à la demande de l'un des membres du Syprea, SEDE Environnement qui se place parmi les premiers épadeurs de boues français.

Ce mémoire avait pour objectif de compléter la démarche proposée en s'intéressant à l'incidence du bruit de fond sur l'EVR, à la prise en compte de dangers chimiques non considérés par l'INERIS, et devait permettre de faire également un point sur l'état des connaissances concernant les agents microbiologiques.

Pour les micro-polluants chimiques, l'évaluation quantitative des risques montre que les boues apportent dans les sols français des quantités de micro-polluants faibles par rapport aux quantités déjà présentes. D'autres activités qui sont parfois moins réglementées, sont des sources non-négligeables de pollution dans les sols. De ce fait, il semble indispensable de considérer les boues par rapport aux diverses sources de pollution existant dans l'environnement et notamment par rapport à la déposition atmosphérique. Par conséquent, aucune situation à risque n'a pas eu être identifiée comme propre à l'épandage des boues.

En revanche, pour les agents pathogènes, certaines situations à risque en lien avec l'épandage des boues, ont pu être identifiées. Elles concernent des épandages réalisés sur des parcelles pour lesquelles des potagers se situaient, dans les 100 m environnant. En conséquence, limiter la formation d'aérosols lors de l'épandage et limiter l'érosion des sols, en général, sont les deux principales mesures de gestion proposées.

Ces informations sont à replacer dans le contexte actuel des connaissances. En effet, ce travail met en avant que le besoin en terme de recherche est toujours aussi important. Il serait intéressant d’acquérir des connaissances sur le comportement général de certains micropolluants dans l’environnement, comme par exemple les organochlorés et plus particulièrement, sur le comportement de certains micropolluants qui ont une forte tendance à s’accumuler dans la chaine alimentaire, comme les HAP et les PCB.

Enfin, ce travail rappelle que toute évolution du cadre sanitaire passe par des progrès en matière d’analyse des polluants chimiques et des agents biologiques.

En conclusion, il semble indispensable d’assurer une gestion globale de la qualité des sols en prenant en compte les diverses sources d’apport.
Bibliographie

[21.] INRS, fiche toxicologique INRS n°249, édition 2004 : Nonylphénol et 4-nonylphénol ramifié, 5 pages.

[29.] MULLER G.- Sense or no-sense of the sum parameter for water soluble “adsorbable organic halogens” (AOX) and “absorbed organic halogens” (AOX-S18) for the assessment of organohalogens in sludges and sediments - Chemosphere, (2003) 52 371-379.

[42.] TYLER CR and Al. - Accounting for differences in estrogenic responses in rainbow trout and roach exposed to effluents from wastewater treatment works - Environment Sciences Technologies, 15 april 2005, n39 (8) : 2599-607

Sites Internet généraux

- http://www.epa.gov/
Abstract

Health risk assessment in relation with metallic trace element, organic trace compound and pathogen during spreading of sludge from urban and agri-food industry wastewater treatment plants

The spreading of sludge from wastewater treatment plant is a regular use. Certain cases of spreading are subjected to the regulation relating to the Installations Classified for the environment subjected to authorization and must be the subject of an impact study. However, the law on air of 1996 modified impact study nature and require form now to integrate an health risk assessment into it. Within this framework, the professionals of spreading, and in particular SEDE Environment, asked the INERIS to build a approach and a methodology allowing them to answer this request of the administration.

This memory complete the approach suggested by the INERIS by interesting in the incidence of the background noise on the EVR, by taking into account of chemical hazards not considered by the INERIS, and also by giving a progress of project on knowledge relating to the microbiological agents.

The results feature chemical micro-pollutants accumulation in the food chain is the most important route of exposure for population.

For chemical micro-pollutants, quantitative risk assessment show that quantity brought to French soils by sludge is low in comparison with initial quantity. Other activities, sometimes less regulated, are non immaterial sources of pollution in soils. So, it's necessary to consider sludge in comparison with other sources of pollution in the environment, especially in comparison with atmospheric deposition. As a consequence, none situation own to the spreading of sludge was identified as a situation generating risks.

However, for pathogens, certain situations generating risks are identified as due to the spreading of sludge.

In conclusion, primary, it's necessary to develop knowledge about micro-pollutants behavior in the environment, more especially in the food chain. Secondly, it's necessary to ensure a global management of the soils quality by taking into account all the sources of contribution.

Key-words : Sludge, waste water treatment plant, WWTP, spreading, agricultural recycling, chemical micro-pollutants, pathogens, metallic trace elements, organic trace compounds, health risks
LISTE DES ANNEXES

<table>
<thead>
<tr>
<th>Annexe I. : les traitements des boues</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les traitements visant À réduire le contenu en eau des boues</td>
<td>7</td>
</tr>
<tr>
<td>Les traitements visant À stabiliser les boues</td>
<td>8</td>
</tr>
<tr>
<td>Annexe II. : La réglementation française</td>
<td>9</td>
</tr>
<tr>
<td>Les éléments-traces métalliques</td>
<td>9</td>
</tr>
<tr>
<td>Les composés-traces organiques</td>
<td>10</td>
</tr>
<tr>
<td>Les autres règles à respecter</td>
<td>10</td>
</tr>
<tr>
<td>Annexe III. : Les évolutions européennes proposées</td>
<td>13</td>
</tr>
<tr>
<td>Les éléments traces-métalliques</td>
<td>13</td>
</tr>
<tr>
<td>Les composés-traces organiques</td>
<td>15</td>
</tr>
<tr>
<td>Les autres évolutions européennes majeures proposées</td>
<td>16</td>
</tr>
<tr>
<td>Annexe IV. : LEs HAP, PCB et dioxines</td>
<td>20</td>
</tr>
<tr>
<td>HAP</td>
<td>20</td>
</tr>
<tr>
<td>PCB</td>
<td>22</td>
</tr>
<tr>
<td>PCDDs</td>
<td>23</td>
</tr>
<tr>
<td>Annexe V. : NPE et LAS</td>
<td>25</td>
</tr>
<tr>
<td>Les NPE</td>
<td>25</td>
</tr>
<tr>
<td>Les LAS</td>
<td>32</td>
</tr>
<tr>
<td>Annexe VI. : DEHP et AOX</td>
<td>37</td>
</tr>
<tr>
<td>Le DEHP [24]</td>
<td>37</td>
</tr>
<tr>
<td>Les AOX [29]</td>
<td>38</td>
</tr>
<tr>
<td>Annexe VII. : les estrogènes</td>
<td>53</td>
</tr>
<tr>
<td>Sources majeures d’estrogènes dans les sols</td>
<td>53</td>
</tr>
<tr>
<td>Devenir dans l’environnement</td>
<td>54</td>
</tr>
<tr>
<td>Propriétés physico-chimiques [38]</td>
<td>58</td>
</tr>
<tr>
<td>Dangers pour l’environnement et pour les hommes</td>
<td>59</td>
</tr>
<tr>
<td>Annexe VIII. : Résultats de l’étude AGHTM de 2002 : concentrations des micropolluants chimiques dans les boues</td>
<td>61</td>
</tr>
<tr>
<td>Annexe IX. : Concentrations en micropolluants chimiques assimilables au « bruit de fonds », dans les sols non amendés préalablement</td>
<td>63</td>
</tr>
<tr>
<td>Eléments traces métalliques</td>
<td>63</td>
</tr>
<tr>
<td>Micro-polluants organiques</td>
<td>64</td>
</tr>
<tr>
<td>Annexe X. : Feuilles détaillant les données utilisées pour l’évaluation des risques</td>
<td>65</td>
</tr>
<tr>
<td>Substances</td>
<td>65</td>
</tr>
<tr>
<td>Cibles 66</td>
<td>67</td>
</tr>
<tr>
<td>Nature des parcelles amendées</td>
<td>67</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pondérés par les types de cultures du plan d’épandage</td>
<td>68</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour la betterave sucrière</td>
<td>69</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour le blé</td>
<td>70</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour le colza</td>
<td>71</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour le maïs</td>
<td>72</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour l’orge</td>
<td>73</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour le tournesol</td>
<td>74</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour la pomme de terre</td>
<td>75</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour la prairie</td>
<td>76</td>
</tr>
<tr>
<td>Facteurs de bioconcentration pour la chicorée</td>
<td>77</td>
</tr>
</tbody>
</table>
Tableau 1 : Teneurs limites en éléments-traces dans les boues ... 9
Tableau 2 : Flux cumulé maximum en éléments-traces apporté par les boues pour les pâturages ou les sols de pH inférieurs à 6 ... 9
Tableau 3 : Teneurs limites en composés-traces organiques dans les boues 10
Tableau 4 : Valeurs limites de concentration en éléments-traces dans les sols 10
Tableau 5 : distances d’isolement et d’»lais de réalisation des épandages en fonction des activités, des cultures et des pratiques ... 12
Tableau 6 : Valeurs limites des concentrations en métaux lourds dans les sols 13
Tableau 7 : Valeurs limites des concentrations en métaux lourds dans les boues 13
Tableau 8 : Valeurs limites en flux de métaux lourds pouvant être ajoutés annuellement au sol .. 14
Tableau 9 : Valeurs limites pour les composés organiques ... 15
Tableau 10 : Restrictions d’utilisation des boues selon leur nature dans le Draft 4 19
Tableau 11 : Concentrations en micro-polluants en fonction de la distance par rapport à une voie de circulation ... 21
Tableau 12 : teneurs en DEHP des sols selon le type de fertilisation dans des sols danois . 37
Tableau 13 : les AOX de la norme NF ISO 15009 : Hydrocarbures halogénés volatils 41
Tableau 14 : Sources principales de ces AOX .. 51
Tableau 15 : Excrétion journalière (µg) de stéroïdes oestrogéniques chez les humains 53
Tableau 16 : quantités d’estrogènes excrétées quotidiennement par différents types d’animaux (par animal) ... 54
Tableau 17 : Concentrations en estrogènes dans les effluents et affluents à Paris 56
Tableau 18 : Taux d’enlèvement des estrogènes à la suite du processus de traitement (%) 58
ANNEXE I. : LES TRAITEMENTS DES BOUES

LES TRAITEMENTS VISANT À RÉDUIRE LE CONTENU EN EAU DES BOUES

Le conditionnement peut être chimique, il consiste à ajouter des floculants organiques de synthèse (poly électrolytes) ou minéraux (chaux, sels de fer ou d'aluminium) pour favoriser la séparation liquide-solide. Il peut aussi être thermique, poussé (la boue est portée à 40-50 °C). Lors du conditionnement thermique poussé, il y a transformation physique de la boue, et 40 à 50 % de siccité peuvent ainsi être obtenus sans ajout de réactif, mais ce phénomène provoque l'hydrolyse d'une partie de la matière organique et les filtrats issus des boues sont très chargés en pollution carbonée et en azote, avec dégagement de mauvaises odeurs. Par contre, le conditionnement thermique partiel permet d'éviter de trop charger les filtrats en pollution carbonée et en azote, tout en augmentant la performance des procédés de réduction de la teneur en eau.

L'épaississement vise à augmenter la siccité des boues sans pour autant modifier le caractère liquide de la boue. Il peut se faire par voie gravitaire dans un concentrateur (cuve cylindrique à fond conique, la boue épaissie est évacuée par le bas, qui peut être équipée de lamelles pour augmenter la surface de décantation) ou par voie mécanique par égouttage (la boue est disposée sur une toile filtrante), flottation (des fines bulles d'air permettent à la boue de remonter en surface ; il est réservé aux boues biologiques de faible densité) ou centrifugation. La siccité des boues épaissies se situe vers 5-6% en moyenne et ne dépasse pas usuellement 7%. Les boues épaissies gravitationnellement ne sont généralement pas conditionnées et leur siccité plafonne à 3-3,5 %. Ce procédé est fréquent en zone rurale et concerne les petites stations d'épuration, de taille inférieure à 2000 équivalents-habitants. C'est aussi le procédé dont le coût est le moins élevé.

La déshydratation vise à augmenter fortement la siccité et modifie pour cela l'état physique des boues (passage d’un état liquide à un état pâteux ou solide). Des filtres à bandes, des centrifugeuses et des filtres-presses sont utilisés. Les filtres à bandes permettent d'obtenir des boues à 18-20 % de siccité et les centrifugeuses des boues à 20-25 % de siccité ; ces boues sont donc pâteuses. Par contre, les filtres-presses produisent des boues solides (dont la siccité atteint 30-35 %) car utilisent à la fois un conditionnement au lait de chaux et des pressions élevées. Les filtres-presses restent cependant réservés aux installations les plus importantes. Les filtres à bandes sont les matériels de déshydratation les plus utilisés en France : ils représentent plus de 80 % du parc des matériels de déshydratation.

Le séchage élimine en grande partie ou en totalité l’eau par évaporation, par voie naturelle (lits de séchage) ou thermique.

La technique des lits de séchage se pratique à l’air libre sur des boues liquides et combine évaporation naturelle et drainage de l’eau libre à travers une couche filtrante de sables et graviers. Les boues obtenues ont 35-40% de siccité mais ce résultat dépend des conditions météorologiques ; de plus, la surface au sol nécessaire est importante (1 m² pour 4-5 habitants raccordés). Cette technique est aujourd'hui en déclin (contraintes de main d’œuvre).

Le séchage thermique permet d'obtenir un séchage partiel des boues (30 à 45 % de siccité), un séchage poussé (60 à 90 % de siccité) voire un séchage total (plus de 90 % de siccité). Il fonctionne selon deux grands procédés, le séchage direct (convection), où la boue est séchée par contact direct avec un gaz chaud, et le séchage indirect (conduction), où la boue est séchée avec une paroi chauffée par un fluide caloporteur. Il existe aussi des sécheurs mixtes couplant ces deux types de procédés. C'est un procédé peu utilisé en France en raison de son coût.
LES TRAITEMENTS VISANT À STABILISER LES BOUES

La stabilisation chimique est réalisable grâce à deux voies : la voie aérobie et la voie anaérobie.

La voie anaérobie se fait dans des digesteurs avec production de biogaz riche en méthane. Les matières organiques digérables subissent des réactions biologiques (hydrolyse des macromolécules en composés simples et gazéification, essentiellement sous forme de CO₂ et CH₄). Les boues obtenues sont dites « anaérobies » ou « stabilisées anaérobies » ou « digérées ». La digestion anaérobie est pratiquée dans 200 stations d'épuration en France, de taille souvent supérieure à 50 000 équivalents-habitants ; cela représente 21 millions d'équivalents habitants au total. La méthanisation permet une réduction de 1/3 de la masse en matières sèches dans les boues.

La voie aérobie se fait par injection d’air dans une cuve agitée ; elle peut être utilisée en pré-digestion avant de subir un traitement anaérobie. Le principe n’est pas fondamentalement différent des boues activées ; par contre les concentrations, les températures et la flore impliquées diffèrent. Les boues obtenues sont dites « aérobies » ou « stabilisées aérobies ». La stabilisation biologique est le procédé de plus employé en France (plusieurs milliers de stations d’épuration), parfois en combinaison avec des procédés chimiques ou thermiques.

Le compostage est un cas particulier de stabilisation biologique aérobie. Il se réalise de préférence sur des boues déjà déshydratées et stabilisées biologiquement, et nécessite l’apport d’un co-produit structurant (sciure, écorces, fumier, papier…) pour augmenter le degré de vide, assurer la montée en température et absorber l’eau des boues. Cet ensemble constitué de boues et co-produit évolue durant plusieurs semaines, durant lesquelles se déroulent une étape de fermentation (qui se décompose en quatre étapes durant lesquelles le tas de compost doit être régulièrement aéré), une étape de criblage (éventuellement pour affiner le produit final et en recycler une partie) et une étape de maturation (pour compléter la dégradation). Les boues obtenues ont un aspect de terreau, sont solides et stables, avec une siccité pouvant atteindre 60 %. Leur pH est proche de la neutralité (6,5 à 7).

La stabilisation chimique consiste en l’ajout d’une quantité importante de chaux. Deux formes sont possibles : la chaux vive CaO ou la chaux éteinte Ca(OH)₂. Le pH augmente, ce qui bloque l’activité biologique de la boue et donc son évolution ; le chaulage permet aussi une maîtrise des nuisances olfactives (car à pH basique le dégagement des composés soufrés malodorants est inhibé). Si le traitement est réalisé à la chaux vive, on a de plus une action déshydratante poussée (migration de l’eau libre de la boue vers la chaux vive, pour former alors la chaux éteinte) et une action germicide (due à l’augmentation de la température et du pH). Une déshydratation préétablie est nécessaire au chaulage des boues sauf dans le cas des filtres-presses où un lait de chaux est directement mélangé aux boues liquides ; de préférence les boues chaulées sont d’abord stabilisées biologiquement. Les boues obtenues sont pâteuses ou solides et appauvries en azote. Quand la dose de chaux appliquée est suffisante, la stabilisation peut être maintenue plusieurs mois.

Il peut aussi s’agir d’une stabilisation aux nitrites, qui est bien adaptée pour les stations de petite taille. La boue épaisse est admise dans un milieu acide maintenu à pH 3 ; elle est alors soumise pendant au minimum 30 minutes à l’action des ions nitrites. Pour stabiliser et habitants de façon poussée, le pH doit être de l’ordre de 2, le temps de séjour d’au moins 2 heures et la concentration en nitrites plus forte.

Le séchage thermique (présenté précédemment) réalisé sur des boues déjà déshydratées mécaniquement, permet de stabiliser les boues tant qu’elles ne sont pas ré humectées. En effet, une siccité élevée empêche tout développement microbien.
ANNEXE II.: LA REGLEMENTATION FRANÇAISE

LES ELEMENTS-TRACES METALLIQUES

<table>
<thead>
<tr>
<th>Éléments-traces</th>
<th>Valeur limite dans les boues (mg/kg MS)</th>
<th>Flux maximum cumulé, apporté par les boues en 10 ans (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>20 (1)</td>
<td>0,03 (2)</td>
</tr>
<tr>
<td>Chrome</td>
<td>1 000</td>
<td>1,5</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1 000</td>
<td>1,5</td>
</tr>
<tr>
<td>Mercure</td>
<td>10</td>
<td>0,015</td>
</tr>
<tr>
<td>Nickel</td>
<td>200</td>
<td>0,3</td>
</tr>
<tr>
<td>Plomb</td>
<td>800</td>
<td>1,5</td>
</tr>
<tr>
<td>Zinc</td>
<td>3 000</td>
<td>4,5</td>
</tr>
<tr>
<td>Chrome + cuivre + nickel + zinc</td>
<td>4 000</td>
<td>6</td>
</tr>
</tbody>
</table>

(1) 15 mg/kg MS à compter du 1er janvier 2001 et 10 mg/kg MS à compter du 1er janvier 2004
(2) 0,015 g/m² à compter du 1er janvier 2001.

Tableau 1 : Teneurs limites en éléments-traces dans les boues

Les boues ne doivent pas être épandues sur des sols dont le pH avant épandage est inférieur à 6, sauf lorsque les trois conditions suivantes sont simultanément remplies :

- Le pH est supérieur à 5;
- les boues ont reçu un traitement à la chaux;
- Le flux cumulé maximum des éléments apportés aux sols est inférieur aux valeurs du tableau X suivant :

<table>
<thead>
<tr>
<th>Éléments-traces</th>
<th>Flux maximum cumulé, apporté par les boues sur 10 ans (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0,015</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,2</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,2</td>
</tr>
<tr>
<td>Mercure</td>
<td>0,012</td>
</tr>
<tr>
<td>Nickel</td>
<td>0,3</td>
</tr>
<tr>
<td>Plomb</td>
<td>0,9</td>
</tr>
<tr>
<td>Zinc</td>
<td>3</td>
</tr>
<tr>
<td>Sélénium (1)</td>
<td>0,12</td>
</tr>
<tr>
<td>Chrome + cuivre + nickel + zinc</td>
<td>0,12</td>
</tr>
</tbody>
</table>

(1) Pour le pâturage uniquement.

Tableau 2 : Flux cumulé maximum en éléments-traces apporté par les boues pour les pâturages ou les sols de pH inférieurs à 6
Les composés-traces organiques

(Arrêté du 3 juin 1998)

<table>
<thead>
<tr>
<th>Composés-traces</th>
<th>Valeur limite (mg/kg MS) dans les boues</th>
<th>Flux maximum par les boues en cumulé, apporté 10 ans (mg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cas général</td>
<td>Eendantage sur pâturages</td>
</tr>
<tr>
<td>Total des 7 principaux PCB (1)</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Fluoranthène</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Benzo(b)fluoranthène</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Benzo(a)pyrène</td>
<td>2</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Tableau 3 : Teneurs limites en composés-traces organiques dans les boues

<table>
<thead>
<tr>
<th>Éléments-traces dans les sols</th>
<th>Valeur limite en mg/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2</td>
</tr>
<tr>
<td>Chrome</td>
<td>150</td>
</tr>
<tr>
<td>Cuivre</td>
<td>100</td>
</tr>
<tr>
<td>Mercure</td>
<td>1</td>
</tr>
<tr>
<td>Nickel</td>
<td>50</td>
</tr>
<tr>
<td>Plomb</td>
<td>100</td>
</tr>
<tr>
<td>Zinc</td>
<td>300</td>
</tr>
</tbody>
</table>

Tableau 4 : Valeurs limites de concentration en éléments-traces dans les sols

Les autres règles à respecter

Les critères définissant une boue hygiénisée

En sortie de la filière de traitement démontrant son caractère hygiénisant, les concentrations suivantes devront être respectées :

- Salmonella < 8 NPP/10 g MS
- Entérovirus < 3 NPPUC/10 g MS
- Oeufs d'helminthes pathogènes viables < 3/10 g MS;
les distances d'isolement et délais de réalisation des épandages

<table>
<thead>
<tr>
<th>Nature des activités à protéger</th>
<th>Distance d'isolement minimale</th>
<th>Domaine d'application</th>
</tr>
</thead>
</table>
| Puits, forages, sources, aqueducs transitant des eaux destinées à la consommation humaine en écoulement libre, installations souterraines ou semi-enterrées utilisées pour le stockage des eaux, que ces dernières soient utilisées pour l'alimentation en eau potable ou pour l'arrosage des cultures maraîchères. | 35 mètres | Tous types de boues, pente du terrain inférieure à 7 %.
| | 100 mètres | Tous types de boues, pente du terrain supérieure à 7 %.
| Cours d'eau et plans d'eau | 35 mètres des berges | Cas général, à l'exception des cas ci-dessous.
| | 200 mètres des berges | Boues non stabilisées ou non solides et pente du terrain supérieure à 7 %.
| | 100 mètres des berges. | Boues solides et stabilisées et pente du terrain supérieure à 7 %.
| | 5 mètres des berges | Boues stabilisées et enfouies dans le sol immédiatement après l'épandage, pente du terrain inférieure à 7 %.
| Immeubles habités ou habituellement occupés par des tiers, zones de loisirs ou établissements recevant du public | 100 mètres | Cas général à l'exception des cas ci-dessous.
| | Sans objet | Boues hygiénisées, boues stabilisées et enfouies dans le sol immédiatement après l'épandage.
| Zones conchylicoles | 500 mètres | Toutes boues sauf boues hygiénisées et sauf dérogation liée à la topographie.
| Nature des activités à protéger | Délai minimum | Domaine d'application |
| Herbages ou cultures fourragères | Six semaines avant la remise à l'herbe des animaux ou de la récolte des cultures fourragères | Cas général, sauf boues hygiénisées.
<p>| | Trois semaines avant la remise à l'herbe des animaux ou de la récolte des cultures fourragères | Boues hygiénisées. |</p>
<table>
<thead>
<tr>
<th>Terrains affectés à des cultures maraîchères et fruitières à l'exception des cultures d'arbres fruitiers</th>
<th>Pas d'épandage pendant la période de végétation.</th>
<th>Tous types de boues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrains destinés ou affectés à des cultures maraîchères ou fruitières, en contact direct avec les sols, ou susceptibles d'être consommées à l'état cru.</td>
<td>Dix-huit mois avant la récolte, et pendant la récolte elle-même</td>
<td>Cas général, sauf boues hygiénisées.</td>
</tr>
<tr>
<td></td>
<td>Dix mois avant la récolte, et pendant la récolte elle-même</td>
<td>Boues hygiénisées</td>
</tr>
</tbody>
</table>

Tableau 5 : distances d'isolement et délai de réalisation des épandages en fonction des activités, des cultures et des pratiques
ANNEXE III.: LES EVOLUTIONS EUROPEENNES PROPOSEES

LES ÉLÉMENTS TRACES-MÉTALLIQUES

<table>
<thead>
<tr>
<th>Eléments</th>
<th>Valeurs limites (mg/kg MS) pour les terres agricoles</th>
<th>Valeurs limites (mg/kg MS) pour les terres non-agricoles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Directive 86/278/EEC</td>
<td>5≤pH(CaCl₂)<6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6000 ; 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6≤pH(CaCl₂)<7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 ; 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH(CaCl₂)≥7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 ; 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6=pH(CaCl₂)=7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 ; 2003</td>
</tr>
<tr>
<td>Cd</td>
<td>1-3</td>
<td>0.5 ; 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ; 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 ; 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ; 3</td>
</tr>
<tr>
<td>Cr (total)</td>
<td>50-140</td>
<td>50 ; 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 ; 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 ; 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ; 150</td>
</tr>
<tr>
<td>Cu</td>
<td>40-140</td>
<td>40 ; 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 ; 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 ; 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ; 140</td>
</tr>
<tr>
<td>Hg</td>
<td>1-1.5</td>
<td>0.2 ; 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 ; 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 ; 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ; 1.5</td>
</tr>
<tr>
<td>Ni</td>
<td>30-75</td>
<td>30 ; 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 ; 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 ; 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ; 75</td>
</tr>
<tr>
<td>Pb</td>
<td>50-300</td>
<td>50 ; 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 ; 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 ; 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ; 300</td>
</tr>
<tr>
<td>Zn</td>
<td>150-300</td>
<td>100 ; 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 ; 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 ; 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ; 300</td>
</tr>
</tbody>
</table>

Tableau 6 : Valeurs limites des concentrations en métaux lourds dans les sols

Les valeurs limites pour les terres non-agricoles sont sensées ne pas être dépassées après l’application des boues et leur mélange avec la couche arable. Dans le cas des terres non-agricoles auxquelles les enfants ont accès, la valeur limite pour le plomb doit être réduite à 200 mg/kg MS de sol.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Directive 86/278/EEC</th>
<th>Valeurs limites (mg/kg MS) 2000-2003</th>
<th>Valeurs limites (mg/kg P †) 2000-2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>20-40</td>
<td>10; 10</td>
<td>250; 400</td>
</tr>
<tr>
<td>Cr (total)</td>
<td>-</td>
<td>1000; 1 000</td>
<td>25 000; 40,000</td>
</tr>
<tr>
<td>Cr(VI)</td>
<td>-</td>
<td>-; 10</td>
<td>250; 400</td>
</tr>
<tr>
<td>Cu</td>
<td>1000-1750</td>
<td>1000 ; 1000</td>
<td>25 000; 40,000</td>
</tr>
<tr>
<td>Hg</td>
<td>16-25</td>
<td>10 ; 10</td>
<td>250; 400</td>
</tr>
<tr>
<td>Ni</td>
<td>300-400</td>
<td>300 ; 300</td>
<td>7500 ; 12 000</td>
</tr>
<tr>
<td>Pb</td>
<td>750-1200</td>
<td>750 ; 750</td>
<td>18750 ; 30 000</td>
</tr>
<tr>
<td>Zn</td>
<td>2500-4000</td>
<td>2 500 ; 2500</td>
<td>62500 ; 100 000</td>
</tr>
</tbody>
</table>

Tableau 7 : Valeurs limites des concentrations en métaux lourds dans les boues

Le producteur de boue peut choisir de respecter soit la valeur limite relative à la matière sèche de la boue, soit celle relative au phosphate qui est basée sur l’hypothèse selon laquelle une tonne de boues en matière sèche contient 25 kg de phosphate.
<table>
<thead>
<tr>
<th>Eléments</th>
<th>Valeurs limites (g/ha/an) (moyenne sur 10 ans)</th>
<th>Valeurs limites (g/ha/an) (moyenne sur 10 ans)</th>
<th>Valeurs limites (g/ha/an) (moyenne sur trois ans)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>150</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Cr (total)</td>
<td>-</td>
<td>1 800</td>
<td>3 000</td>
</tr>
<tr>
<td>Cr(VI)</td>
<td>-</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Cu</td>
<td>12 000</td>
<td>1 800</td>
<td>3 000</td>
</tr>
<tr>
<td>Hg</td>
<td>100</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Ni</td>
<td>3 000</td>
<td>300</td>
<td>750</td>
</tr>
<tr>
<td>Pb</td>
<td>15 000</td>
<td>600</td>
<td>1 500</td>
</tr>
<tr>
<td>Zn</td>
<td>30 000</td>
<td>4 500</td>
<td>7 500</td>
</tr>
</tbody>
</table>

Tableau 8 : Valeurs limites en flux de métaux lourds pouvant être ajoutés annuellement au sol

De plus, l’épandage de boue sur des terres agricoles ne doit pas excéder une charge totale de 30 kg de LAS et de 2.7 kg de Nonylphénol (NP) par hectare sur une moyenne de trois ans. L’autorité compétente peut décider d’autoriser une augmentation de la teneur en cuivre et zinc des boues au cas par cas pour des terres déficientes en zinc et cuivre et pour lesquelles des besoins agronomiques spécifiques en zinc et cuivre ont été prouvés par des experts reconnus.
Les composés-traces organiques

<table>
<thead>
<tr>
<th>Composés organiques</th>
<th>Valeurs limites (mg/kg MS) Directive 86/278/EEC</th>
<th>Valeurs limites (mg/kg MS) 2000</th>
<th>Valeurs limites (mg/kg MS) 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOX¹</td>
<td>-</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>LAS²</td>
<td>-</td>
<td>2 600</td>
<td>5000</td>
</tr>
<tr>
<td>DEHP³</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>NPE⁴</td>
<td>-</td>
<td>50</td>
<td>450</td>
</tr>
<tr>
<td>PAH⁵</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PCB⁶</td>
<td>-</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>PCDD/F⁷</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tableau 9 : Valeurs limites pour les composés organiques

1. Somme des composés organiques Halogénés
2. Linear alkylbenzene sulphonates.
3. Di(2-ethylhexyl)phthalate.
4. Il comprend les substances suivantes : le nonylphenol et les nonylphenolethoxylates avec 1 ou 2 groupes éthoxy.
5. Somme des hydrocarbures aromaticques polycycliques : acenaphthène, phenanthrène, fluorène, fluoranthène, pyrène, benzo(b+j+k)fluoranthène, benzo(a)pyrène, benzo(ghi)perylène, indeno(1, 2, 3-c, d)pyrène.
7. Dioxines/ Furanes (Poly Chloro Dibeno Dioxines/ Dibenzo Furanes)
LES AUTRES ÉVOLUTIONS EUROPÉENNES MAJEURES PROPOSÉES

Traitements avancés et traitements conventionnels :

Traitements Avancés

(1) "Compostage en andains assurant que tout le matériau maintient une température d'au moins 55 °C pendant au moins 4 heures entre chaque retournement. Les tas doivent être tournés au moins trois fois et dans chaque cas, une complète stabilisation du matériau doit être atteinte.

(2) Compostage en andains et en tunnel assurant que tout le matériau se maintient à une température d'au moins 55 °C pendant au moins quatre heures et jusqu'à stabilisation complète.

(3) Séchage thermique assurant que la température des particules de boues atteignent au moins 80 °C pendant 10 minutes et que l'humidité soit en dessous de 10 %.

(4) Stabilisation thermophile aérobie ou anaérobie à une température d'au moins 55 °C pendant une période continue d'au moins quatre heures après la dernière alimentation et avant le prochain soutirage. L'installation doit être bâtie afin d'opérer à une température d'au moins 55 °C avec une période de rétention moyenne suffisante pour stabiliser la boue.

(5) Traitement thermique des boues liquides pendant un minimum de 10 minutes à 80°C ou 20 minutes à 75°C ou 30 minutes à 70°C, suivi d'une digestion mésophile anaérobie à une température de 35°C avec un temps de séjour de 12 jours.

(6) Conditionnement avec de la chaux de façon à atteindre un pH d'au moins 12,6 ou plus et en maintenant une température d'au moins 55 °C pendant deux heures. Les boues et la chaux doivent être mélangées à coeur.

Traitements conventionnels

Les boues sont dits comme ayant été traité conventionnellement quand elles ont subi un type de traitement (physique, chimique, biologique ou autre) qui atteint une réduction de 90 % (2 Log) en Escherichia Coli, à moins de 5.10^5 Unités Formant Colonie par gramme (matières sèches) de boues traitées ;

Les autorités compétentes peuvent autoriser l'utilisation de boues traitées produites par des petites stations d'épuration (i.e. produisant moins de 50 tonnes de boues (matières sèches) par an) même si elles ne remplissent pas les exigences pour les boues traitées conventionnellement si les boues sont utilisées sur un terrain arable et est injectée profondément ou enfouies dans les 48 heures qui suivent l'épandage.

Extrait du Draft 3 (2000)

Traitements Avancés

Le Draft 3 montre quelques différences mais globalement, les types de traitement préconisés sont les mêmes. Il existe juste de légères différences dans la conduite du procédé, dans le couple temps-température notamment.

Traitements conventionnels
Le Draft 3 montre des différences importantes dans ce sens où il décrit une liste exhaustive de traitements pouvant être considérés comme conventionnels, alors que le Draft 4 fixe, quant à lui, décrit des paramètres micro-biologiques définissant la notion de traitements conventionnels.

Critères d’hygiénisation

Extrait du Draft 4 (2003)

Les boues sont considérées comme ayant subi un traitement ayant le statut avancé quand elles ont été traitées selon un des traitements ci-dessus ou selon une combinaison de ces procédés (incluant des changements dans le couple temps-température qui ont été démontré comme menant à des résultats équivalents), d’une telle façon que :

(a) le procédé de traitement a atteint une réduction de 99.99 % (4 log) en *Escherichia Coli*, à moins de 1.10^3 Unités Formant Colonie par gramme (matières sèches) de boues traitées ;

(b) Un échantillon de 1 gramme (matières sèches) de boues traitées ne contient pas plus de 3.10^3 spores de *Clostridium perfringens*, et ;

(c) Un échantillon de 50 grammes (matières sèches) de boues traitées ne contient aucun *Salmonella spp*.

Un lot de boues ne respectant pas un de ces standards microbiologiques sera considéré comme traité conventionnellement à condition qu’il respecte les standards décrits pour les traitements conventionnels.

Les boues sont considérées comme ayant subi un traitement ayant le statut avancé quand elles ont été traitées selon un des traitements ci-dessus ou selon une combinaison de ces procédés (incluant des changements dans le couple temps-température qui ont été démontré comme menant à des résultats équivalents), d’une telle façon que :

(a) le procédé de traitement a atteint une réduction de $6 \log_{10}$ en *Escherichia Coli*, à moins de 5.10^2 Unités Formant Colonie par gramme (matières sèches) de boues traitées ;

(b) Un échantillon de 50 grammes (matières sèches) de boues traitées ne contient aucun *Salmonella spp*.

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
Procédure de validation du traitement avancé

Durant les six mois de la phase de démarrage, la performance sanitaire de chaque installation de traitement avancé doit être validée en mesurant l'efficacité du traitement de sorte que :

(a) Dans les boues piquées avec *Salmonella Senftenberg W775*, le processus de traitement doit atteindre une réduction de 99.99 % (4 log) de la concentration initiale de *Salmonella Senftenberg W775*, et,

(b) Aucun ovule d'Ascaris qui peut être présent dans les boues traitées ne doit être viable.

Extrait du Draft 3 (2000)

Le procédé de traitement doit être validé initialement en montrant une réduction de 6 log_{10} de la concentration initiale d'un organisme-test comme *Salmonella Senftenberg W775*.
Restrictions d’utilisation : DRAFT 4 (2003)

<table>
<thead>
<tr>
<th>Type de terrain utilisé</th>
<th>Boues ayant subies des traitements avancés</th>
<th>Boues ayant subies des traitements conventionnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain d’herbe</td>
<td>Pas de restrictions</td>
<td>Injection en profondeur. Au moins trois semaines entre l’injection et le pâturage (*). (DRAFT 3 ; 2000 : six semaines)</td>
</tr>
<tr>
<td>Terre arable</td>
<td>Pas de restrictions</td>
<td>Injection en profondeur. ou charruage sous les 48 heures</td>
</tr>
<tr>
<td>Herbages ou cultures fourragères</td>
<td>Pas de restrictions</td>
<td>Au moins trois semaines entre l’épandage et la récolte (*). (DRAFT 3 ; 2000 : six semaines)</td>
</tr>
<tr>
<td>Terrains affectés à des cultures maraîchères ou fruitières en contact direct avec le sol</td>
<td>Pas de restrictions</td>
<td>Au moins douze mois entre l’épandage et la récolte (*).</td>
</tr>
<tr>
<td>Terrains affectés à des cultures maraîchères ou fruitières susceptibles d’être mangés crus et en contact direct avec le sol</td>
<td>Pas de restrictions</td>
<td>Au moins trente mois entre l’épandage et la récolte (*).</td>
</tr>
<tr>
<td>Terrains affectés à des cultures d’arbres fruitiers et de vignes.</td>
<td>Pas de restrictions</td>
<td>Injection en profondeur. Interdiction d’accès au public en général pendant au moins 10 mois après l’injection (*).</td>
</tr>
<tr>
<td>Terrains non-agricoles où le public en général, dont les enfants, a accès</td>
<td>Seulement des boues bien stabilisées et sans odeur</td>
<td>Pas autorisé</td>
</tr>
<tr>
<td>Terrains non-agricoles où le public en général n’a pas accès</td>
<td>Pas de restrictions</td>
<td>Pas de restrictions</td>
</tr>
</tbody>
</table>

(*) Les états membres pourraient envisager d’augmenter cet intervalle de temps en prenant notamment en compte les conditions géographiques et climatiques.

Tableau 10 : Restrictions d’utilisation des boues selon leur nature dans le Draft 4

Globalement, les changements qui peuvent être observés sont :

- Presque aucune restriction n’est associée à l’épandage des boues ayant subies un traitement avancé

- L’épandage de boues ayant subi un traitement avancé est autorisé pour des terres-non agricoles auxquelles le public en général, et même les enfants ont accès. La seule obligation est qu’elles soient sans odeur et bien stabilisées.
ANNEXE IV. : LES HAP, PCB ET DIOXINES

HAP

Généralités [13]

Le naphtalène est utilisé dans l’industrie des colorants, comme composant des produits de traitement du bois et comme antimité domestique. Les autres HAP (benzo(b)fluoranthène, pyrène, fluoranthène…) se forment lors de la pyrolyse des matières organiques contenant du carbone et de l’hydrogène. Ainsi certains secteurs industriels en génèrent particulièrement : cokéfaction et liquéfaction du charbon, craquage du pétrole, sidérurgie, fabrication de caoutchouc, fabrication d’électrode de carbone, utilisation de goudrons et des brais, utilisation à haute température de creusets en carbure de silicium, de briques réfractaires imprégnées, de sables de fonderies ou d’huiles de coupe. On en retrouve de très fortes concentrations dans le pétrole brut, le charbon, le brai de goudron de houille, le créosote, le goudron routier et les enduits de couverture.

On dénombre au total plus de 150 HAP rejetés par les gaz d'échappement des véhicules automobiles. L’usure des pneus, les dépôts d’huile sont aussi des sources diffuses d’émissions de HAP dans l’environnement. Tout comme dans l’industrie, les HAP sont aussi émis par la combustion domestique de produit pétrolier, charbon et bois. On en trouve aussi dans la fumée de cigarette et dans les produits alimentaires fumés.

Mais les HAP n’ont pas seulement une origine anthropique, ils sont aussi présents naturellement dans l’environnement. Ils sont produits par biosynthèse enzymatique dans le phytoplancton. Ils sont aussi concentrés dans la croûte terrestre, et libérés par l’érosion. Enfin, les feux de forêt et autres combustions naturels tels les volcans représentent sans doute le plus grand apport non anthropique de HAP dans l’environnement.

Présence dans les sols [14, 15, 16]

Dans les sols, la déposition atmosphérique sèche et humide constitue le principal apport en composés organiques semi-volatils dans les sols (Barrie et al., 1992 ; Tremolada et al., 1996). Les polluants organiques persistants (POP) sont transportés dans l’atmosphère sur des courtes et des longues distances à la fois sous forme gazeuse et particulaire. A cause de leur persistance et de leur hydrophobicité, ces composés omniprésents s’accumulent dans les sols où ils sont sûrement retenus pendant plusieurs années. Par extension, on pense que les concentrations des sols en POP peuvent être des bons indicateurs de la pollution atmosphérique environnante et de la proximité des sources.

Par conséquent, les sols sont des importants réservoirs pour ces composés et les échanges entre les sols et l’atmosphère sont des processus qui ont été largement étudiés.

Une étude a été menée sur la distribution spatiale des HAP et PCB dans les sols du bassin de la Seine. Sept sites de quatre types différents ont été considérés afin de déterminer la variabilité spatiale de la contamination des sols. Les types de sites retenus sont des sites industriels, un site urbain, des sites suburbains et des sites de zone reculée. Les points de prélèvement sont localisés au moins à 50 mètres des routes en zone urbaine et au moins à 150 m en zone rurale. Les sols sélectionnés sont sous un couvert d’herbe, ils ne sont pas détériorés et sont de même nature pédologique.

Cette étude met en évidence que les HAP retrouvés sont principalement des HAP légers comme le fluoranthène (22%), le Pyrène (17 %). Les émissions industrielles se caractérisent par la présence en plus, de faibles proportions en benzo(ghi)perylenne. On apprend que les concentrations en HAP sont fortement liées à l’utilisation du sol. Les sites
industriels ont les concentrations en HAP totaux les plus fortes (entre 5650 et 3390 µg/kg MS (14 HAP)), suivis par les sites urbains (2780µg/kg MS), puis, suburbains (entre 1670 et 2690 µg/kg MS) et enfin les zones reculées (entre 450 et 940 µg/kg MS). Cette dernière valeur apparaît un peu élevée par rapport au bruit de fonds de 100 µg/kg MS estimé par Trapido (1999) dans les sites ruraux et en zone reculée, cependant, elle reste dans le même ordre de grandeur. Edwards (1983) estima que les concentrations en HAP endogènes résultant de la biosynthèse et des feux de forêt, seraient comprises entre 1 et 10 µg /Kg MS. Les concentrations comprises entre 450 et 940 µg/KG MS mettent en évidence un transport atmosphérique des HAP jusqu’aux zones reculées.

Le pourcentage de HAP cancérigènes a été estimé pour chacun des sites. Il est compris entre 15 % et 46 %. La valeur de 46 % est retrouvée pour un site allant contamination via l’industrie et contamination via le trafic automobile. Cependant, un site soumis uniquement au trafic automobile comprend entre 34 et 38 % de HAP cancérigènes alors qu’un site industriel entre 15 et 18 %.

Il est également indiqué que les concentrations dans les sites urbains sont liées à la distance par rapport aux routes et aux autoroutes construites au sein de ces sites (Larsson et Sahlberg, 1982) et elles sont 5 à 10 fois plus importantes que celles retrouvées pour les zones rurales, ce qui semble en accord avec la littérature (Tremolada et al., 1996 ; Wagrowski and Hites, 1997). Ainsi, des auteurs italiens ont tenté d’établir une relation entre concentrations en micro-polluants et distance par rapport à une voie de circulation (Benfenati et al., 1992).

<table>
<thead>
<tr>
<th>Distance</th>
<th>HAP (µg/kg(^{-1}))</th>
<th>PCB (µg/kg(^{-1}))</th>
<th>PCDD (ng/kg(^{-1}))</th>
<th>PCDF (ng/kg(^{-1}))</th>
<th>Somme PCDD/PCDF (ng/kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 m</td>
<td>3,5</td>
<td>35</td>
<td>90</td>
<td>80</td>
<td>170</td>
</tr>
<tr>
<td>10 m</td>
<td>2,4</td>
<td>28</td>
<td>58</td>
<td>45</td>
<td>103</td>
</tr>
<tr>
<td>20 m</td>
<td>1</td>
<td>10</td>
<td>25</td>
<td>30</td>
<td>55</td>
</tr>
</tbody>
</table>

Tableau 11 : Concentrations en micro-polluants en fonction de la distance par rapport à une voie de circulation\(^1\)

Présence dans les boues [13]

Une grande étude a été menée en 2002 sur les concentrations en micro-polluants des boues d’épuration françaises, par l’Association Générale des Hygiénistes et Techniciens Municipaux (AGHTM). La campagne d’analyse des boues s’est déroulée de Novembre 2000 à janvier 2001 sur 60 stations d’épuration de capacités différentes réparties géographiquement sur toute la France. Les STEPS étudiées produisent indifféremment des boues destinées à la valorisation agricole, à l’incinération ou mise en décharge. Cette étude montre que les concentrations sur la somme des 11 HAP plus élevées dans les boues provenant de stations d’épuration avec des unités de traitement très importantes (>100 000 EqH). Ces concentrations sont parfois supérieures au seuil de 6 mg/kg MS autorisé par la réglementation européenne.

\(^1\) Aucune indication n’est donnée quant à la fréquentation de cette voie de circulation
Par contre, il ne semble pas exister de corrélation entre concentration en HAP dans les boues et type de processus d’épuration, ou type de traitement des boues.

PCB

Généralités [13]

L’apport des PCB dans le milieu naturel correspondrait beaucoup plus à l’existence de sources diffuses, conséquence du large éventail d’utilisation de ces produits durant les 50 dernières années, qu’à des sources ponctuelles.

D’autre part, l’OMS (1978) avance que le séchage des boues libérerait dans l’atmosphère 1 Kg de PCB annuellement par groupe de 1 million d’habitants. Une fois que les boues sont épandues, les PCB qu’elles contiennent sont aussi sujets à la volatilisation. Une autre source plus importante serait une mauvaise combustion de produits contenant des PCB lors de leur incinération, car les PCB les plus volatils sont vaporisés avant d’être brûlés. Notons aussi que des polychlorodibenzofuranes et des traces de polychlorodibenzodioxines se forment lorsque des PCB sont pyrolysés.

Présence dans les sols [15, 16, 17]

Malgré une biodégradation qu’il est possible d’observer l’élimination naturelle des PCB dans les sols ou dans les boues est très limitée. Elle sera due soit à une volatilisation partielle de ces composés, soit à une combustion, soit à une photolyse ou encore à la biodégradation microbienne.

L’étude citée pour les HAP s’est également intéressée à la teneur en PCB des sols échantillonnés. Les résultats donnent des concentrations dans les sols comprises entre 50.3 et 150 µg/kg MS (7 PCB de la réglementation européenne) pour les sites industriels, égales à 21,5 µg/kg MS pour le site urbain, entre 1.49 et 10.8 µg/kg MS pour les sites suburbains et entre 0 et 0.09 µg/kg MS pour les zones reculées.

En Roumanie, Covaci et al. (2001) ont trouvé des concentrations moyennes de 4, 57. 3 et 722 µg par kg (somme de 9 PCB) pour des sites ruraux, urbains et industriels, respectivement.

Les concentrations en PCB dans les sites industriels sont 100 fois plus importantes que dans les zones reculées. Cette étude indique également que dans certains sites, les concentrations sont plus élevées que la moyenne retrouvée pour les sites industriels. Cela s’explique par la proximité d’industries particulières : une centre de transformation et de recyclage de lubrifiants et un centre de maintenance et de conditionnement de transformateurs.

Le profil de distribution en PCB varie selon le type de site. Les sites industriels sont caractérisés par une distribution homogène avec une proportion en composés lourds légèrement supérieure à celle de composés légers. Dans les zones urbaines, les molécules à haut poids moléculaire sont prédominantes. A contrario, dans les zones rurales, Les
composés les plus légers sont prédominants. Ainsi, il apparaît que les composés les moins chlorés sont transportés sur de longues distances vers des zones reculées à cause notamment de leur temps de résidence plus long dans l’atmosphère. Les composés les plus lourds (les plus chlorés) tendent à être adsorbés sur des particules et à rester près des sources par déposition sèche ou humide.

Les auteurs de cette étude ont tenté d’établir une corrélation entre concentrations en PCB et concentrations en HAP, mais cette dernière (Spearman corrélation) ne s’est pas montrée significative.

Une autre étude menée sur la pollution des sols irlandais par des produits organiques donne des valeurs de concentrations en PCB pour les sols. Trois types de sols ont été étudiés. Les gammes de concentrations trouvées sont le suivantes : Sols agricoles sous pâturage, entre 1.25 et 6.63 µg/kg$^{-1}$; aires urbaines, entre 2.69 et 3.12 µg/kg$^{-1}$; aires industrielles, entre 0.24 et 9.39 µg/kg$^{-1}$.

Les auteurs soulignent le fait qu’en général, les éléments traces présents dans les sols urbains viennent de sources différentes. Cependant, ils indiquent également que la déposition atmosphérique est une des sources la plus importante.

Comportement lors de l’épuration [14]

L’étude AGHTM de 2002 montre que la variation de la concentration en PCB est peu significative pour les stations inférieures à 100 000 EqH et que seule une boue produite par une station d’épuration de taille importante > 100 000 EqH dépasse le seuil des réglementations française et européenne.

Par contre, il ne semble pas exister de corrélation entre concentration en PCB dans les boues et type de processus d’épuration, ou type de traitement des boues.

PCDDs

Généralités [18]

Les émissions de polychlorodibenzo-dioxines (PCDDs) résultant principalement d’activités industrielles, notamment de procédés faisant intervenir de fortes températures tels que l’incinération des déchets (ménagers, industriels ou médicaux), la production de chaleur, les procédés métallurgiques, notamment ceux concernant les métaux ferreux et non ferreux et la réactivation du charbon actif.

A une échelle beaucoup plus petite, les combustions naturelles (feux de forêts, activité volcanique) constituent aussi des sources d’exposition.

Les PCDDs sont également présents dans les échappements des moteurs à explosion.

L’industrie du chlore et de ses dérivés est aussi responsable de la présence de PCDDs dans l’environnement. Il en est de même de l’industrie de la pâte à papier associée au blanchiment utilisant du chlore, de l’industrie du textile liée à l’utilisation du coton traité au pentachlorophénol et du traitement des eaux usées.

La présence des PCDDs est aussi observée dans les foyers, la fumée et les suies des cheminées résidentielles. La combustion du tabac produit également des PCDDs résultant soit de la combustion des additifs, soit d’une contamination du tabac. Des PCDDs sont d’autre part produits accidentellement lors d’incendies.
La plupart des PCDDs issues de combustion sont dispersées dans l’air, associées aux particules libérées lors de ces combustions. L’utilisation de pesticides et les décharges industrielles contaminées sont responsables d’une part de la contamination des sols. Le dépôt de particules atmosphériques constituerait cependant la source de pollution prédominante.

Comme les PCB, les dioxines et furanes constituent des polluants des écosystèmes terrestres et aquatiques dans tous les pays industrialisés, mais aussi l’ensemble de la planète par leur dissémination aérienne. Les données scientifiques démontrent que cette contamination environnementale tend à s’accroître depuis quelques décennies, et qu’à l’instar de la contamination par les PCB, elle atteint les êtres humains et les animaux par l’intermédiaire de la chaîne alimentaire. De caractère lipophile, ils s’accumulent dans les graisses. C’est pour cela que la contamination par la chaîne alimentaire est la première source de contamination des animaux et des êtres humains avec plus de 90%.

Présence dans les sols [18]

Les dioxines se fixent aux particules du sol et ne sont pas ou peu lessivés vers les couches profondes du sol, même lorsque la pluviosité est importante. Les dioxines présentées à la surface du sol peuvent être éliminées par volatilisation ou être photos dégradées, ce qui représente des processus d’élimination importants pendant les chaudes journées d’été. Les vitesses de dégradation sont augmentées avec le taux d’humidité du sol, mais celles de volatilisation sont diminuées quand le sol est humide. Les dioxines peuvent aussi être éliminées du sol par biodégradation ou absorption par les plantes. Les dépôts dioxines ne font principalement sous forme de dépôts humides : 85 % des congénères les plus chlorés (7 ou 8 chlores) et 60 % des TCDD arrivent au sol au sein de particules humides. Les dépôts secs représentent approximativement 15 % des dépôts de tous les congénères avec 4 chlores ou plus, et les deux tiers de ces dépôts secs sont associés à des grosses particules (> 2,9 µm).

L’INSERM en 2000 a fourni une valeur de concentration dans les sols pour des zones rurales en 1999 de 0,02 à 1 ng TEQ/kg de sol. À titre de comparaison, l’INERIS en 2005 fournit des valeurs de concentration dans des zones urbaines et industrielles comprises respectivement entre 0,2 et 17 ng TEQ/kg et entre 20 et 60 ng TEQ/kg.

Comportement lors de l’épuration [14]

L’étude AGHTM de 2002 montre que les concentrations les plus élevées sont obtenues avec des boues de stations d’épurations de capacité supérieure à 100 000EqH.

Par contre, il ne semble pas exister de corrélation entre concentration en dioxines dans les boues et type de processus d’épuration, ou type de traitement des boues.

1 Les PCDD sont produites sous forme de mélanges complexes de congénères. Parmi ceux-ci, le plus toxique est le 2, 3, 7, 8TCDD. La potentialité toxique de ces congénères peut être exprimée en référence à ce composé par l’intermédiaire du concept d’équivalent toxique (TEF) qui est attribué par l’OMS à chacun des congénères. Aussi, les valeurs rapportées pour exprimer la toxicité de la totalité de ces dioxines sont généralement exprimées en équivalent toxique (TEQ) (INSERM 2000). Cet indice international de toxicité est obtenu en sommant les concentrations de chaque congénère, pondérées par leur TEF respectif.
ANNEXE V. : NPE ET LAS

LES NPE

Présentation générale des NPE [20, 22]

Le nonylphénol (NP) et les dérivés éthoxylés du nonylphénol (NPE) sont des composés chimiques produits en masse qui ont été utilisés pendant plus de 40 ans comme détergents, émulsifiants, agents de mouillage et agents dispersants dans de nombreux secteurs industriels. Ils sont aussi utilisés dans divers produits de consommation, dont les cosmétiques, les produits de nettoyage et les peintures, et pour différentes applications mais en quantité moins importante que dans l’industrie.

Selon les mêmes auteurs, une investigation préliminaire d’Environnement Canada identifie les secteurs des pâtes et papier et celui des textiles comme étant les principaux utilisateurs d’alkylphénols (Environnement Canada, 1998).

Devenir dans l’environnement [21, 22, 23, 14]

Général

Les alkylphénols dont le radical est à neuf atomes de carbone, c’est-à-dire les nonylphénols (NPE), constituent environ 80 % des alkylphénols en usage et les octylphénols (8 atomes de carbone) constituent l’essentiel des 20 % restant.

En général, lorsque les NPE sont rejetés dans les réseaux d’égout municipaux, plusieurs transformations peuvent se produire. Les alkylphénols éthoxylés (APE) comprenant plus de huit groupes éthoxy (EO) (la plupart des produits commerciaux courants) sont rapidement dégradés dans les réseaux de traitement des effluents avec une efficacité supérieure à 92% (Brunner et al. 1988 ; Kubeck et Naylor, 1990 ; Ahel et al. 1994a et b ; Naylor, 1995). En milieu aérobie et anaérobie, le mécanisme de biodégradation comprend la perte initiale de groupes éthoxy, ce qui donne lieu à la formation de NP1EO(monoéthoxylé) et de NP2EO (diéthoxylé), ainsi que de leurs principaux dérivés carboxylés, le NP1EC et le NP2EC, de même que du produit final le NP.
Le NP (en particulier) ainsi que le NP1EO et le NP2EO sont plus lipophiles que les NPE mères et tendent à s’accumuler dans les boues et les sédiments, tandis que les NPEC (qui sont plus solubles dans l’eau et peuvent s’ioniser considérablement ou complètement au pH de la plupart des eaux naturelles) se retrouvent généralement dans les effluents terminaux, parfois, à des concentrations beaucoup plus élevées que celles d’autres composés nonylphénoliques. On a toutefois aussi constaté la présence de NP, de NP1EO et de NP2EO dans les effluents et les eaux réceptrices.

Boues

Comportement des NPE en fonction des traitements

Les APE subissent une dégradation presque complète en présence d’oxygène. Une étude menée sur leur dégradation dans des boues digérées montre que les concentrations en APE sont plus importantes dans des boues digérées de façon anaérobie (Jones et Westmoorland) que celles digérées de manière aérobie.

L’étude AGHTM a été menée sur soixante stations d’épuration de différentes capacités et recevant différents types d’effluents. L’analyse des résultats met en évidence plusieurs points.

Les boues les plus chargées en NPE sont issues principalement du procédé de traitement de boues basé sur une digestion anaérobie. Le lagenage génère également des boues à forte teneur en NPE, cela peut s’expliquer par l’existence de conditions anaérobies au fonds des bassins de lagenage. Enfin, il semblerait qu’un stockage en silos, ou autre, des boues permet d’obtenir des boues pauvres en NPE.

On remarque également que la concentration en NPE est légèrement plus importante avec la taille de la station.

Sol [24, 25]

Bien qu’il existe relativement peu d’études sur le NP et les NPE présents dans le sol, on a constaté que le NP persistait dans les décharges en milieu anaérobie, mais il ne semble pas que cette substance soit persistante, dans le sol en milieu aérobie (Marcomini et al., 1991). D’après l’UK Environment Agency (1997), la demi-vie de biodégradation du NP dans le sol est d’environ 30 jours, et pour la minéralisation ultime de cette substance, elle est de 300 jours. Des études réalisées par la Walter Technology International Corp. (1998a) ont donné des résultats semblables pour les sols canadiens.

Des études de Bokern et al. (1998) ont conclu que l’absorption du NP présent dans le sol était lente et que cette substance était rapidement minéralisée par les micro-organismes du sol. Une étude réalisée au Guelph Turfgrass Institute par Bennie et al. (1998) a qu’après 90 jours, il ne restait plus de traces de NP. Les NPE peuvent être décomposés en NP dans le sol, ce qui occasionne la disparition non linéaire de cette substance à la suite de l’épandage des boues.

Santé Canada donne des valeurs de demi-vie dans les sols pour les deux types de composés qui nous intéressent : nonylphénol entre 8 et 90 jours, et nonymphénoléthoxylates, entre 8 et 150 jours.

Valeur de demi-vie dans le sol retenue pour la totalité des NPE : 150 jours, soit 0.41 an.

Par contre, des études réalisées sur différents types de sols : cultivés, non-cultivés et fertilisés de différentes façons, ont obtenu des résultats intéressants. Les concentrations en NP et NP2EO étaient du même ordre de grandeur sur sols cultivés et non-cultivés et que la fertilisation ait été amenée artificiellement, via des fumiers ou via des quantités de boues...
moyennes. Cela s’explique selon les auteurs par un dépôt atmosphérique pour le sol non-cultivé et pour les fumiers, par l’utilisation de produits à base de NPE afin améliorer la croissance de l’herbe ; produits qui sont ensuite ingérés par les troupeaux lors du pâturage et excrétés dans les fumiers.

Les valeurs trouvées sont comprises entre 0,01 µg / kg MS (pour les sols ayant reçus des boues) et 0,98 µg / kg MS (pour les sols ayant reçus des fumiers pendant cinq ans) pour le nonylphénol et entre 2,9 µg / kg MS (sol non-cultivé) et 3,6 µg / kg MS (fertilisation artificielle). L’OMS indique une concentration en nonylphénol inférieure à 0,02 mg/kg de MS dans des sols recouverts d’herbe et qui n’ont pas été traités par des boues.

La valeur choisie pour la concentration correspondant au bruit de fonds est celle de l’OMS, en raison de son caractère conservatoire.

Caractéristique physico-chimique : coefficient de partage octanol-eau

L’INRS attribue un coefficient à l’ensemble des produits réunis sous l’appellation nonylphenol et 4-nonylphenol ramifié ; La valeur est la suivante : log Kow= 5,76

Dans son rapport sur les nonylphénols, santé Canada parle d’une valeur comprise entre 4,2 et 4,48.

Coefficient de partage eau-octanol retenu pour l’ensemble de NP, NP1EO et NP2EO : log Kow = 5,76

Risques pour l’environnement

Les propriétés de perturbateurs endocriniens des NPE sont reconnues. Ces substances sont également considérées comme toxiques pour les poissons, les bactéries et les daphnies. Ils s’accumulent facilement dans les différents organismes aquatiques.

Risque pour les hommes [20, 21]

La toxicité des nonylphénols éthoxylates décroît de façon inversement proportionnelle à l’augmentation du nombre de groupes éthoxy (Talmage, 1994). En raison du nombre important d’informations sur la toxicité du NP4EO et des ses propriétés physico-chimiques, ce composé est jugé représentatif des deux produits qui nous intéressent, à savoir le NP1EO et le NP2EO. Le choix a ainsi été fait de retenir les données relatives au NP et au NP4EO. Les valeurs de toxicité les plus restrictives seront ensuite retenues afin d’être utilisées dans l’évaluation des risques. Les données existantes sont relatives aux animaux de laboratoire.

Les informations recueillies ont issues du rapport global d’environnement Canada sur les nonylphénols. Ce rapport synthétise les résultats des recherches et études disponibles dans des bases de données en ligne ainsi que divers rapports de synthèse récents. Il est indispensable de rappeler que le but ce mémoire est d’identifier de façon globale et rapide les situations à risque liées à l’épandage des boues. Ainsi, les différents paramètres des expérimentations à la base des valeurs toxicologiques trouvées ne seront pas discutés, comme cela devrait être fait pour une évaluation des risques au sens strict. Il s’agit simplement de sélectionner les valeurs toxicologiques les plus restrictives et d’y appliquer les facteurs d’incertitude usuellement utilisés en évaluation des risques.
Evaluation de la toxicité des nonylphénols

Recherche bibliographique sur le nonylphénol

<table>
<thead>
<tr>
<th>Animal</th>
<th>Voie</th>
<th>Effets</th>
<th>Doses</th>
<th>Type de toxicité</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Ingestion</td>
<td>Mort</td>
<td>$DL_{50}^1 = 580\text{-}1620 \text{ mg/kg-mc}^2$</td>
<td>Aiguë</td>
<td>U.S. EPA, 1992 a, b et c ; OMS, 1998</td>
</tr>
<tr>
<td>Lapin</td>
<td>Cutanée</td>
<td>Mort</td>
<td>$DL_{50} > 2000 \text{ mg/kg-mc}$</td>
<td>Aiguë</td>
<td>U.S. EPA, 1992 a, b et c ; OMS, 1998</td>
</tr>
</tbody>
</table>
| Rat | Ingestion | Changements histopathologiques foie et rein | $DMEO^3 = 25 \text{ mg/kg –mc/j (mâles)}$
$DSEO^4 = 400 \text{ mg/kg –mc/j pour les femelles}$ | Court terme | Richards, 1989 |
| Rat | Ingestion | Baisse poids ovaires et poids corporel chez femelles et augmentation poids corporel et reins chez mâles | Entre 129 à 149 mg/kg –mc/j | 90 jours (sub-chronique) | Cunny et al., 1997 |
| Rat | Ajouté à l’alimentation | Accroissement de la dilatation du tube médullaire rénal et apparition kystes | Mâles : $DMEO$ entre 12 et 18 mg/kg –mc/j
Femelles non allaitantes : $DMEO= 16$ à 21 mg/kg –mc/j
Femelles allaitantes $DMEO=27$ à 30 mg/kg –mc/j | Plusieurs générations | NTP, 1997 ; Chaplin et al., 1999 |

1 DL_{50} : Dose létale pour 50% de la population de l’étude
2 mc : masse corporelle
3 $DMEO$: Dose Minimale Entraînant un Effet Observé = LOAEL (Lowest Observed Adverse Effect Level)
4 $DSEO$: Dose Sans Effet Observable
<table>
<thead>
<tr>
<th>Animal</th>
<th>Mode d'administration</th>
<th>Site d'administration</th>
<th>Dose</th>
<th>Durée</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Ingestion</td>
<td>Toxicité sur la reproduction, changements histologiques dans vésicules séminales testicules</td>
<td>100 mg de NP/kg-mc/j</td>
<td>10 jours</td>
<td>Jager et al. ; 1999 a et b</td>
</tr>
<tr>
<td>Rat et souris</td>
<td>Ingestion et administration sous-cutanée et intra péritonéale</td>
<td>Augmentation poids utérus</td>
<td>Ingestion 50 mg/kg–mc/j et administration sous-cutanée et intra péritonéale</td>
<td>Pas indiqué</td>
<td>Lee et Lee, 1996 ; Shelby et al., 1996 ; CMA, 1997 ; Coldham et al., 1997 ; Laws et carey, 1997 ; Odum et Al. 1997</td>
</tr>
<tr>
<td>Rat</td>
<td>Ingestion</td>
<td>Rein</td>
<td>Dose = 50 mg/Kg mc/j</td>
<td>90 j et plusieurs générations sur 20 semaines</td>
<td>INRS, Cunny et al, 1997 ; Chapin et al, 1999</td>
</tr>
<tr>
<td>Souris</td>
<td>Ingestion</td>
<td>Système reproducteur, testicules</td>
<td>NOAEL(^1) = 15 mg/Kg mc/j pour système reproducteur LOAEL = 100 mg/Kg mc/j pour testicules</td>
<td>Chronique</td>
<td>Laws at al, 2000 ; Chapin at al, 1999, Nagao et al, 2001</td>
</tr>
</tbody>
</table>

\(^1\) NOAEL (Non Observed Adverse Effect Level) = Dose maximale pour laquelle il n’a y pas d’effet adverse
Recherche bibliographique sur le Nonylphénol-4-polyéthoxylé

<table>
<thead>
<tr>
<th>Animal</th>
<th>Voie</th>
<th>Effets</th>
<th>Doses</th>
<th>Type de toxicité</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Ingestion</td>
<td>Mort</td>
<td>DL$_{50}$ = 4290-7400 mg/kg-mc</td>
<td>Aiguë</td>
<td>OMS, 1998, Talmage, 1994</td>
</tr>
<tr>
<td>Cochon d'Inde</td>
<td>Ingestion</td>
<td>Mort</td>
<td>DL$_{50}$ = > 5000 mg/kg-mc</td>
<td>Aiguë</td>
<td>OMS, 1998, Talmage, 1994</td>
</tr>
<tr>
<td>Lapin</td>
<td>Cutanée</td>
<td>Mort</td>
<td>DL$_{50}$ = > 2000 mg/kg-mc</td>
<td>Aiguë</td>
<td>OMS, 1998, Talmage, 1994</td>
</tr>
<tr>
<td>Rats et chiens</td>
<td>Ingestion</td>
<td>Augmentation du rapport entre poids du foie et poids corporel et diminution du poids corporel</td>
<td>DMEO = 200 mg/kg-mc/j, DSEO = 40 mg/kg-mc/j</td>
<td>Subchronique (90 jours)</td>
<td>Smyth et Calandra, 1969</td>
</tr>
<tr>
<td>Rat</td>
<td>Ingestion</td>
<td>Réduction du poids pondéral par baisse de la consommation de nourriture</td>
<td>DMEO = 200 mg/kg-mc/j</td>
<td>Chronique</td>
<td>Smyth et Calandra, 1969</td>
</tr>
<tr>
<td>Chien</td>
<td>Ingestion</td>
<td>Augmentation de l’activité de la phosphate Alcaline + augmentation du poids relatif du foie</td>
<td>Dans les 2 cas, DMEO = 40 mg/kg-mc/j</td>
<td>chronique</td>
<td>Smyth et Calandra, 1969</td>
</tr>
</tbody>
</table>

Génotoxicité : Aucune preuve de génotoxicité n’a été signalée pour le nonylphénol-4-polyéthoxylé

Activité oestrogénique : De même aucune activité oestrogénique n’a été signalée.
Valeurs toxicologiques de référence retenues

Sélection des valeurs toxicologiques de référence pour les Nonylphénols et nonylphénols ethoxylates :

<table>
<thead>
<tr>
<th>Voie</th>
<th>Type de toxicité</th>
<th>Effets ou types d'organes</th>
<th>Valeur de référence</th>
<th>Année</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orale (ingestion)</td>
<td>Chronique</td>
<td>Foie et rein</td>
<td>DJTo = 0,044 mg/kg-mc/ j</td>
<td>1999</td>
<td>Environnement Canada</td>
</tr>
<tr>
<td>Orale (ingestion)</td>
<td>Chronique</td>
<td>Reproduction</td>
<td>DJTo= 0,11 mg/kg-mc/ j</td>
<td>1999</td>
<td>Environnement Canada</td>
</tr>
</tbody>
</table>

mc : masse corporelle

Raisonnement

Pour une exposition chronique, pour un effet sur le foie et le rein, on retient la DMEO= 40 mg/kg-mc/ j du nonylphénol-4-polyéthoxylé de Smyth et Calandra, 1969, définie dans le cas d’une exposition subchronique. La prise en compte de l’incertitude qui existe entre les espèces et au sein des espèces se traduit par un facteur d’incertitude de 10 pour chacun des paramètres. Il est également nécessaire d’ajouter un facteur 3 afin d’estimer la NOAEL sur la base de la DMEO. Enfin, il est indispensable d’ajouter à ce facteur de 300, un facteur 3 permettant de considérer une exposition chronique sur le base de données basées sur une exposition sub-chronique, soit un facteur d’incertitude égal, au total, de 900.

\[
\text{Calcul} = \frac{40}{900} = 0,044 \text{ mg/kg-mc/ j}
\]

Pour un effet sur la reproduction, la DMEO retenue est de 100 mg/kg-mc/ j de Jager et al. ; 1999 a et b. Le facteur d’incertitude qui lui est appliqué est de 900.

\[
\text{Calcul} = \frac{100}{900} = 0,11 \text{ mg/kg-mc/ j}
\]
LES LAS

Présentation générale [27]

Les surfactants dans les eaux usées peuvent s’adsorber sur la surface des matières particulières. Ils peuvent aussi précipiter en présence de certains ions comme le calcium par exemple. Un tel comportement induit la concentration de ces produits dans la fraction partielle des eaux usées brutes. En raison de leur utilisation massive, les LAS sont présents dans certains compartiments de l’environnement. On en retrouve surtout dans les sédiments. Le LAS qui est le plus utilisé sur le marché européen (98%) est l’acide benzenesulphonique, ses dérivés alkyls C\textsubscript{10–13}, et ses sels de sodium (numéro CAS : 68411-30-3). Les informations suivantes, relatives au comportement des LAS dans l’environnement et sur la santé humaine sont basées principalement sur ce produit.

Devenir dans l’environnement [23, 26, 27, 28]

Boues

Comportement dans les boues

Les LAS sont rapidement dégradés dans des conditions aérobies alors que dans des conditions anaérobies, ils ne le sont pas, excepté dans certaines conditions. En effet, il est indispensable d’avoir une initiation dans des conditions aérobies ensuite, la dégradation peut se poursuivre dans des conditions anaérobies.

La plupart du temps, pendant le stockage des boues, leur transport jusqu’au lieu d’épandage et leur application sur les sols, des conditions aérobies sont instaurées, et une rapide dégradation des LAS en résulte.

De plus, il semble que la nature des boues ait son importance. Une étude de Carlsen, en 2002, montre que les concentrations en LAS dans des boues séchées et âgées chutaient de 74% par rapport à des boues fraîchement produites. Les systèmes de compostage sont également reconnus comme étant effectifs dans la réduction des niveaux de xénobiotiques dans les boues et par extension des niveaux de LAS. On parle d’une suppression de plus de 98% des LAS dans de tels systèmes. Il semble également qu’une eau dure favorise la rétention des LAS par les boues (berna et al., 1991)

L’étude AGHTM montre que les boues les plus chargées en LAS sont issues principalement d’un traitement des boues basé sur une digestion anaérobie. Les boues produites par les stations de traitement supérieures à 30 000 EqH présentent des concentrations mesurées beaucoup plus importantes que les autres unités de traitement et justes inférieures à la valeur seuil de 5000 mg/kg de MS.

Sol

De nombreuses études ont été réalisées sur le temps de demi-vie dans le sol des LAS. L’HERA a notamment choisi de prendre un temps de demi-vie égal à 7 jours. Cependant, une étude bibliographique approfondie fait état d’un temps de demi-vie compris
entre 1 et 30 jours, selon, les concentrations de départ, l’adaptation, la bio-disponibilité et les caractéristiques des sols (Litz et al, 1987).

Valeur retenue pour le temps de demi-vie : 30 jours, soit 0.082 an.

Une expérimentation menée aux USA sur onze sols de différents types dont un seul avait reçu des boues avant l’étude a montré que le bruit de fonds concernant la présence des LAS dans les sols, était de 50 ng/kg MS\(^1\). Les LAS peuvent en effet être utilisés comme agents de dispersion et d’épandage dans les processus de fertilisation ou lors de l’application de pesticides.

Caractéristiques physico-chimiques[23, 26, 27, 28]

L’hydrophobicité a été identifiée comme la force motrice pour la bio-concentration. Plus la chaîne alkyle est longue, plus l’hydrophobicité et le facteur de bio-accumulation sont grands. Ainsi, il semble que les homologues du LAS avec les plus longues chaînes ont les coefficients de partage octanol-eau les plus élevés, et que ces derniers doublent pour chaque atome de carbone supplémentaire.

La valeur de coefficient de partage octanol-eau calculée par l’HERA est égale à 3,32

Valeur retenue pour le coefficient de partage Octanol-eau : 3,7

Risques pour l’environnement[27, 28]

De nombreuses études ont été réalisées sur l’impact des LAS sur les organismes aquatiques, mais peu ou pas sur les organismes terrestres. Pour les organismes aquatiques, les premiers effets de ces surfactants est le dérèglement des biomembranes et la dénaturation des protéines. Il est reconnu comme ayant des effets adverses sur la vie aquatique. Notamment, il modifierait la toxicité de certaines substances, notamment de certains micro-polluants organiques dans les écosystèmes aquatiques.

Risques pour les hommes[27, 28]

Les informations qui suivent sont issues d’un rapport de l’HERA (Human and Environment Risk Assesment on ingredients of household cleaning products).

Peu d’informations existent sur la toxicité de ces produits. Ce rapport de synthèse est basé sur des études publiées sur différentes bases de données scientifiques en ligne, témoignant du sérieux de la synthèse réalisée.

\(^1\) Le terme Matières Sèches n’est pas spécifié dans la publication. Afin de rester le plus prudent possible, on estime que la concentration donnée dans les sols s’exprime par kilogramme de matières sèches.
Recherche bibliographique

Informations générales à propos de la toxico-cinétique

Le LAS est facilement absorbé par le tractus gastro-intestinal (80-90% de la dose administrée). L’absorption du LAS au travers d’une peau intact est très peu importante (0,1-0,6 % de la dose administrée). Le LAS est distribué dans la plupart des organes, excepté l’utérus et la majeure partie est métabolisée dans le foie, en acides carboxyliques sulfophényls. Les métabolites de LAS sont éliminés via les urines et les fécès.

Aucune accumulation du LAS et de ses métabolites n’est observée après une administration orale répétée. La bonne absorption des LAS par l’intestin et sa faible absorption par la peau sont des observations importantes.

Toxicité chronique

Voie orale et voie de contact cutané

Après une étude complète de la bibliographie, HERA retient une valeur pour la voie orale, une NOAEL de 85 mg/kg/j (Yoneyama et al., 1976) valable pour des études réalisées sur les rats. Les organes qui peuvent être touchés par l’ingestion de LAS sont le foie, les reins, le cœur, la rate et le thymus. Cette NOAEL est basée sur l’absence d’effets des LAS sur les paramètres biochimiques des reins.

Génotoxicité

Aucune indication sur le potentiel génotoxique du LAS n’a été mise en évidence dans des essais in vitro et in vivo.

Carcénogénicité

Aucune étude ne montre le caractère génotoxique du LAS.

Toxicité pour la reproduction

Une NOAEL de 350 mg/Kg/j (Buehler et al., 1971) a été trouvée et correspond à la plus forte valeur administrée lors de l’expérience par ingestion.

Toxicité pour le développement et tératogénicité

Les résultats d’examens sur une toxicité maternelle montrent que pour des faibles doses administrées par voie cutanée, et par gavage de rats, souris et lapins des effets existent. Ces derniers sont associés aux effets irritants du LAS, sur la peau et au niveau gastro-intestinal.

Dans les autres études, aucun effet n’a été trouvé dans les animaux parents au dessous de 780mg/kg/j. (Tiba et al., 1976).

En résumé, aucun effet n’est observé pour des doses par voie orale inférieures à 780mg/kg/j et par voie dermique inférieures à 1500mg/kg/j (Imahori et al., 1976).
Valeurs toxicologiques de référence retenues pour les LAS :

<table>
<thead>
<tr>
<th>Voie</th>
<th>Type de toxicité</th>
<th>Effets ou types d’organes</th>
<th>Valeur de références</th>
<th>Année</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orale (ingestion)</td>
<td>Chronique</td>
<td>Foie, rein, rate, cœur, thymus</td>
<td>DJTO = 0,85 mg/kg-mc/ j</td>
<td>1976</td>
<td>Yoneyama et al</td>
</tr>
<tr>
<td>Orale (ingestion)</td>
<td>Chronique</td>
<td>Reproduction</td>
<td>DJTO = 3,5 mg/kg-mc/ j</td>
<td>1971</td>
<td>Buehler et al.</td>
</tr>
<tr>
<td>Orale (ingestion)</td>
<td>Chronique</td>
<td>Développement, tératogénécit é</td>
<td>DJTo= 7,8 mg/kg-mc/ j</td>
<td>1976</td>
<td>Tiba et al.</td>
</tr>
</tbody>
</table>

Pour une exposition chronique, pour un effet sur le foie, les reins, la rate, le cœur et le thymus, on retient la NOAEL de 85 mg/kg-mc/ j des LAS de Yoneyama et al., 1976. La prise en compte de l’incertitude qui existe entre les espèces et au sein des espèces se traduit par un facteur d’incertitude de 10 pour chacun des paramètres, soit un facteur d’incertitude égal, au total, à 100.

\[
\text{Calcul} = \frac{85}{100} = 0,85 \text{ mg/kg-mc/ j}
\]

Le même facteur est appliqué aux NOAEL trouvés pour des effets sur la reproduction et sur le développement.

- Reproduction : Calcul = \(\frac{350}{100}\) = 3,5 mg/kg-mc/ j
- Développement : Calcul = \(\frac{780}{100}\) = 7,8 mg/kg-mc/ j
ANNEXE VI. : DEHP ET AOX

LE DEHP [24]

Les phtalates en général doivent leur présence dans les sols à d’autres sources que les boues. Il sont présents dans la déposition atmosphérique, les fertilisants artificiels et même dans les fumiers. De plus, les phtalates sont utilisés dans les peintures et les vernis, dans les tuyaux en plastique et les conteneurs utilisés pour l’eau potable.

De part sa toxicité et sa forte utilisation notamment comme plastifiant pour le polychlorure de vinyle, le DEHP est entré dans le projet de réglementation européenne de 2000. En outre, ils présentent une forte affinité pour la matière organique et sont donc susceptibles d’être présents dans les phases solides (matières en suspension, sédiments et boues résiduaires (ADEME 1995).

Une étude a été réalisée sur la présence en autres du DEHP dans des sols danois de différents types.

<table>
<thead>
<tr>
<th>Type de fertilisation</th>
<th>DEHP (µg/ kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aucune culture pdt 50 ans, mais terrain utilisé pour le pâturage</td>
<td>16</td>
</tr>
<tr>
<td>Fumiers pdt 50 ans + un peu de fertilisant artificiel</td>
<td>25</td>
</tr>
<tr>
<td>Fumier pdt 5 ans (fumier produit avec alimentation auto-produite)</td>
<td>12</td>
</tr>
<tr>
<td>Fertilisation artificielle</td>
<td>40</td>
</tr>
</tbody>
</table>

Tableau 12 : teneurs en DEHP des sols selon le type de fertilisation dans des sols danois

La valeur retenue est la valeur la plus forte pour encore une fois rester le plus prudent possible, soit 40 µg/kg MS.
LES AOX [29]

Après l’introduction de la notion de AOX en 1976, ce paramètre a été correctement utilisé pour les constituants AOX «réels» (DDT et ses métabolites, PCBs, etc…) mais aussi, utilisé de manière incorrecte pour des composés organo-halogénés non adsorbables, mais adsorbés, principalement des composés de haut poids moléculaire présents dans les plantes et même dans des composés inorganiques qui ne sont ni organiques, ni adsorbables.

Généralités sur les AOX [29, 30, 31, 32]

La question des AOX naturels formés par les organismes vivants et/ou durant des processus abiógéniques naturels a été définitivement résolue par la mise en évidence de plus de 3650 composés organo-halogénés.

Comme on peut le constater, l’origine des AOX est diverse et peut se répartir en trois grandes catégories : L’industrie chimique, les plantes et les autres sources naturelles.

Origine de ces éléments

L’industrie chimique

Usage industriel

L’augmentation de l’utilisation de composés organo-halogénés a eu lieu pendant après la seconde guerre mondiale. On peut citer le célèbre insecticide se nommant le DDT (Dichlorodiphényltrichloroéthane) et ses métabolites, de nombreux autres pesticides, les polychloro-biphényles (PCBs) ainsi que les dioxines et les furanes.

En effet, le chlore est un des éléments le plus abondant naturellement parmi les éléments chimiques présents sur la planète. Ses propriétés ont mené à son utilisation pour de nombreuses applications : lubrifiants, applications dans l’équipement électrique, pesticides, désinfectants, agent de blanchiment du papier, solvants d’extraction, plastiques, produits pharmaceutiques…).

Cependant, depuis quelques dizaines d’années, il existe une prise de conscience du caractère dangereux de ces produits pour les hommes mais aussi pour l’environnement dû notamment à leur persistance, leur toxicité et leur capacité à se bio-accumuler dans les différents compartiments environnementaux.

Usage médical

Les hôpitaux consomment un important volume d’eau par jour. Pour comparaison, la consommation minimale d’eau à usage domestique est de 100 L/personne/jour, alors que la demande en eau pour les hôpitaux varie entre 400 et 1200 L/lit/jour.

Les composés organiques halogénés adsorbables sur charbon actif sont très fréquemment retrouvés dans les effluents d’hôpitaux. Les sources de ces AOX sont les produits de contraste iodés pour rayons X, les solvants, les désinfectants, les nettoyants et médicaments contenant du chlore.
Des campagnes de mesure ont montré la présence de fortes concentrations en AOX dans des effluents d'hôpitaux contenant des produits de contreaste iodés pour rayons X. Ces concentrations étaient supérieures à 10mg/L. Les composants organiques bromés sont négligeables.

Dans des effluents issus d'un département d'hôpital, n'utilisant pas de produits de contreaste iodés pour rayons X, les concentrations en AOX sont beaucoup plus faibles, elles sont comprises entre 0,17 et 1,61 mg/L).

Les Plantes

Les plantes sont reconnues comme étant une source majeure de composés organo-halogénés. Ainsi, il a été montré que des plantes ayant grandi dans des environnements marins, limniques (bassin houiller qui s’est formé dans un lac avec des débris végétaux amenés par les rivières) ou encore terrestres sont des sources naturelles d’organohalogénés insolubles dans l'eau. Ainsi, les sols et les sédiments, qui contiennent des matériaux de ces plantes en quantités et à des stages d’humification variables, sont des pièges et des sources d'organo-halogénés. De ce fait, dans les tourbières les concentrations en organo-halogénés sont élevées. Keppler et Biester(2002) suggère une concentration moyenne comprise entre 300 et 1000 mg/kg de chlore libre dans des tourbières canadiennes et de l’Europe continentale. On apprend également que les tourbières sont les principaux pièges à chlore dans l'environnement terrestre et que l’accumulation dans cet écosystème représente au niveau terrestre entre 280 et 1000 millions de tonnes. Des études menées sur des plantes, notamment des macrophytes, ont montré que selon les espèces, les concentrations en chlore peuvent être comprises entre 96 et 232 mg/kg de matière sèche.

Une étude a été menée sur la présence des AOX dans les substances humiques issues des sols et de l'eau. Elle donne quelques ordres de grandeur. Dans les eaux de surface, le ratio entre AOX et carbone organique totale varie entre 730 et 8600 µg/g. Dans les sols, le contenu en AOX varie entre 210 et 1400 µg par gramme de matière carbonée. Dans les acides fulviques isolés à partir de nappes phréatiques très anciennes (1300 à 5200 ans) les concentrations en AOX sont comprises entre 230 et 370 µg/g, ce qui indique encore une importante production naturelle d’organo-halogénés.

Les autres sources naturelles

Les composés inorganiques contenant du chlore sont nombreux et se retrouvent principalement liés à des silicates et à des alumino-silicates dans les réseaux des argiles minérales (phyllosilicates) de kaolin, du groupe de la montmorillonite d'ilite et de type chlorite. Ainsi, une concentration moyenne en chlore de 103 mg/kg a été mesurée dans des schistes et des argiles (Johns et Huang, 1967).

Il semble également que les sédiments aquatiques agissent à la fois comme des pièges et des sources dans le cycle des composé bromés qui après relarguage par les matières organiques des sédiments dans l'eau interstitielle, vont finalement gagner l'eau de la rivières ou du lac par diffusion et par compaction des sédiments.

Présence dans les boues [14]

Selon l'étude AGHTM, les composés organiques halogénés sont présents dans toutes les boues urbaines étudiées. Pour l'ensemble des boues étudiées, la concentration en AOX varie entre 50 mg/kg de MS et 1800 mg/kg de MS avec une moyenne de 314 mg/kg de MS. Les données moyennées les moins élevées sont obtenues avec les boues des stations d'épurations de capacité importante.
Il faut noter que l’analyse des AOX dans les boues n’est pas comparable à celle décrite dans la norme NF ISO 15009 décrite par la suite, notamment concernant le mode d’extraction et la technique de mesure.

Les AOX de la nouvelle réglementation [33]

La réglementation européenne qui visait à limiter la teneur en AOX dans les boues, imposait également une norme concernant la méthode analytique qui devait être associée à la détermination de cette teneur. Cette norme avait pour référence NF ISO 15009. En effet, de nombreuses méthodes d’analyse existent et se différencient principalement par leurs méthodes d’extraction et leurs techniques de mesure.
Présentation rapide du contenu de la norme NF ISO 15009

La norme précise, entre autres, les composés organo-halogénés qui sont dosés lors de l’analyse et bien entendu la méthode d’extraction de l’échantillon, ainsi, que la manière avec laquelle la mesure va être faîte.

Les composés analysés font partie des hydrocarbures halogénés volatils, il sont décrits dans le tableau suivant.

<table>
<thead>
<tr>
<th>Composés</th>
<th>N°CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dichlorométhane</td>
<td>75-09-2</td>
</tr>
<tr>
<td>trichlorométhane</td>
<td>67-66-3</td>
</tr>
<tr>
<td>tétrachlorométhane</td>
<td>56-23-5</td>
</tr>
<tr>
<td>1,1-dichloroéthane</td>
<td>75-34-3</td>
</tr>
<tr>
<td>1,2-dichloroéthane</td>
<td>107-06-2</td>
</tr>
<tr>
<td>1,1,1-trichloroéthane</td>
<td>71-55-6</td>
</tr>
<tr>
<td>1,1,2-trichloroéthane</td>
<td>79-00-5</td>
</tr>
<tr>
<td>1,2-dichloropropane</td>
<td>78-87-5</td>
</tr>
<tr>
<td>1,2,3-trichloropropane</td>
<td>96-18-4</td>
</tr>
<tr>
<td>cis-1,3-dichloropropène</td>
<td>542-75-6</td>
</tr>
<tr>
<td>trans-1,3-dichloropropène</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-dichloroéthylène</td>
<td>156-59-2</td>
</tr>
<tr>
<td>trans-1,2-dichloroéthylène</td>
<td>159-60-5</td>
</tr>
<tr>
<td>3-chloropropène</td>
<td>107-05-1</td>
</tr>
<tr>
<td>trichloroéthylène</td>
<td>79-01-6</td>
</tr>
<tr>
<td>tétrachloroéthylène</td>
<td>127-18-4</td>
</tr>
<tr>
<td>monochlorobenzène</td>
<td>108-90-7</td>
</tr>
<tr>
<td>1,2-dichlorobenzène</td>
<td>95-50-1</td>
</tr>
</tbody>
</table>

Tableau 13 : les AOX de la norme NF ISO 15009 : Hydrocarbures halogénés volatils

- **Il y a une erreur dans la norme concernant le numéro CAS donné qui correspondait en fait à celui du trichloroéthylène, lui aussi pris en compte dans l’analyse.**

- **Une autre erreur existe dans la norme qui donnait pour le 1,2,3-trichloropropane le N°CAS suivant : 98-18-4, numéro qui ne correspond pas au composé.**

- **Un seul des deux numéros CAS donnés par la norme existe. Il semble tout de même que deux numéros CAS correspondent au même composé, le cis-1,3-dichloropropène dont un des numéros CAS est 10031-01-5 et l’autre 542-75-6 ((Z)-1,3-dichloropropène).**
Toxicité des AOX décrits dans la norme

L'évaluation de la toxicité de ses produits s'est basée sur une recherche bibliographique au sein des différentes bases de données disponibles et notamment trois : l'US EPA, l'OMS et l'ATSDR. L'exposition considérée est une exposition chronique puisque l'objectif de ce mémoire est de tenter de caractériser les risques liés à une pratique d'épandage sur le long terme et relatifs à une exposition des agriculteurs, riverains et consommateurs de produits issus des terres amendées. Les effets à seuil et sans seuil ont été distingués.
Effets à seuil des organo-halogénés étudiés

<table>
<thead>
<tr>
<th>Substance</th>
<th>Source</th>
<th>Voie d'exposition</th>
<th>Valeur de référence</th>
<th>Effet ou organe critique</th>
<th>Année de révision</th>
<th>Études</th>
<th>Confiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,-trichloroéthane</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>Valeur retirée en 1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US EPA</td>
<td>inhalation</td>
<td>Pas de valeur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-trichloroéthane</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>10^{-3}mg/kg/j</td>
<td>foie</td>
<td>1995</td>
<td>White et al., 1985</td>
<td>moyenne</td>
</tr>
<tr>
<td></td>
<td>US EPA</td>
<td>inhalation</td>
<td>Pas de valeur</td>
<td></td>
<td></td>
<td>Sanders et al., 1985</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroéthane</td>
<td>US EPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroéthane</td>
<td>US EPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tétrachlorométhane</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>$7\times10^{-1}\text{mg/kg/j}$</td>
<td>foie</td>
<td>1991</td>
<td>Bruckner et al., 1986</td>
<td>Moyenne</td>
</tr>
<tr>
<td></td>
<td>US EPA</td>
<td>Inhalation</td>
<td>Pas de valeur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroforme (trichlorométhane)</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>10^{-2}mg/kg/j</td>
<td>foie</td>
<td>2001</td>
<td>Heywood et al., 1979</td>
<td>Moyenne</td>
</tr>
<tr>
<td></td>
<td>US EPA</td>
<td>Inhalation</td>
<td>Pas disponible – en cours de développement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>DJTo = 10^{-x} \text{ (mg/kg/j)}</td>
<td>Foie</td>
<td>Année</td>
<td>National Coffee Association, 1982</td>
<td>Moyenne</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>------</td>
<td>-------</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Dichlorométhane</td>
<td>US EPA</td>
<td>Inhalation</td>
<td>Pas de valeur disponible pour le moment</td>
<td>1988</td>
<td>Moyenne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-dichloropropane</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>Pas de valeur disponible pour le moment</td>
<td>1991</td>
<td>Nitschke, 1988</td>
<td>Moyenne</td>
<td></td>
</tr>
<tr>
<td>1,2,3-trichloropropane</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>DJTo = 10^{-x} \text{ (mg/kg/j)}</td>
<td>Foie et rein</td>
<td>1990</td>
<td>Faible</td>
<td>NTP, 1983</td>
</tr>
<tr>
<td>1,3-Dichloropropène</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>DJTo = 10^{-x} \text{ (mg/kg/j)}</td>
<td>Pré-estomac, Perte de poids globale</td>
<td>2000</td>
<td>Haute</td>
<td>Stott et al., 1995</td>
</tr>
<tr>
<td>Cis-1,2-dichloroéthylène</td>
<td>US EPA</td>
<td>Inhalation</td>
<td>CT = 10^{-x} \text{ mg/m^3}</td>
<td>Poumon, paroi nasale, épithélium nasal respiratoire</td>
<td>2000</td>
<td>Haute</td>
<td>Lomax et al., 1989</td>
</tr>
</tbody>
</table>

Pas de valeur
<table>
<thead>
<tr>
<th>Substance</th>
<th>Agency</th>
<th>Route</th>
<th>Dose</th>
<th>Effect</th>
<th>Year</th>
<th>Study</th>
<th>Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans-1,2-dichloroéthylène</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>D(\text{J}_{\text{To}}) = 2.10^{-2} (mg/kg/j)</td>
<td>foie et os</td>
<td>1989</td>
<td>Barnes et al., 1985</td>
<td>Faible</td>
</tr>
<tr>
<td>Trichloroéthylène</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>Pas disponible</td>
<td>Pas de valeur disponible pour le moment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-chloropropène</td>
<td>US EPA</td>
<td>Inhalation</td>
<td>CT = 1.10^{-3} mg/m^3</td>
<td>Neurotoxicité</td>
<td>1985</td>
<td>Lu et al., 1982</td>
<td>Faible</td>
</tr>
<tr>
<td>1,2-dichlorobenzène</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>D(\text{J}_{\text{To}}) = 9.10^{-2} (mg/kg/j)</td>
<td>Rate, foie, lymphocytes, thymus, rein</td>
<td>1991</td>
<td>NTP, 1985</td>
<td>Faible</td>
</tr>
<tr>
<td>Tétrachloroéthylène</td>
<td>US EPA</td>
<td>Inhalation</td>
<td>Pas disponible</td>
<td>Pas disponible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzène</td>
<td>US EPA</td>
<td>Voie orale</td>
<td>D(\text{J}_{\text{To}}) = 2.10^{-2} (mg/kg/j)</td>
<td>foie</td>
<td>1983</td>
<td>Monsanto Co., 1967a; Knapp et al., 1971</td>
<td>Moyenne</td>
</tr>
<tr>
<td></td>
<td>US EPA</td>
<td>Inhalation</td>
<td>Pas disponible</td>
<td>Pas disponible pour le moment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effets sans seuil des organo-halogénés étudiés

<table>
<thead>
<tr>
<th>Substance</th>
<th>Voie d'exposition</th>
<th>Organisme</th>
<th>Valeur de référence</th>
<th>Effet ou organe critique</th>
<th>Année de révision</th>
<th>Études</th>
<th>Confiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,-trichloroéthane</td>
<td>Voie orale</td>
<td>US EPA</td>
<td>Valeur non disponible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inhalation</td>
<td>US EPA</td>
<td>Valeur non-disponible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IARC</td>
<td></td>
<td>Groupe 3 : non classifiable comme carcinogène pour l'homme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-trichloroéthane</td>
<td>Voie orale</td>
<td>US EPA</td>
<td>ERUo = 5.7×10^{-2} (mg/kg/jour)$^{-1}$</td>
<td>Foie (carcinome hépatocellulaire)</td>
<td>1994</td>
<td>NCI, 1978</td>
<td>Moyenne</td>
</tr>
<tr>
<td></td>
<td>inhalation</td>
<td>US EPA</td>
<td>ERUi = 1.6×10^{-2} (mg/m3)$^{-1}$</td>
<td>Valeur dérivée de l'exposition orale</td>
<td>1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IARC</td>
<td></td>
<td>Groupe 3 : non classifiable comme carcinogène pour l'homme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroéthane</td>
<td>US EPA</td>
<td>Pas de valeur mais classé comme possible carcinogène pour l'humain (1996)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroéthane</td>
<td>Voie orale</td>
<td>US EPA</td>
<td>ERUo = 9.1×10^{-4}</td>
<td>Maladie du sang Hémangiosarcome</td>
<td>1991</td>
<td>NCI 1978</td>
<td>Haute</td>
</tr>
<tr>
<td></td>
<td>inhalation</td>
<td>US EPA</td>
<td>ERUi = 2.6×10^{-2} (mg/m3)$^{-1}$</td>
<td>Valeur dérivée de l'exposition orale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IARC</td>
<td></td>
<td>Classe 2 B : possible carcinogène pour l'homme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tétrachlorométhane</td>
<td>Voie orale</td>
<td>US EPA</td>
<td>ERUo = 4.1×10^{-4} (mg/kg/jour)$^{-1}$</td>
<td>Foie (carcinome hépatocellulaire)</td>
<td>1991</td>
<td>Della Porta et al., 1961 ; Edwards et al., 1942 ; NCI 1976a,b, 1977</td>
<td>Faible à (études regroupées mais chacune a des déficiences)</td>
</tr>
<tr>
<td></td>
<td>inhalation</td>
<td>US EPA</td>
<td>ERUi = 1.5×10^{-3} (mg/m3)$^{-1}$</td>
<td>Valeur dérivée de l'exposition orale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>Chloroforme (trichlorométhane)</td>
<td>Voie orale</td>
<td>US EPA</td>
<td>IARC</td>
<td>ATSDR</td>
<td>ERUo= 6,1.10⁻³ (mg/kg/j)</td>
<td>inconnu</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>inhalation</td>
<td>US EPA</td>
<td></td>
<td></td>
<td>ERUi =2,3.10⁻² (mg/m³)⁻¹</td>
<td>Foie (carcinome hépatocellulaire)</td>
<td>2001</td>
</tr>
<tr>
<td>Dichlorométhane</td>
<td>Voie orale</td>
<td>US EPA</td>
<td></td>
<td></td>
<td>ERUo= 7,5.10⁻³ (mg/kg/jour)⁻¹</td>
<td>Foie</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Inhalation</td>
<td>US EPA</td>
<td></td>
<td></td>
<td>ERUi = 4,7.10⁻³ (mg/m³)⁻¹</td>
<td>Foie, Poumon</td>
<td>1995</td>
</tr>
<tr>
<td>1,2-dichloropropane</td>
<td>Voie orale</td>
<td>US EPA</td>
<td>IARC</td>
<td></td>
<td>ERUo= 0,068 (mg/kg/jour)⁻¹</td>
<td>Inconnu</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td>Pas disponible</td>
<td>US EPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2, 3-trichloropropane</td>
<td>Voie orale</td>
<td>US EPA</td>
<td>IARC</td>
<td></td>
<td>ERUo= 10⁻³ (mg/kg/jour)⁻¹</td>
<td>Vessie, foie</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Inhalation</td>
<td>US EPA</td>
<td></td>
<td></td>
<td>ERUi = 4.10⁻³ (mg/m³)⁻¹</td>
<td>Bronchio-alvéolaire</td>
<td>2000</td>
</tr>
</tbody>
</table>

Pour le moment, on considère que la RfD de 0.01 mg/kg/day peut être considérée comme protectrice contre l’excès de risque de cancer.

Carcinogénicité prouvée chez l’animal, mais pas chez l’homme, classe 2B.
<table>
<thead>
<tr>
<th>Substance</th>
<th>Agency</th>
<th>Classification/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cis-1,2-dichloroéthylène</td>
<td>US EPA</td>
<td>Classe D Non cancérigène pour les humains</td>
</tr>
<tr>
<td>Trans-1,2-dichloroéthylène</td>
<td>US EPA</td>
<td>Pas de valeur disponible</td>
</tr>
<tr>
<td>Trichloroéthylène</td>
<td>US EPA</td>
<td>Récemment ré-évaluer, catégorie 2 : peut provoquer le cancer et mutagène avec possibilité d'effets irréversibles</td>
</tr>
<tr>
<td>3-chloropropène</td>
<td>US EPA</td>
<td>Classe C : cancérigène possible pour l'homme</td>
</tr>
<tr>
<td></td>
<td>IARC</td>
<td>Groupe 3 : non classifiable comme cancérigène pour l'homme</td>
</tr>
<tr>
<td>1,2-dichlorobenzene</td>
<td>US EPA</td>
<td>Classe D : non cancérigène pour l'homme</td>
</tr>
<tr>
<td>Tetrachloroéthylène</td>
<td>US EPA</td>
<td>Pas de valeur disponible</td>
</tr>
<tr>
<td></td>
<td>IARC</td>
<td>Classe 2A : probablement cancérigène pour l'homme</td>
</tr>
<tr>
<td>Chlorobenzène</td>
<td>US EPA</td>
<td>Classe D : non cancérigène pour l'homme</td>
</tr>
</tbody>
</table>

Remarque :

Les données obtenues sont relatives exclusivement à l’US EPA ; en effet, seule l’ATSDR donnait certaines valeurs de toxicité mais elles étaient relatives à une exposition professionnelle.
Résultats et commentaires

Pour les effets avec seuil, les composés les plus dangereux sont ceux qui ont les doses journalières tolérables (DJT) ou les concentrations tolérables (CT) les plus basses par voie d’exposition et par rapport à un organe spécifique.

Les composés à prendre en compte majoritairement seraient le : tétrachlorométhane, le 1,3-dichloropropène, le trans-1,2-dichloroéthylène, le 3-chloropropène et le 1,2-dichlorobenzène.

Pour les effets sans seuil, les composés le plus dangereux sont ceux qui ont l’excès de risque individuel le plus fort. Les deux composés les plus dangereux identifiés sont le tétrachlorométhane et le dichlorométhane.

Principales utilisations de ces AOX

Les principales utilisations des AOX décrits dans la norme sont détaillées dans le tableau suivant.
<table>
<thead>
<tr>
<th>Composés</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>dichlorométhane</td>
<td>Formulation d’aérosols, extraction dans les industries agroalimentaires et pharmaceutiques, extraction de graisses et de paraffines, fabrication de films et fibres cellulosiques, formulation de décapants pour peintures et vernis, expansion des mousses polyuréthanes, formulation de colles à froid, traitement des textiles, dégraissage</td>
</tr>
<tr>
<td>trichlorométhane</td>
<td>Fabrication d’hydrocarbures chlorofluorés, extraction des huiles essentielles et des alcaloïdes, extraction des antibiotiques, hormones, nicotine, quinine, vitamines…dans l’industrie pharmaceutique, solvant et agent de purification dans l’industrie des matières plastiques.</td>
</tr>
<tr>
<td>tétrachlorométhane</td>
<td>Intermédiaire pour la production de chlorofluorométhanes, milieu réactionnel de polymérisation</td>
</tr>
<tr>
<td>1,1-dichloroéthane</td>
<td>Intermédiaire dans la fabrication de polymères</td>
</tr>
<tr>
<td>1,2-dichloroéthane</td>
<td>Intermédiaire de synthèse pour la fabrication de composés organiques chlorés, essentiellement le chlorure de vinyle, stabilisation du plomb tétraéthyle</td>
</tr>
<tr>
<td>1,1,1-trichloroéthane</td>
<td>Il a été largement utilisé pour le dégraissage des métaux, le nettoyage dans diverses industries ou la formulation des colles. La production et l’importation de ce produit dans l’Union Européenne sont interdites depuis le 1er janvier 1996.</td>
</tr>
<tr>
<td>1,1,2-trichloroéthane</td>
<td>Solvant de vernis et de laques, solvant dans la fabrication de polystyrène, peintures aérosols.</td>
</tr>
<tr>
<td>1,2-dichloropropane</td>
<td>Décapage des peintures et vernis, dégraissage des métaux, détachage en teinturerie, extraction des huiles, graisses, cires, diluant et solvant dans l’industrie des peintures et vernis, déparaffinage des huiles, stabilisation du plomb tétraéthyle, traitement des sols (nématicide), synthèse organique.</td>
</tr>
<tr>
<td>1,2,3-trichloropropane</td>
<td>Pas de données</td>
</tr>
<tr>
<td>cis-1,3-dichloropropène</td>
<td>Solvant dans la fabrication de polystyrène, pesticides</td>
</tr>
<tr>
<td>trans-1,3-dichloropropène</td>
<td>Pas de données</td>
</tr>
<tr>
<td>Substance</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>cis-1,2-dichloroéthylène</td>
<td>Le produit commercial est un mélange d'isomères cis/trans. Dans l'industrie, c'est l'isomère trans qui est le plus utilisé.</td>
</tr>
<tr>
<td>trans-1,2-dichloroéthylène</td>
<td>Applications : Intermédiaire de synthèse de solvants et de composés chlorés, solvants de nombreux produits (résines, graisses parfums, colorants, laques, thermoplastiques, phénols...), extracteur à froid de produits sensibles à la chaleur (caféine, caoutchouc naturel, matières grasses d'origine végétale ou animale...), préparations destinées au dégraissage des métaux...</td>
</tr>
<tr>
<td>3-chloropropène</td>
<td>Intermédiaire dans la production de sels d’ammonium quaternaires pour le traitements des eaux, résines époxy, résines échangeuses d’ions, résines thermorégulatrices, Intermédiaires dans la fabrication de produits pharmaceutiques, insecticides, préparation de fragrances et de goûts artificiels, de fumigant, d’onguent et de plâtre.</td>
</tr>
<tr>
<td>trichloroéthylène</td>
<td>Dégraissage (en phase vapeur) des métaux, intermédiaire de synthèse</td>
</tr>
<tr>
<td>tétrachloroéthylène</td>
<td>Nettoyage à sec de vêtements, dégraissage et nettoyage des pièces métalliques, finissage des textiles, extraction des huiles et graisses, intermédiaire de synthèse, diluant pour peintures et vernis...</td>
</tr>
<tr>
<td>monochlorobenzène</td>
<td>Intermédiaire de synthèse organique, notamment pour la fabrication de colorants et de pesticides, solvant et dégraissant</td>
</tr>
<tr>
<td>1,2-dichlorobenzène</td>
<td>Solvant, Intermédiaire et/ou solvant en synthèse organique, pour la fabrication de produits pharmaceutiques et de pesticides.</td>
</tr>
</tbody>
</table>

Tableau 14 : Sources principales de ces AOX
ANNEXE VII. : LES ESTROGENES

La liste des différents perturbateurs endocriniens est longue. Elle regroupe une large gamme de molécules comme les pesticides organochlorés, les phatalates, les alkylphénols ou encore les hormones naturelles et les produits pharmaceutiques (Safe & Gaido, 1998). Parmi ces composés, les oestrogènes naturels et synthétiques ont été référencés comme les plus actifs dans des études in vitro (Andersen et al., 1999 ; Gutendorf and Westendorf, 2001) et in vivo (Sumpter and Jobling, 1995 ; Laws et al., 2000).

SOURCES MAJEURES D’ESTROGENES DANS LES SOLS

Les eaux usées : origine anthropique [34,35, 36, 37]

Les produits pharmaceutiques sont prescrits principalement pour le contrôle des naissances et le remplacement thérapeutique des oestrogènes naturels. Parmi eux, les oestrogènes synthétiques, le 17α-ethinylestradiol (EE2), le mestranol (MeEE2) ou l’estradiol valerate (sel ou ester de l’acide pentanoïque) sont largement utilisés.

Ces composés sont excrétés par la femme, en plus des hormones naturelles que sont le 17β-estradiol (E2), l’estrone (E1) et l’estriol (E3) et sont ainsi retrouvés dans les eaux résiduaires. Les hommes aussi excrètent des estrogènes mais en quantités beaucoup moins importantes.

Les stations d’épuration sont considérées comme la source majeure de pollution oestrogénique dans les eaux de surface et sont suspectées d’avoir un rôle significatif dans la contamination environnementale. Tous les humains mais aussi les animaux peuvent excréter des stéroïdes hormonaux (masculin ou féminin) de leur corps. Ils vont ainsi pouvoir être détectés dans les effluents de stations d’épuration et dans les eaux de surface.

Etant donné la difficulté d’identifier tout ses perturbateurs endocriniens, de nombreux auteurs ont tenté de détecter et de quantifier la teneur en oestrogènes d’échantillons d’eau en concentrant leur recherche sur des molécules spécifiques, comme les hormones naturelles (E1, E2 et E3) et synthétiques (EE2) ou encore en évaluant les activités estrogéniques

Le tableau suivant résume les quantités de stéroïdes estrogéniques excrétés par les humains :

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>E2</th>
<th>E1</th>
<th>E3</th>
<th>EE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hommes</td>
<td>1,6</td>
<td>3,9</td>
<td>1,5</td>
<td>-</td>
</tr>
<tr>
<td>Femmes durant les menstruations</td>
<td>3,5</td>
<td>8</td>
<td>4,8</td>
<td>-</td>
</tr>
<tr>
<td>Femmes ménauposées</td>
<td>2,3</td>
<td>4</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Femmes enceintes</td>
<td>259</td>
<td>600</td>
<td>6000</td>
<td>-</td>
</tr>
<tr>
<td>Femmes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35</td>
</tr>
</tbody>
</table>

Tableau 15 : Excrétion journalière (μg) de stéroïdes oestrogéniques chez les humains

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
Lisiers et fumiers d’origine animale [40]

Les animaux sont une source non-négligeable d’excrétion d’estrogènes. Depuis, des centaines d’années déjà, les hormones endogènes d’origine humaine et animale gagnent l’environnement. Cependant, le développement de la population et de l’agriculture intensive, les quantités produites et re-larguées sont plus importantes.

De plus, certains pays, hors union Européenne, ont recours à des promoteurs de croissance basés sur une large utilisation d’hormones, notamment dans la production de bœuf. Dans le cadre de notre recherche, nous ne nous intéresserons pas à ce type d’hormones, puisque, les animaux français et européens et par conséquent les lisiers et fumiers qui en sont issus ne sont pas concernés par ce type de pratiques. L’estimation de l’excrétion totale quotidienne en estrogènes chez les animaux d’une exploitation est résumée dans le tableau suivant :

<table>
<thead>
<tr>
<th>Espèces</th>
<th>Catégorie</th>
<th>Excrétion totale quotidienne (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bœufs</td>
<td>veaux</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Vaches Durant les menstruations</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Taureaux</td>
<td>540</td>
</tr>
<tr>
<td>Cochons</td>
<td>Truies durant les menstruations</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Verrat</td>
<td>2300</td>
</tr>
<tr>
<td>Moutons</td>
<td>Brebis Durant les menstruations</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Bélier</td>
<td>25</td>
</tr>
</tbody>
</table>

Tableau 16 : quantités d’estrogènes excrétées quotidiennement par différents types d’animaux (par animal)

Devenir dans l’environnement

Généralités [40]

Chez les humains et les animaux, les estrogènes subissent de nombreuses transformations principalement dans le foie. Ils sont fréquemment oxydés, hydrolysés, désoxylés et méthylés avant une conjugaison finale avec l’acide glucuronique ou sulfate. Le 17β-Estradiol (E2) est rapidement oxydé en estrone (E1) qui peut lui-même être converti en Estriol (E3), le produit d’excrétion majeur. D’autres métabolites polaires peuvent également être présents dans les urines et les fécès.

Le mestranol (meEE2), l’ingrédient contraceptif, est converti, après administration, en 17α-Ethynylestradiol (EE2) par déméthylation. EE2 est principalement éliminé sous ses formes conjuguées, même si d’autres transformations métaboliques ont lieu, mais elles sont minoritaires.

Ainsi, les estrogènes sont excrétés principalement sous forme de conjugués d’acides sulfurique ou glucuronique inactifs. Bien que ces conjugués stéroïdiens ne possèdent pas une activité biologique directe, ils peuvent agir comme des réservoirs de précurseurs d’hormones capables d’être convertis en stéroïdes libres par les bactéries de l’environnement.
Comportement dans l’eau, les sols et les sédiments [37, 38, 41]

A cause de la présence de microorganismes dans les eaux usées et dans les STEPs, ces conjugués de stéroïdes estrogéniques inactifs sont transformés en composés stéroïdiens actifs dans l’environnement, c’est à dire, sous leur formes libres E1, E2, E3 et EE2.

Les demi-vies des stéroïdes estrogéniques sont estimées entre 2 et 6 jours dans les eaux et les sédiments, la valeur la plus haute correspondant à EE2. On sait également que comparé à E2, EE2 est beaucoup plus résistant à la biodégradation dans les eaux. E2 est transformé abiotiquement en E1 à la fois dans des sols stériles et non-stériles. A l’opposé, on constate que E1 et EE2 sont dégradés microbiologiquement. Le temps de demi-vie de EE2 peut varié d’une étude à l’autre mais est globalement du même ordre de grandeur. Une première étude l’estime compris entre 3 et 7,7 jours selon la température. Une deuxième l’estime compris entre 3,1 et 9,6. Le faible temps correspond à des sols riches en matière organique et ayant un pH autour de 7. La valeur la plus haute correspond à des sols faibles en matière organique, riches en sable, ayant un pH d’environ 7 aussi et dont la température d’étude est faible (environ 5°C). Le temps de demi-vie de E2 est estimé compris entre 0,8 et 9,7. Les types de sols associés à la valeur la plus haute et la plus basse correspondent à ceux décrits plus haut. La persistance et le comportement de E1 dans les sols ne sont pas encore très bien connus.

L’adsorption sur les sols des estrogènes a également été étudiée. Les expériences ont montré que lors du lavage d’un sol lourd auquel a été ajouté du E2, on retrouve 56 % de E2 et 59 % de E1 liés à ce sol. On pense également que les hormones à l’intérieur du lisier vont s’agrêger et peuvent être plus résistant à une photo-dégradation et à une dégradation microbiennne. La seule conclusion qui peut être tirée de ces études est que les hormones synthétiques sont plus résistantes à la dégradation micro-biologique que les hormones naturelles.

La concentration E2 trouvée dans les sols est de 55 ng/kg matières sèches, cette valeur est relative à l’épandage de fumiers et lisiers. Cependant, les études montrent des fluctuations dans les concentrations en hormones dans les sols. Elles peuvent être dues au pâturage par des animaux sauvages, à des applications de lisiers variables et à des dilutions par les eaux de pluie.

Présence dans les eaux résiduaires [42, 43, 44, 45, 46]

Il y a peu d’information en France au sujet de l’éventuelle contamination des rivières par les perturbeurs endocriniens. Une étude a été menée sur Paris et sa banlieue qui ont été considérés comme représentatifs des eaux françaises susceptibles d’être les plus chargées puisque 80% de l’eau potable est produite à partir d’eaux de surface dans cette zone. Les différents procédés de traitement des eaux utilisés dans ces stations peuvent également être considérés comme représentatifs de la situation française.
E1, E2, E3 et EE2 sont détectés dans toutes les stations d’épuration et dans les échantillons issus de rivières. Leur concentrations ne montrent pas de variations significatives dans le temps quelque soit leur lieu de prélèvement. MeEE2 n’a pas été analysé dans cette étude, mais, d’autres travaux ont montré qu’il n’était pas présent dans les affluents.

Dans les affluents des stations d’épuration parisiennes, les estrogènes naturels sont prédominants avec une valeur moyenne comprise entre 9,6 et 17,6 ng/L. Ces valeurs correspondent à celles trouvées dans d’autres études bibliographiques réalisées précédemment. Par contre, les concentrations en E1 et E3 sont deux à six fois plus faibles que celles trouvées dans ces mêmes études bibliographiques. Etant donné que les humains excrètent plus de E1 et de E3 que de E2 dans leur urine, on aurait pu s’attendre à ce que les concentrations en E1 et E3 soient plus élevées que celle de E2. Mais bien que les concentrations en estrogènes naturels trouvés dans les eaux résiduaires parisiennes diffèrent quelque peu de celles prévues dans les grandes villes, ces études confirment que les concentrations moyennes en estrogènes s’élèvent à quelques dixièmes de nanogrammes par litre.

Pour l’estrogène synthétique, le EE2, il est moins détecté que les estrogènes naturels dans les quatre effluents étudiés. La valeur moyenne est comprise entre 4,9 et 7,1 ng/L, ce qui représente environ 11 à 15 % de la totalité des stéroïdes détectés.

En France, 30% de la population sont des femmes âgées de 15 à 49 ans, et parmi elles, 36% utilisent une contraception orale. Les pilules contraceptives contiennent en moyenne 30 µg d’EE2 et il est admis que 26 % de l’EE2 est excrété dans les urines. En se basant sur cette valeur, sur la capacité des stations en équivalent habitants et les moyennes des débits d’affluents de chaque station, la concentration moyenne des affluents en estrogènes peut être estimée. Ainsi, la concentration moyenne en EE2 des affluents est comprise entre 3,5 et 5,5 ng/L, ce qui et proche de notre concentration mesurée.

Les différences de concentration qui peuvent être trouvées pour ce type de produit dans des études menées dans d’autres pays peuvent s’expliquer par plusieurs facteurs, comme des comportements différents vis à vis de la contraception entre les pays et la dilution des affluents avant l’arrivée à la station.
Comportement lors de l’épuration des eaux [35, 38, 39]

Des expériences menées dans un réacteur aérobie avec des boues activées ont montré que E2 était oxydé en E1, lui-même éliminé sans produit de dégradation observé. Le contraceptif EE2 est majoritairement persistant dans des conditions aérobies où meEE2 est rapidement dégradé générant la formation par déméthylation de faibles proportions de EE2. Dans une autre expérience, 70 à 80 % de E2 ajouté est minéralisé en CO\(_2\) sous 24 h, grâce à des bio-solides issus de stations d'épuration alors que la minéralisation de EE2 est 25 à 75 fois moins importante. EE2 est également rapporté comme étant dégradé complètement en 6 jours par des boues activées nitrifiantes et donnant naissance à des composés hydrophiles.

Il semble qu'un traitement à base de boues activées soit efficace pour l'élimination de E2 alors que l'élimination de E1 et EE2 est moins évidente. Des traitements à base de filtres biologiques semblent moins efficaces. Il a été démontré que sous des conditions non-nitrifiantes, il n'y a pas de dégradation, alors que, des conditions nitrifiantes vont oxyder EE2 en des composés plus hydrophobiques. Cela suggère que les effets des saisons et de la température sur la nitrification va opérer des changements dans la capacité des traitements à éliminer EE2 et ses conjugués. On sait également que E2 est plus persistant dans des conditions d’anaérobie que dans des conditions d’aérobie mais qu’il est encore biodégradable par cette culture. Des expériences ont été réalisées sur la biodégradation des stéroïdes naturels et synthétiques en utilisant des boues activées nitrifiantes et des bactéries oxydant l’ammoniaque. Les résultats montrent que les boues activées comme les bactéries dégradent très bien les quatre composés stéroïdiens, et notamment E2, par contre seules boues activées dégradent les composés intermédiaires de ses quatre composés.

Ensuite, il semble que les principaux mécanismes qui rentrent en compte pour l'élimination des estrogènes soient la sorption et le biodégradation. La dégradation de E2 ne change pas beaucoup que les conditions soient de type aérobie ou anaérobie. Par contre pour E1 et EE2, les taux de dégradation sont 10 à 20 fois moins importants en anaérobiose par rapport à l’aérobiose. Un autre condition qui peut influencer l'élimination de l'ensemble des stéroïdes est le temps de rétention hydraulique et le temps de rétention hydrique : plus ils sont importants plus les composés sont retenus. Ainsi, les lagunes ont des taux d’élimination assez importants. Il ne semble pas que l'addition de traitements avancés (filtration ou élimination du phosphore) ait un effet sur l'élimination des estrogènes. Par contre, il semble que des stations équipées d’un traitement à base de boues activées suivi d’une filtration sur charbon actif aient les taux d’enlèvement les plus hauts. Des traitements avancés comme la filtration, la microfiltration et l’osmose inverse réduisent également les niveaux de E2 comparé à des traitements secondaires conventionnels.
D’après l’étude réalisée sur les stations parisiennes, les estrogènes sont encore détectés dans les effluents avec une concentration moyenne comprise entre 4,3 et 8,6 ng/L. Ces concentrations ont été trouvées par d’autres auteurs également.

<table>
<thead>
<tr>
<th>Station</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>Moyenne a</th>
<th>EE2 b</th>
<th>Moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamme des stations parisiennes</td>
<td>44-59</td>
<td>43-60</td>
<td>40-67</td>
<td>45-61</td>
<td>34-45</td>
<td>42-55</td>
</tr>
<tr>
<td>Moyenne</td>
<td>54</td>
<td>53</td>
<td>53</td>
<td>53,5</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

a Valeur moyenne du taux d’enlèvement considérant E1, E2 et E3.
b Valeur moyenne du taux d’enlèvement considérant E1, E2, E3 et EE2.

Tableau 18 : Taux d’enlèvement des estrogènes à la suite du processus de traitement (%)

Comportement dans les boues d’épuration

Les études sur la présence de ces composés dans les boues de stations d’épuration n’ont pas encore été nombreuses. En effet, ce sont plus les performances des procédés de traitement qui ont été étudiées. Seules quelques résultats sporadiques existent. Dans des boues d’épuration issues d’un procédé de digestion, ont été détectées des concentrations en E2 et E1 égales respectivement à 49 ng/g et de 37 ng/g. Il est tout de même possible d’extrapoler en considérant que tout ce que n’a pas été rejeté dans l’effluent est contenu dans les boues et que les estrogènes n’y subissent pas de dégradation particulière. Cette hypothèse est très conservatrice.

Comportement dans les lisiers et fumiers

Différents modèles d’expérimentations sur la stabilité des stéroïdes dans les excréments ont montré qu’elle dépendait de la structure de la matrice, de sa température, de ses conditions de luminosité et enfin de son alimentation en oxygène. Une expérience menée sur le stockage à 20-23 °C de fèces bovins enregistre une dégradation de 20 % des estrogènes, alors que le stockage de fèces de bovins et de chevaux n’enregistre aucune dégradation significative des concentrations en estrogènes. On suppose tout de même que les stéroïdes issus des excréments animaux sont relativement stables lors du stockage de lisier liquide et de fumier, menant à l’hypothèse que ces substances se retrouvent dans l’environnement.

Propriétés physico-chimiques [38]

Les estrogènes naturels que sont l’estradiol, l’estrone et l’estriol ont des solubilités d’approximativement 13 mg/L. Les estrogènes synthétiques ont des solubilités plus faibles, d’environ 4,8 mg/L pour EE2 et de 0,3 mg/l pour le mestranol. Tous ces stéroïdes ont des pressions de vapeur très faibles, indiquant une faible volatilité de ses composés. Leur coefficient de partition octanol-eau est de 2,81 pour E3, 3,43 pour E1 et 3,94 pour E2 pour les composés naturels ; Pour les composés synthétiques, ce coefficient est égal à 4,15 pour EE2 et 4,67 pour le mestranol. D’après leurs propriétés physico-chimiques, il semble que ces composés soient des composés organiques hydrophobiques à faible volatilité. On peut s’attendre à une sorption de ces derniers sur les sols et les sédiments et ainsi, une réduction de leur concentration dans la phase liquide.

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
Dangers pour l’environnement et pour les hommes

Dangers pour le monde aquatique

Les composés estrogéniques sont reconnus comme pouvant générer un dérèglement endocrinien chez les poissons. L'identification de marqueurs spécifiques permet de prouver que des molécules hormono-mimétiques sont capables d'induire des effets estrogéniques chez les mâles : la vitellogénine, protéine synthétisée par le foie de la femelle mature durant la vitellogenèse — processus précurseur de la formation de l'œuf, qui ne s'observe normalement ni chez le mâle, ni chez l'individu immature — peut être mise en évidence chez le mâle exposé à des œstrogén-mimétiques. D'autres effets tels que des anomalies au niveau des gonades, des changements au niveau du comportement mais aussi au niveau de la production du sperme ont été observé chez les poissons mâles.

La toxicité aquatique de ces produits a été prouvée, c'est pourquoi leur rétention au niveau des stations d'épuration est indispensable.

Dangers pour l'homme

Ces substances ont fait uniquement l'objet d'études toxicologiques relatives à leur effet carcinogène. En effet, il a été le premier effet délétère mis en évidence. Ces études sont qualitatives mais pas quantitatives.

Les données qui suivent sont issues de l'IARC qui regroupe ces substances et leurs dérivés sous l'appellation d'estrogènes stéroïdaux. Cet ensemble est classé dans le groupe 1 au sens de l'IARC, c'est-à-dire, que la carcinogénicité de ces substances est assurée. Le classement de ces composés repose en majorité sur des expérimentations animales. Les tests ont été réalisés par voie orale et/ou sub-cutanée et/ou cutanée.

De manière globale, on observe, pour E1, E2 et E3, une augmentation de l'incidence des tumeurs mammaires, des tumeurs surrenrales, des tumeurs de l'hypophyse, des reins et de la vessie.

Pour l'estriol, il faut noter que ce composé est embryolétal, spécialement pour la pré-implantation des embryons pour certaines espèces.

Le 17β-Estradiol (E2) peut également induire des tumeurs lymphoïdes, utérine, cervicale, ainsi que des lésions abdominales. Les études réalisées chez les humains suggèrent fortement que l'administration d'estrogènes entraîne une augmentation de l'incidence du carcinome de la muqueuse utérine.

Devant l'utilisation massive de la pilule contraceptive, de nombreuses études ont été menées sur les estrogènes synthétiques. Pour le meEE2 et l’ E2, les mêmes voies d'administration ont été étudiées. On observe une augmentation de l'incidence des tumeurs mammaires et des cellules du foie malignes, des tumeurs de l'utérus, qu'ils soient administrés seuls ou combinés avec des progestatifs. Le mestranol peut également être embryolétal lors de la pré et de la post-implantation des embryons pour certaines espèces.

Les études réalisées chez les humains suggèrent que l'administration de ces composés génère une augmentation de l'incidence du carcinome de la muqueuse utérine, de la même façon que les estrogènes naturels. Par contre, ces mêmes études montrent que l'administration
de ce type d'estrogène combiné à celle de progestatif est entraîne une augmentation de l'incidence d'adénomes bénins du foie et à une diminution de l'incidence de maladies bénignes du sein.

Par contre, il a été démontré que les contraceptifs oraux augmentent sensiblement les risques de cancer du sein et de maladies cardiovasculaires, mais la plupart du risque est concentré dans certains sous-groupes d'utilisateurs comme les femmes les plus âgées, les fumeuses et celles qui ont une pression sanguine haute.

Une étude a été réalisée dans le cadre de l'évaluation de la sécurité des additifs alimentaires contenus dans les l'alimentation, notamment dans des denrées animales issues des nations unies, pays où la réglementation autorise l'utilisation des hormones d'accélération de croissance. Le comité chargé de ce travail a établi une dose quotidienne acceptable pour E2. Cette dose est de 0 à 50 ng/kg (de poids corporel) par jour. Elle se base sur une NOEL de 0,3 mg/day (équivalente à 5µg/kg (de poids corporel) par jour) obtenue sur la base de changements de plusieurs paramètres hormonaux-dépendants chez la femme pré-ménopausée. Un facteur d'incertitude de 10 est appliqué afin de prendre en compte la variation inter-individuelle et un facteur supplémentaire de 10 permet de considérer les différentes sensibilités au sein d'une population.
ANNEXE VIII. : RESULTATS DE L’ETUDE AGHTM DE 2002 : CONCENTRATIONS DES MICROPOLLUANTS CHIMIQUES DANS LES BOUES

<table>
<thead>
<tr>
<th>Substances</th>
<th>Concentration minimale (en mg/kg MS)</th>
<th>Concentration maximale (en mg/kg MS)</th>
<th>Concentration moyenne (en mg/kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0</td>
<td>78</td>
<td>< 3.32</td>
</tr>
<tr>
<td>Chrome</td>
<td>0</td>
<td>23000</td>
<td>66</td>
</tr>
<tr>
<td>Cuivre</td>
<td>0</td>
<td>12000</td>
<td>299</td>
</tr>
<tr>
<td>Mercure</td>
<td>0</td>
<td>2.31</td>
<td>2.3</td>
</tr>
<tr>
<td>Nickel</td>
<td>0</td>
<td>6000</td>
<td>29.48</td>
</tr>
<tr>
<td>Plomb</td>
<td>0</td>
<td>6539</td>
<td>94</td>
</tr>
<tr>
<td>Zinc</td>
<td>0</td>
<td>51181</td>
<td>774</td>
</tr>
<tr>
<td>Dioxines</td>
<td>0.32.10^{-6} I-TEQ</td>
<td>98,95. 10^{-6} I-TEQ</td>
<td>11. 10^{-6} I-TEQ</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>0.07</td>
<td>0.38</td>
<td>0.12</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>0.55</td>
<td>11.7</td>
<td>2.3</td>
</tr>
<tr>
<td>DEHP</td>
<td>10</td>
<td>359</td>
<td>42.2</td>
</tr>
<tr>
<td>NPE</td>
<td>7.5</td>
<td>963</td>
<td>145</td>
</tr>
<tr>
<td>LAS</td>
<td>100</td>
<td>16710</td>
<td>2018</td>
</tr>
</tbody>
</table>
ANNEXE IX. : CONCENTRATIONS EN MICROPOLLUANTS CHIMIQUES ASSIMILABLES AU « BRUIT DE FONDS », DANS LES SOLS NON AMENDÉS PREAMABLEMENT

ÉLÉMENTS TRACES MÉTALLIQUES

<table>
<thead>
<tr>
<th>Substances</th>
<th>Minimum (mg/kg MS)</th>
<th>Médiane (mg/kg MS)</th>
<th>9e décile (mg/kg MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadnium</td>
<td>0.01</td>
<td>0.30</td>
<td>0.69</td>
</tr>
<tr>
<td>Chrome</td>
<td>0.40</td>
<td>37.60</td>
<td>69.40</td>
</tr>
<tr>
<td>Cuivre</td>
<td>0.20</td>
<td>13.8</td>
<td>28.00</td>
</tr>
<tr>
<td>Mercure</td>
<td>0.01</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.10</td>
<td>20.40</td>
<td>41.80</td>
</tr>
<tr>
<td>Plomb</td>
<td>0.60</td>
<td>30.30</td>
<td>41.80</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.40</td>
<td>59.00</td>
<td>102.00</td>
</tr>
</tbody>
</table>
MICRO-POLLUANTS ORGANIQUES

Dioxines, HAP et PCB

Les valeurs retenues sont les valeurs les plus élevées trouvées lors de l’étude bibliographique afin de rester le plus conservatoire possible.

<table>
<thead>
<tr>
<th>Substances</th>
<th>Zones rurales ou reculées Concentrations en mg/kg MS</th>
<th>Zones suburbaines Concentrations en mg/kg MS</th>
<th>Zones urbaines Concentrations en mg/kg MS</th>
<th>Sites industriels Concentrations en mg/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxines</td>
<td>$\text{1.} \times 10^{-6}$ (TEQ)</td>
<td>(pas de valeur)</td>
<td>$\text{1.7} \times 10^{-6}$ (TEQ)</td>
<td>$\text{60.} \times 10^{-6}$ (TEQ)</td>
</tr>
<tr>
<td>PCB</td>
<td>$\text{6.63} \times 10^{-3}$</td>
<td>$\text{1.08} \times 10^{-2}$</td>
<td>$\text{5.73} \times 10^{-2}$</td>
<td>$\text{7.22} \times 10^{-1}$</td>
</tr>
<tr>
<td>HAP</td>
<td>0.94</td>
<td>2.69</td>
<td>2.78</td>
<td>5.65</td>
</tr>
</tbody>
</table>

LAS, NPE et DEHP

Les valeurs retenues pour ces composés sont issues de l’étude bibliographique. Leur sélection est également expliquée dans cette dernière.

<table>
<thead>
<tr>
<th>Substances</th>
<th>Sol agricoles Concentrations en mg/kg MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>0.04</td>
</tr>
<tr>
<td>NPE</td>
<td>0.02</td>
</tr>
<tr>
<td>LAS</td>
<td>$\text{50.} \times 10^{-6}$</td>
</tr>
</tbody>
</table>
ANNEXE X. : Feuilles détaillant les données utilisées pour l'évaluation des risques

SUBSTANCES

<table>
<thead>
<tr>
<th>Substances</th>
<th>organique?</th>
<th>Log Kow</th>
<th>Kow</th>
<th>Kd</th>
<th>source</th>
<th>taux d'absorption dermique (/24h)</th>
<th>source</th>
<th>demi-vie (an)</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>non</td>
<td></td>
<td></td>
<td>2,10E+02</td>
<td>Fiches de données de l'INERIS</td>
<td>0,01</td>
<td>US EPA, 1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chrome III</td>
<td>non</td>
<td></td>
<td></td>
<td>2,70E+00</td>
<td></td>
<td>0,001</td>
<td>US EPA, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>non</td>
<td></td>
<td></td>
<td>6,00E+04</td>
<td></td>
<td>0,001</td>
<td>US EPA, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>oui</td>
<td>2</td>
<td>5,0E+01</td>
<td>6,70E+02</td>
<td></td>
<td>0,01</td>
<td>US EPA, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>non</td>
<td></td>
<td></td>
<td>3,61E+01</td>
<td></td>
<td>0,001</td>
<td>US EPA, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plomb</td>
<td>non</td>
<td></td>
<td></td>
<td>7,00E+00</td>
<td></td>
<td>0,001</td>
<td>US EPA, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>non</td>
<td></td>
<td></td>
<td>2,00E+00</td>
<td></td>
<td>0,001</td>
<td>US EPA, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td>oui</td>
<td>7</td>
<td>6,3E+06</td>
<td>9,55E+05</td>
<td></td>
<td>0,03</td>
<td>US EPA, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>oui</td>
<td>6</td>
<td>1,0E+06</td>
<td></td>
<td></td>
<td>0,14</td>
<td>US EPA, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP(11 eutopéens)</td>
<td>oui</td>
<td>5</td>
<td>1,3E+05</td>
<td></td>
<td></td>
<td>0,13</td>
<td>US EPA, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>oui</td>
<td>7</td>
<td>2,8E+07</td>
<td></td>
<td>Ellebaek Laursen et al, 2003</td>
<td>0,01</td>
<td>US EPA, 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>oui</td>
<td>6</td>
<td>5,8E+05</td>
<td></td>
<td>INRS</td>
<td>1</td>
<td>Par défaut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>oui</td>
<td>4</td>
<td>5,0E+03</td>
<td></td>
<td>AGHTM, 2002</td>
<td>1</td>
<td>Par défaut</td>
<td>0,082</td>
<td>Santé Canada, 2001</td>
</tr>
</tbody>
</table>

Hélène MORIN - Mémoire de l'École Nationale de la Santé Publique – 2006
<table>
<thead>
<tr>
<th>CIBLES</th>
<th>Consommateur adulte</th>
<th>consommateur enfant</th>
<th>riverain adulte</th>
<th>riverain enfant</th>
<th>agriculteur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>âge ans</td>
<td>entre 6 et 70</td>
<td>entre 0 et 6</td>
<td>entre 6 et 70</td>
<td>entre 0 et 6</td>
<td>entre 6 et 70</td>
</tr>
<tr>
<td>durée d'exposition ans</td>
<td>64</td>
<td>64</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>masse corporelle kg</td>
<td>70</td>
<td>15</td>
<td>70</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>volume d'air inhalé m3/j</td>
<td>20</td>
<td>7,6</td>
<td>20</td>
<td>7,6</td>
<td>20</td>
</tr>
<tr>
<td>masse de sol ingéré (extérieur) mg/j</td>
<td>50</td>
<td>150</td>
<td>216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface corporelle total m2</td>
<td>1,815</td>
<td>0,656</td>
<td>1,815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quantité de sol sur la peau kg/m2</td>
<td>0,003</td>
<td>0,005</td>
<td>0,004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>facteur de rétention des particules dans les poumons</td>
<td>-</td>
<td>0,75</td>
<td>0,75</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>durée journalière d'exposition (extérieur) h/j</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jours d'exposition (extérieur) j/an</td>
<td>26</td>
<td>92</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fréquence d'exposition (extérieur)</td>
<td>-</td>
<td>0,003</td>
<td>0,021</td>
<td>0,247</td>
<td></td>
</tr>
<tr>
<td>rapport T/Tm pour les effets sans seuil</td>
<td>-</td>
<td>0,914</td>
<td>0,086</td>
<td>0,086</td>
<td>0,571</td>
</tr>
<tr>
<td>ingestion de sol (extérieur) oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>contact cutané (extérieur) oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>consommation de végétaux oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>consommation d'animaux oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ingestion d'eau oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fraction de parcelles amendées</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
<tr>
<td>consommation de céréales kg/j</td>
<td>0,187</td>
<td>0,10%</td>
<td>0,187</td>
<td>0,10%</td>
<td>0,187</td>
</tr>
<tr>
<td>fraction produite sur sol amendé</td>
<td>-</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
<tr>
<td>consommation de légumes feuilles kg/j</td>
<td>0,044</td>
<td>0,02</td>
<td>0,044</td>
<td>0,02</td>
<td>0,044</td>
</tr>
<tr>
<td>fraction produite sur sol amendé</td>
<td>-</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
<tr>
<td>consommation de légumes fruits kg/j</td>
<td>0,181</td>
<td>0,115</td>
<td>0,181</td>
<td>0,115</td>
<td>0,181</td>
</tr>
<tr>
<td>fraction produite sur sol amendé</td>
<td>-</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
<tr>
<td>consommation de légumes racines kg/j</td>
<td>0,029</td>
<td>0,018</td>
<td>0,029</td>
<td>0,018</td>
<td>0,029</td>
</tr>
<tr>
<td>fraction produite sur sol amendé</td>
<td>-</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
<tr>
<td>consommation de pommes de terres kg/j</td>
<td>0,065</td>
<td>0,049</td>
<td>0,065</td>
<td>0,049</td>
<td>0,065</td>
</tr>
<tr>
<td>fraction produite sur sol amendé</td>
<td>-</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
<tr>
<td>consommation de bœuf, veau, cheval kg/j</td>
<td>0,043</td>
<td>0,028</td>
<td>0,043</td>
<td>0,028</td>
<td>0,043</td>
</tr>
<tr>
<td>fraction produite sur sol amendé</td>
<td>-</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
<tr>
<td>consommation de mouton, agneau kg/j</td>
<td>0,027</td>
<td>0,015</td>
<td>0,027</td>
<td>0,015</td>
<td>0,027</td>
</tr>
<tr>
<td>fraction produite sur sol amendé</td>
<td>-</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
<tr>
<td>consommation de porc kg/j</td>
<td>0,062</td>
<td>0,035</td>
<td>0,062</td>
<td>0,035</td>
<td>0,062</td>
</tr>
<tr>
<td>fraction produite sur sol amendé</td>
<td>-</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
<td>3,00%</td>
</tr>
</tbody>
</table>
NATURE DES PARCELLES AMENDEES

<table>
<thead>
<tr>
<th>Quantité de boues apportées sur l'ensemble des parcelles (MS)</th>
<th>t/an</th>
<th>1000</th>
<th>données basées sur un valeur majorante de 10t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface totale épandue</td>
<td>ha</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Moyenne pondérée par source bibli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type de culture mise en place</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>superficie de sol amendé</td>
<td>ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quantité de boues apportées à la parcelles par épandage</td>
<td>t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>volume de sol amendé</td>
<td>m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>densité de sol amendé</td>
<td>t/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>masse de sol sec amendé</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>facteur de dilution de boues à chaque apport (en %)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fraction de sol dans les particules dans l'air extérieur</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type de culture mise en place				
superficie de sol amendé	ha			
quantité de boues apportées à la parcelles par épandage	t			
volume de sol amendé	m³			
densité de sol amendé	t/m³			
masse de sol sec amendé	-			
fraction de sol dans les particules dans l'air extérieur	-			

pH du sol amendé	-	7,6	6,7	8,1	7,6	6,7	8,1
matières organiques du sol	g/kg	21,4	18	34	21,4	18	34
fraction argileuse	-	16,10%	10,80%	26,90%	16,10%	10,80%	26,90%
fraction limoneuse fine	-	27,10%	16,50%	32,60%	27,10%	16,50%	32,60%
fraction limoneuse grossière	-	41,70%	25,50%	51,90%	41,70%	25,50%	51,90%
fraction sableuse fine	-	8,90%	5%	22,50%	8,90%	5%	22,50%
fraction sableuse grossière	-	3,60%	0,70%	12,2%	3,60%	0,70%	12,2%

<table>
<thead>
<tr>
<th>quantité de boues apportées sur l'ensemble des parcelles (MS)</th>
<th>t/an</th>
<th>1000</th>
<th>données basées sur un valeur majorante de 10t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface totale épandue</td>
<td>ha</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Moyenne pondérée par source biblio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type de culture mise en place</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>superficie de sol amendé</td>
<td>ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quantité de boues apportées à la parcelles par épandage</td>
<td>t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>volume de sol amendé</td>
<td>m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>densité de sol amendé</td>
<td>t/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>masse de sol sec amendé</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>facteur de dilution de boues à chaque apport (en %)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fraction de sol dans les particules dans l'air extérieur</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

pH du sol amendé	-	7,6	6,7	8,1	7,6	6,7	8,1
matières organiques du sol	g/kg	21,4	18	34	21,4	18	34
fraction argileuse	-	16,10%	10,80%	26,90%	16,10%	10,80%	26,90%
fraction limoneuse fine	-	27,10%	16,50%	32,60%	27,10%	16,50%	32,60%
fraction limoneuse grossière	-	41,70%	25,50%	51,90%	41,70%	25,50%	51,90%
fraction sableuse fine	-	8,90%	5%	22,50%	8,90%	5%	22,50%
fraction sableuse grossière	-	3,60%	0,70%	12,2%	3,60%	0,70%	12,2%
FACTEURS DE BIOCONCENTRATION PONDERES PAR LES TYPES DE CULTURES DU PLAN D'ÉPANDAGE

<table>
<thead>
<tr>
<th>Prise en compte des dépôts atmosphériques</th>
<th>céréales</th>
<th>fruits</th>
<th>(animaux)</th>
<th>feuilles</th>
<th>légumes</th>
<th>fruits</th>
<th>racines</th>
<th>légumes</th>
<th>de terre</th>
</tr>
</thead>
<tbody>
<tr>
<td>oui</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nombre de végétaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfaces (ha)</td>
<td>72,82</td>
<td>10,22</td>
<td>0,31</td>
<td>14,27</td>
<td>2,38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rendement (kg/m²)</td>
<td>0,3</td>
<td>0,11</td>
<td>0,2</td>
<td>0,11</td>
<td>0,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>période de croissance (j)</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fraction interceptée (-)</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>taux de déposition (mg/m²,j)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constante climatique (j-1)</td>
<td>0,033</td>
<td>0,033</td>
<td>0,033</td>
<td>0,033</td>
<td>0,033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>facteur de déposition (mg poussière/kg plante MS)</td>
<td>2017</td>
<td>5308</td>
<td>3026</td>
<td>1355</td>
<td>5308</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BCF (en matières fraîches) pondérées par surfaces cultivées avec prise en compte des dépôts atmosphériques

<table>
<thead>
<tr>
<th>Cadmium</th>
<th>Chrome III</th>
<th>Cuivre</th>
<th>Mercure inorganique</th>
<th>Mercure organique</th>
<th>Nickel</th>
<th>Plomb</th>
<th>Zinc</th>
<th>Dioxines</th>
<th>PCB (7 congénères)</th>
<th>HAP(11 eupopéens)</th>
<th>DEHP</th>
<th>NPE</th>
<th>LAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,0E-01</td>
<td>8,1E-01</td>
<td>2,0E-01</td>
<td>2,0E-01</td>
<td>4,2E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,4E-01</td>
<td>1,6E-01</td>
<td>3,5E-02</td>
<td>1,5E-03</td>
<td>9,9E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,5E+00</td>
<td>2,9E-01</td>
<td>5,6E-02</td>
<td>3,8E-02</td>
<td>5,3E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,3E-01</td>
<td>1,5E-01</td>
<td>3,5E-02</td>
<td>6,4E-05</td>
<td>6,4E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,0E+00</td>
<td>4,2E+00</td>
<td>4,1E+00</td>
<td>4,7E-01</td>
<td>4,0E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,7E-01</td>
<td>2,9E-01</td>
<td>6,5E-02</td>
<td>8,3E-03</td>
<td>4,4E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,5E-01</td>
<td>1,7E-01</td>
<td>4,9E-02</td>
<td>5,8E-03</td>
<td>3,4E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3E+00</td>
<td>3,7E-01</td>
<td>1,3E-01</td>
<td>3,7E-02</td>
<td>1,9E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,4E-01</td>
<td>1,5E-01</td>
<td>3,6E-02</td>
<td>4,5E-03</td>
<td>4,5E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,4E-01</td>
<td>1,6E-01</td>
<td>3,9E-02</td>
<td>5,2E-03</td>
<td>1,3E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,7E-01</td>
<td>1,9E-01</td>
<td>7,8E-02</td>
<td>4,4E-02</td>
<td>4,4E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,3E-01</td>
<td>1,5E-01</td>
<td>6,7E-02</td>
<td>1,9E-03</td>
<td>1,9E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,5E-01</td>
<td>1,7E-01</td>
<td>5,3E-02</td>
<td>1,8E-02</td>
<td>1,8E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,0E+00</td>
<td>4,3E-01</td>
<td>3,2E-01</td>
<td>2,8E-01</td>
<td>2,8E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Facteurs de Biconcentration pour la Betterave Sucrerie

<table>
<thead>
<tr>
<th>Culture</th>
<th>Betterave sucrerie</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface (ha)</td>
<td>14,27</td>
</tr>
<tr>
<td>teneur en MS (-)</td>
<td>0,127</td>
</tr>
<tr>
<td>type d'aliment</td>
<td>légumes racines</td>
</tr>
<tr>
<td>facteur de déposition (kg sol / kg plante MF)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type de sol</th>
<th>BCF bruts</th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sol 1</td>
<td>expérimental</td>
<td>poids sec ?</td>
<td>Source biblio</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,6E+00</td>
<td>oui</td>
<td>Colombé, 1999</td>
</tr>
<tr>
<td>chrome III</td>
<td>1,2E-02</td>
<td>oui</td>
<td>Colombé, 1999</td>
</tr>
<tr>
<td>Cuivre</td>
<td>3,0E-01</td>
<td>oui</td>
<td>Colombé, 1999</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>6,4E-05</td>
<td>6,4E-05</td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>3,7E+00</td>
<td>3,7E+00</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>6,5E-02</td>
<td>oui</td>
<td>Colombé, 1999</td>
</tr>
<tr>
<td>Plomb</td>
<td>4,6E-02</td>
<td>oui</td>
<td>Colombé, 1999</td>
</tr>
<tr>
<td>Zinc</td>
<td>2,9E-01</td>
<td>oui</td>
<td>Colombé, 1999</td>
</tr>
<tr>
<td>Dioxines</td>
<td>4,5E-03</td>
<td>4,5E-03</td>
<td></td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>4,1E-02</td>
<td>4,1E-02</td>
<td></td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td>4,4E-02</td>
<td>4,4E-02</td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>1,9E-03</td>
<td>1,9E-03</td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>1,8E-02</td>
<td>1,8E-02</td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>2,8E-01</td>
<td>2,8E-01</td>
<td></td>
</tr>
</tbody>
</table>
Facteurs de bioconcentration pour le ble

<table>
<thead>
<tr>
<th>Culture</th>
<th>Blé</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface (ha)</td>
<td>29,71</td>
</tr>
<tr>
<td>teneur en MS (-)</td>
<td>0,897</td>
</tr>
<tr>
<td>type d'aliment</td>
<td>céréales</td>
</tr>
<tr>
<td>facteur de déposition (kg sol / kg plante MF)</td>
<td>0,90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type de sol</th>
<th>sol 1</th>
<th>sol 2</th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF bruts</td>
<td>expéri-mental</td>
<td>poids sec</td>
<td>Source biblio</td>
<td>expéri-mental</td>
</tr>
</tbody>
</table>

Cadmium	1,7E-01	oui	Toullec, 2003	1,7E-01	oui	Toullec, 2003
Chrome III	3,8E-03	oui	Toullec, 2003	3,8E-03	oui	Toullec, 2003
Cuivre	5,9E-01	oui	Toullec, 2003	5,9E-01	oui	Toullec, 2003
Mercure inorganique	2,0E-02	oui	Toullec, 2003	2,0E-02	oui	Toullec, 2003
Mercure organique	7,1E-03	oui	Toullec, 2003	7,1E-03	oui	Toullec, 2003
Nickel	6,3E-03	oui	Toullec, 2003	6,3E-03	oui	Toullec, 2003
Plomb	2,9E-01	oui	Toullec, 2003	2,9E-01	oui	Toullec, 2003
Dioxines	4,5E-03			4,5E-03		
PCB (7 congénères)	1,3E-02			1,3E-02		
HAP(11 eutopéens)	4,4E-02			4,4E-02		
DEHP	1,9E-03			1,9E-03		
NPE	1,8E-02			1,8E-02		
LAS	2,8E-01			2,8E-01		
FACTEURS DE BIOCONCENTRATION POUR LE COLZA

<table>
<thead>
<tr>
<th>Culture</th>
<th>colza</th>
<th>surface (ha)</th>
<th>15,5</th>
<th>teneur en MS (-)</th>
<th>0,9</th>
<th>type d’aliment</th>
<th>céréales</th>
<th>facteur de déposition (kg sol / kg plante MF)</th>
<th>0,91</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>type de sol</th>
<th>BCF bruts expérimental</th>
<th>poids sec ?</th>
<th>Source biblio</th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2,1E-01</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>3,6E-02</td>
<td>1,9E-01</td>
</tr>
<tr>
<td>Chrome III</td>
<td>3,7E-02</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>3,3E-02</td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>2,6E+00</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>4,7E+00</td>
<td>2,3E+00</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>9,0E-01</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>6,4E-05</td>
<td>6,4E-05</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1,8E-01</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>4,0E+00</td>
<td>8,1E-01</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,8E-01</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>2,6E-01</td>
<td>1,6E-01</td>
</tr>
<tr>
<td>Plomb</td>
<td>5,2E-02</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>1,6E+00</td>
<td>4,7E-02</td>
</tr>
<tr>
<td>Zinc</td>
<td>2,0E+00</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>6,6E+00</td>
<td>1,8E+00</td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td>4,5E-03</td>
<td>4,5E-03</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td></td>
<td></td>
<td></td>
<td>1,3E-02</td>
<td>1,3E-02</td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td></td>
<td></td>
<td></td>
<td>4,4E-02</td>
<td>4,4E-02</td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td>1,9E-03</td>
<td>1,9E-03</td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td>1,8E-02</td>
<td>1,8E-02</td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td>2,8E-01</td>
<td>2,8E-01</td>
</tr>
</tbody>
</table>

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
Facteurs de bioconcentration pour le maïs

<table>
<thead>
<tr>
<th>Culture</th>
<th>Maïs</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface (ha)</td>
<td>17,69</td>
</tr>
<tr>
<td>teneur en MS (-)</td>
<td>0,24</td>
</tr>
<tr>
<td>type d'aliment</td>
<td>céréales</td>
</tr>
<tr>
<td>facteur de déposition</td>
<td>0,24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type de sol</th>
<th>sol 1</th>
<th>sol 2</th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF bruts</td>
<td>expérimental</td>
<td>poids sec ?</td>
<td>Source biblio</td>
<td>expérimental</td>
</tr>
<tr>
<td>Cadnium</td>
<td>8,9E-01 oui</td>
<td>Heffron et al., 1980</td>
<td>8,9E-01 oui</td>
<td>Heffron et al., 1980</td>
</tr>
<tr>
<td>chrome III</td>
<td>1,9E-02 oui</td>
<td>Heffron et al., 1980</td>
<td>1,9E-02 oui</td>
<td>Heffron et al., 1980</td>
</tr>
<tr>
<td>Cuivre</td>
<td>3,7E-01 oui</td>
<td>Heffron et al., 1980</td>
<td>3,7E-01 oui</td>
<td>Heffron et al., 1980</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>7,5E-01 oui</td>
<td>Heffron et al., 1980</td>
<td>7,5E-01 oui</td>
<td>Heffron et al., 1980</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,9E-02 oui</td>
<td>Heffron et al., 1980</td>
<td>1,9E-02 oui</td>
<td>Heffron et al., 1980</td>
</tr>
<tr>
<td>Plomb</td>
<td>1,3E-01 oui</td>
<td>Heffron et al., 1980</td>
<td>1,3E-01 oui</td>
<td>Heffron et al., 1980</td>
</tr>
<tr>
<td>Zinc</td>
<td>4,7E-01 oui</td>
<td>Heffron et al., 1980</td>
<td>4,7E-01 oui</td>
<td>Heffron et al., 1980</td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>1,6E-02 oui</td>
<td>Webber er al., 1994</td>
<td>1,6E-02 oui</td>
<td>Webber er al., 1994</td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FACTEURS DE BIOCONCENTRATION POUR L’ORGUE

<table>
<thead>
<tr>
<th>Culture</th>
<th>Orge</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>surface (ha)</td>
<td>7,8</td>
<td></td>
<td>(US EPA, 1997)</td>
</tr>
<tr>
<td>teneur en MS (-)</td>
<td>0,899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type d'aliment</td>
<td>céréales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>facteur de déposition (kg sol / kg plante MF)</td>
<td>0,91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type de sol</th>
<th>sol 1</th>
<th>sol 2</th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF bruts</td>
<td>expérimental</td>
<td>poids sec ?</td>
<td>Source biblio</td>
<td>expérimental</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,0E-01</td>
<td>oui</td>
<td>Dudka et al., 1996</td>
<td>1,0E-01</td>
</tr>
<tr>
<td>Cuivre</td>
<td>5,4E-01</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>5,4E-01</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>7,0E-01</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>7,0E-01</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>7,0E-01</td>
<td>oui</td>
<td>Pinet et al., 2003</td>
<td>7,0E-01</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,7E-02</td>
<td>oui</td>
<td>Tremel A., 1998 (à paraître 2004) fiche 13</td>
<td>1,7E-02</td>
</tr>
<tr>
<td>Plomb</td>
<td>2,1E-02</td>
<td>oui</td>
<td>Tremel A., 1998 (à paraître 2004) fiche 13</td>
<td>2,1E-02</td>
</tr>
<tr>
<td>Zinc</td>
<td>1,5E-01</td>
<td>oui</td>
<td>Dudka et al., 1996</td>
<td>1,5E-01</td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP(11 eutopéens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
FACTEURS DE BIOCONCENTRATION POUR LE TOURNESOL

<table>
<thead>
<tr>
<th>Culture</th>
<th>Tournesol</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>surface (ha)</td>
<td></td>
<td>2,12</td>
</tr>
<tr>
<td>teneur en MS (-)</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>type d'aliment</td>
<td></td>
<td>céréales</td>
</tr>
<tr>
<td>facteur de déposition</td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td>(kg sol / kg plante MF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type de sol</th>
<th>sol 1</th>
<th></th>
<th>sol 2</th>
<th></th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BCF bruts</td>
<td>expé-</td>
<td>poids sec ?</td>
<td>Source biblio</td>
<td>expé-</td>
<td>poids sec ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>5,4E-01</td>
<td>oui</td>
<td>Toullec, 2003</td>
<td>5,4E-01</td>
<td>oui</td>
<td>Toullec, 2003</td>
</tr>
<tr>
<td>chrome III</td>
<td>8,3E-03</td>
<td>oui</td>
<td>Toullec, 2003</td>
<td>8,3E-03</td>
<td>oui</td>
<td>Toullec, 2003</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,7E+00</td>
<td>oui</td>
<td>Toullec, 2003</td>
<td>1,7E+00</td>
<td>oui</td>
<td>Toullec, 2003</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2,8E-03</td>
<td>oui</td>
<td>Toullec, 2003</td>
<td>2,8E-03</td>
<td>oui</td>
<td>Toullec, 2003</td>
</tr>
<tr>
<td>Nickel</td>
<td>3,2E-02</td>
<td>oui</td>
<td>Toullec, 2003</td>
<td>3,2E-02</td>
<td>oui</td>
<td>Toullec, 2003</td>
</tr>
<tr>
<td>Plomb</td>
<td>5,1E-03</td>
<td>oui</td>
<td>Toullec, 2003</td>
<td>5,1E-03</td>
<td>oui</td>
<td>Toullec, 2003</td>
</tr>
<tr>
<td>Zinc</td>
<td>5,5E-01</td>
<td>oui</td>
<td>Toullec, 2003</td>
<td>5,5E-01</td>
<td>oui</td>
<td>Toullec, 2003</td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>1,3E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td>4,4E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>1,9E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>1,8E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>2,8E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toute référence externe est mentionnée dans la source bibliographique correspondante.
FACTEURS DE BIOCONCENTRATION POUR LA POMME DE TERRE

<table>
<thead>
<tr>
<th>Culture</th>
<th>pomme de terre</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface (ha)</td>
<td>2,38</td>
</tr>
<tr>
<td>teneur en MS (-)</td>
<td>0,21</td>
</tr>
<tr>
<td>type d'aliment</td>
<td>Pommes de terres</td>
</tr>
<tr>
<td>facteur de déposition (kg sol / kg plante MF)</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type de sol</th>
<th>sol 1</th>
<th>sol 2</th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF bruts</td>
<td>expéri-</td>
<td>poids sec ?</td>
<td>Source biblio</td>
<td>expéri-</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2,0E-01</td>
<td>oui</td>
<td>Dudka et al., 1996</td>
<td>2,0E-01</td>
</tr>
<tr>
<td>chrome III</td>
<td>4,7E-03</td>
<td>oui</td>
<td>Samsoe-Petersen et al., 2002</td>
<td>4,7E-03</td>
</tr>
<tr>
<td>Cuivre</td>
<td>2,5E-01</td>
<td>oui</td>
<td>Samsoe-Petersen et al., 2002</td>
<td>2,5E-01</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>6,4E-05</td>
<td>6,4E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>4,0E+00</td>
<td>4,0E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0,021</td>
<td>oui</td>
<td>Samsoe-Petersen et al., 2002</td>
<td>0,021</td>
</tr>
<tr>
<td>Plomb</td>
<td>1,6E-03</td>
<td>oui</td>
<td>Dudka et al., 1996</td>
<td>1,6E-03</td>
</tr>
<tr>
<td>Zinc</td>
<td>9,0E-02</td>
<td>oui</td>
<td>Dudka et al., 1996</td>
<td>9,0E-02</td>
</tr>
<tr>
<td>Dioxines</td>
<td>4,5E-03</td>
<td>4,5E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>1,3E-02</td>
<td>1,3E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td>4,4E-02</td>
<td>4,4E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>1,9E-03</td>
<td>1,9E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>1,8E-02</td>
<td>1,8E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>2,8E-01</td>
<td>2,8E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FACTEURS DE BIOCONCENTRATION POUR LA PRAIRIE

<table>
<thead>
<tr>
<th>Culture</th>
<th>Prarie</th>
<th>type de sol</th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>herbes (animaux)</td>
<td>0,15</td>
<td>sol 1</td>
<td>sol 2</td>
<td></td>
</tr>
<tr>
<td>surface (ha)</td>
<td>5,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>teneur en MS (-)</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type d'aliment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>facteur de déposition (kg sol / kg plante MF)</td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>Baxter et al., 1980</td>
<td>8,6E+00</td>
<td>Baxter et al., 1980</td>
<td>3,6E-02</td>
</tr>
<tr>
<td>chrome III</td>
<td>Baxter et al., 1980</td>
<td>2,6E-01</td>
<td>Baxter et al., 1980</td>
<td>2,6E-01</td>
</tr>
<tr>
<td>Cuivre</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>6,4E-05</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>4,0E+00</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>2,6E-01</td>
</tr>
<tr>
<td>Nickel</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>1,6E+00</td>
</tr>
<tr>
<td>Plomb</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>4,5E-02</td>
</tr>
<tr>
<td>Zinc</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>4,5E-02</td>
</tr>
<tr>
<td>Dioxines</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>3,8E-01</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>2,8E-01</td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>2,8E-01</td>
</tr>
<tr>
<td>DEHP</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>2,8E-01</td>
</tr>
<tr>
<td>NPE</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>2,8E-01</td>
</tr>
<tr>
<td>LAS</td>
<td>Baxter et al., 1980</td>
<td>2,6E+00</td>
<td>Baxter et al., 1980</td>
<td>2,8E-01</td>
</tr>
</tbody>
</table>
Facteurs de Bioconcentration pour la Chicorée

<table>
<thead>
<tr>
<th>Culture</th>
<th>Prairie</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface (ha)</td>
<td>5,11</td>
</tr>
<tr>
<td>teneur en MS (-)</td>
<td>0,1 (US EPA, 1997)</td>
</tr>
<tr>
<td>type d'aliment</td>
<td>herbes (animaux)</td>
</tr>
<tr>
<td>facteur de déposition (kg sol / kg plante MF)</td>
<td>0,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type de sol</th>
<th>sol 1</th>
<th>sol 2</th>
<th>BCF calculé (MF)</th>
<th>BCF retenu (MF)</th>
</tr>
</thead>
</table>
| BCF bruts | expéri-
| mentale | poids sec ? | Source biblio | expéri-
| mentale | poids sec ? | Source biblio | | |
| Cadmium | 8,6E+00 oui Baxter et al., 1980 | 8,6E+00 oui Baxter et al., 1980 | 3,6E-02 | 8,6E-01 |
| Chrome III | 2,6E+00 oui Baxter et al., 1980 | 2,6E+00 oui Baxter et al., 1980 | 4,7E+00 | 2,6E-01 |
| Mercure inorganique | 6,4E-05 | 6,4E-05 |
| Mercure organique | 4,0E+00 | 4,0E+00 |
| Nickel | 2,6 oui Baxter et al., 1980 | 2,6 oui Baxter et al., 1980 | 2,6E-01 | 2,6E-01 |
| Plomb | 2,8E-01 oui Baxter et al., 1980 | 2,8E-01 oui Baxter et al., 1980 | 1,6E+00 | 2,8E-02 |
| Zinc | 3,8E+00 oui Baxter et al., 1980 | 3,8E+00 oui Baxter et al., 1980 | 6,6E+00 | 3,8E-01 |
| Dioxines | 4,5E-03 | 4,5E-03 |
| PCB (7 congénères) | 1,3E-02 | 1,3E-02 |
| HAP (11 eupéénés) | 4,4E-02 | 4,4E-02 |
| DEHP | 1,9E-03 | 1,9E-03 |
| NPE | 1,8E-02 | 1,8E-02 |
| LAS | 2,8E-01 | 2,8E-01 |
FACTEURS DE BIOACCUMULATION POUR LE BŒUF, VEAU, CHEVAL

<table>
<thead>
<tr>
<th>Teneur en MS animal</th>
<th>Type part dans l'alimentation</th>
<th>BAF pondéré s par la ration alimentaire</th>
<th>Heures de bœuf, veau, cheval</th>
<th>BAF expérimental</th>
<th>BAF calculé (MF)</th>
<th>BAF retenu (MF)</th>
<th>Source bibliographique</th>
<th>Source biblio calculé (MF)</th>
<th>Source biblio retenu (MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur en MS aliment</td>
<td>Sol</td>
<td></td>
<td>BAF</td>
<td>Expérimental poids sec?</td>
<td>Source biblio</td>
<td>calculé (MF)</td>
<td>retenu (MF)</td>
<td>BAF pondéré</td>
<td>Expérimental poids sec?</td>
</tr>
<tr>
<td>0,284 (source US PEA, 1997)</td>
<td>herbes</td>
<td></td>
<td>BAF</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,1E-05</td>
<td>1,0E-06</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>0,04</td>
<td>non concerné</td>
<td></td>
<td>BAF</td>
<td>2,6E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>7,4E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>0,096</td>
<td>ouv</td>
<td></td>
<td>BAF</td>
<td>1,0E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>2,8E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>0,1</td>
<td>BAF retenu (MF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>4,0E-06</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,1E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>6,1E-06</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>Chrome III</td>
<td>2,6E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>7,4E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>6,1E-06</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,0E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>2,8E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>6,1E-06</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>1,3E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>3,7E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>4,3E-05</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,0E-06</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,0E-06</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,4E-06</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>Plomb</td>
<td>1,3E-04</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>3,7E-04</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,3E-04</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>Zinc</td>
<td>1,9E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,9E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,9E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>Dioxines</td>
<td>3,0E-02</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>3,0E-02</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>3,0E-02</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>PCB (7)</td>
<td>3,4E-03</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>3,4E-03</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>3,4E-03</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>HAP(11)</td>
<td>9,1E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>9,1E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>9,1E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>DEHP</td>
<td>9,1E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>9,1E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>9,1E-01</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>NPE</td>
<td>1,6E-02</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,6E-02</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,6E-02</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
<tr>
<td>LAS</td>
<td>1,2E-04</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,2E-04</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,2E-04</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
</tr>
</tbody>
</table>
FACTEURS DE BIOACCUMULATION POUR LE MOUTON, AGNEAU

<table>
<thead>
<tr>
<th>Teneur en MS animal</th>
<th>Type d'aliment</th>
<th>Teneur en MS aliment</th>
<th>US EPA, 1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,266</td>
<td></td>
<td>0,04</td>
<td>97</td>
</tr>
<tr>
<td>0,1</td>
<td></td>
<td>non concerné</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type d'aliment</th>
<th>BAF</th>
<th>Expéri mental</th>
<th>poids sec animal?</th>
<th>Sourc e biblio calculé (MF)</th>
<th>retenu (MF)</th>
<th>poids sec végétal ?</th>
<th>Source biblio calculé (MF)</th>
<th>retenu (MF)</th>
<th>BAF</th>
<th>expéri mental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol</td>
<td></td>
<td></td>
<td>oui</td>
<td>oui</td>
<td>2,0E-06</td>
<td>oui</td>
<td>oui</td>
<td>1,0E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>herbes</td>
<td></td>
<td></td>
<td>oui</td>
<td>oui</td>
<td>3,2E-01</td>
<td>oui</td>
<td>Liu, 2003 + expertise</td>
<td>3,2E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>céréales</td>
<td></td>
<td></td>
<td>oui</td>
<td>oui</td>
<td>3,1E-02</td>
<td>oui</td>
<td>Liu, 2003 + expertise</td>
<td>3,1E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mouton, agneau</td>
<td></td>
<td></td>
<td>oui</td>
<td>oui</td>
<td>7,0E-01</td>
<td>oui</td>
<td>Liu, 2003 + expertise</td>
<td>7,0E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cadmium
 - chrome III
 - Cuivre
 - Mercure inorganique
 - Mercure organique
 - Nickel
 - Plomb
 - Zinc
 - Dioxines
 - PCB (7 congénères)
 - HAP(11 eutopéens)
 - DEHP
 - NPE
 - LAS

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
Facteurs de bioaccumulation pour le porc

<table>
<thead>
<tr>
<th>Type d'aliment</th>
<th>Teneur en MS animal</th>
<th>Sol</th>
<th>0,04</th>
<th>non concerné</th>
<th>Teneur en MS aliment</th>
<th>Expérimental</th>
<th>US EPA, 1997</th>
<th>BAF pondérés par la ration alimentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d'aliment</td>
<td>part dans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teneur en MS</td>
<td>aliment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAF</td>
<td>expérimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadnium</td>
<td>8,3E-05</td>
<td>oui</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>5,3E-05</td>
<td>4,6E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chrome III</td>
<td>2,9E-04</td>
<td>oui</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>1,9E-04</td>
<td>1,4E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>6,2E-04</td>
<td>oui</td>
<td>oui</td>
<td>Laurent et al., 2002</td>
<td>4,0E-04</td>
<td>4,9E-04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DOSES JOURNALIERES TOLERABLES POUR LES EFFETS A SEUIL PAR VOIE ORALE

<table>
<thead>
<tr>
<th></th>
<th>Effets à seuil par voie orale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>taux d'absorption (%)</td>
</tr>
<tr>
<td></td>
<td>adulte</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5</td>
</tr>
<tr>
<td>chrome III</td>
<td>0,5</td>
</tr>
<tr>
<td>Cuivre</td>
<td>15</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>15</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>95</td>
</tr>
<tr>
<td>Nickel</td>
<td>0,7</td>
</tr>
<tr>
<td>Zinc</td>
<td>8</td>
</tr>
<tr>
<td>Dioxines</td>
<td>90</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>80</td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td>100</td>
</tr>
<tr>
<td>DEHP</td>
<td>50</td>
</tr>
<tr>
<td>NPE</td>
<td>100</td>
</tr>
<tr>
<td>LAS</td>
<td>100</td>
</tr>
</tbody>
</table>
DOSES JOURNALIERES TOLERABLES POUR LES EFFETS A SEUIL PAR INHALATION

<table>
<thead>
<tr>
<th></th>
<th>Effets à seuil par voie inhalation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>taux d’absorption (%)</td>
</tr>
<tr>
<td></td>
<td>adulte</td>
</tr>
<tr>
<td>Cadmium</td>
<td>100</td>
</tr>
<tr>
<td>chrome III</td>
<td>30</td>
</tr>
<tr>
<td>Cuivre</td>
<td>15</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>85</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>85</td>
</tr>
<tr>
<td>Nickel</td>
<td>35</td>
</tr>
<tr>
<td>Plomb</td>
<td>30</td>
</tr>
<tr>
<td>Zinc</td>
<td>30</td>
</tr>
<tr>
<td>Dioxines</td>
<td>100</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>80</td>
</tr>
<tr>
<td>HAP(11 eutopéens)</td>
<td>80</td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
</tr>
</tbody>
</table>
Excès de risque unitaire pour les effets sans seuil par voie orale

<table>
<thead>
<tr>
<th>Effets sans seuil par voie orale</th>
<th>taux d'absorption (%)</th>
<th>ERUo (mg/kg.j)-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>adulte</td>
<td>enfant</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Chrome III</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Cuivre</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Nickel</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Plomb</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Zinc</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Nickel</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Plomb</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Zinc</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Nickel</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Plomb</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Zinc</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dioxines</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>DEHP</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>NPE</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>LAS</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Excès de risque unitaire pour les effets sans seuil par inhalation

<table>
<thead>
<tr>
<th></th>
<th>Taux d'absorption (%)</th>
<th>ERUi (mg/m³)-1</th>
<th>Source biblio ou calculs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>adulte</td>
<td>enfant</td>
<td>Source biblio</td>
</tr>
<tr>
<td>Cadmium</td>
<td>100</td>
<td>100</td>
<td>INERIS</td>
</tr>
<tr>
<td>Chrome III</td>
<td>30</td>
<td>30</td>
<td>INERIS</td>
</tr>
<tr>
<td>Cuivre</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>85</td>
<td>85</td>
<td>INERIS</td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>35</td>
<td>35</td>
<td>INERIS</td>
</tr>
<tr>
<td>Plomb</td>
<td>30</td>
<td>30</td>
<td>INERIS</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td>100</td>
<td>100</td>
<td>par défaut</td>
</tr>
<tr>
<td>PCB (7 congénères)</td>
<td>80</td>
<td>80</td>
<td>INERIS</td>
</tr>
<tr>
<td>HAP (11 eutopéens)</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE XI : RESULTATS DES CALCULS DANS LE CAS 1 A)

CONCENTRATIONS DANS LES SOLS

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentrations moyennes (mg/kg MS) dans les boues</th>
<th>Type</th>
<th>Concentrations dans les sols (mg/kg sol) dues aux boues</th>
<th>Bruit de fonds dans les sols (mg/kg sol)</th>
<th>Type</th>
<th>Part des boues dans la concentration totale des sols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>3.32E+00</td>
<td>CTO</td>
<td>7.38E-03</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>Chrome</td>
<td>6.60E+01</td>
<td>CTO</td>
<td>1.47E-01</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>Cuivre</td>
<td>2.99E+02</td>
<td>CTO</td>
<td>6.64E-01</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2.28E+00</td>
<td>CTO</td>
<td>5.06E-03</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>2.30E-02</td>
<td>CTO</td>
<td>5.11E-05</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.95E+01</td>
<td>ETM : Valeurs correspondantes aux zones rurales et/ou reculées</td>
<td>6.55E-02</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>plomb</td>
<td>9.40E+01</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>2.09E-01</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>zinc</td>
<td>7.74E+02</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>1.72E+00</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1.10E-05</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>2.44E-08</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>1.20E-01</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>2.67E-04</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2.30E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>5.11E-03</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>DEHP</td>
<td>4.22E+01</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>9.38E-02</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>NPE</td>
<td>1.45E+02</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>3.22E-01</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
<tr>
<td>LAS</td>
<td>2.02E+03</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>4.48E+00</td>
<td>0.0E+00</td>
<td>ETM : Valeurs médianes d’après l’étude ADEME/INRA 1997</td>
<td>100,00%</td>
</tr>
</tbody>
</table>
Teneurs dans les sols selon les cibles considérées

<table>
<thead>
<tr>
<th>Substances</th>
<th>Concentrations dans les sols (mg/kg sol)</th>
<th>Cible et durée d'exposition (années)</th>
<th>enfant 6</th>
<th>adulte 64</th>
<th>durée d'épandage 70</th>
<th>enfant 70</th>
<th>adulte 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>7,38E-03</td>
<td>Cadmium</td>
<td>1,66E-01</td>
<td>9,47E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td>1,47E-01</td>
<td>Chrome</td>
<td>3,30E+00</td>
<td>1,88E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>6,64E-01</td>
<td>Cuivre</td>
<td>1,50E+01</td>
<td>8,53E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>5,06E-03</td>
<td>Mercure inorganique</td>
<td>1,14E-01</td>
<td>6,49E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>5,11E-05</td>
<td>Mercure organique</td>
<td>1,15E-03</td>
<td>6,56E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>6,55E-02</td>
<td>Nickel</td>
<td>1,47E+00</td>
<td>8,41E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td>2,09E-01</td>
<td>plomb</td>
<td>4,70E+00</td>
<td>2,68E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td>1,72E+00</td>
<td>zinc</td>
<td>3,87E+01</td>
<td>2,21E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td>2,44E-08</td>
<td>Dioxines</td>
<td>1,42E-07</td>
<td>1,19E-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>2,67E-04</td>
<td>PCB (congénères)</td>
<td>6,00E-03</td>
<td>3,42E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>5,11E-03</td>
<td>HAP (11 européens)</td>
<td>2,19E-02</td>
<td>1,95E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>9,38E-02</td>
<td>DEHP</td>
<td>6,25E-02</td>
<td>1,00E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>3,22E-01</td>
<td>NPE</td>
<td>1,32E-01</td>
<td>1,32E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>4,48E+00</td>
<td>LAS</td>
<td>1,50E+00</td>
<td>1,50E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Voie d’exposition : ingestion des sols

<table>
<thead>
<tr>
<th></th>
<th>ingestion de sol (mg/kg/j)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>concentration sol pour cette expo</td>
<td>riverain enfant</td>
<td>concentration sol pour cette expo</td>
<td>riverain adulte</td>
<td>concentration sol pour cette expo</td>
<td>agriculteur adulte</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.66E-01</td>
<td>3.5E-08</td>
<td>9.47E-02</td>
<td>2.0E-10</td>
<td>1.24E-01</td>
<td>9.5E-08</td>
</tr>
<tr>
<td>Chrome</td>
<td>3.30E+00</td>
<td>6.9E-07</td>
<td>1.88E+00</td>
<td>4.0E-09</td>
<td>2.47E+00</td>
<td>1.9E-06</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1.50E+01</td>
<td>3.1E-06</td>
<td>8.53E+00</td>
<td>1.8E-08</td>
<td>1.12E+01</td>
<td>8.5E-06</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>1.14E-01</td>
<td>2.4E-08</td>
<td>6.49E-02</td>
<td>1.4E-10</td>
<td>8.52E-02</td>
<td>6.5E-08</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1.15E-03</td>
<td>2.4E-10</td>
<td>6.56E-04</td>
<td>1.4E-12</td>
<td>8.60E-04</td>
<td>6.6E-10</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.47E-00</td>
<td>3.1E-07</td>
<td>8.41E-01</td>
<td>1.8E-09</td>
<td>1.10E+00</td>
<td>8.4E-07</td>
</tr>
<tr>
<td>plomb</td>
<td>4.70E+00</td>
<td>9.9E-07</td>
<td>2.68E+00</td>
<td>5.7E-09</td>
<td>3.52E+00</td>
<td>2.7E-06</td>
</tr>
<tr>
<td>zinc</td>
<td>3.87E+01</td>
<td>8.1E-06</td>
<td>2.21E+01</td>
<td>4.7E-08</td>
<td>2.90E+01</td>
<td>2.2E-05</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1.42E-07</td>
<td>3.0E-14</td>
<td>1.19E-07</td>
<td>2.5E-16</td>
<td>1.35E-07</td>
<td>1.0E-13</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>6.00E-03</td>
<td>1.3E-09</td>
<td>3.42E-03</td>
<td>7.3E-12</td>
<td>4.49E-03</td>
<td>3.4E-09</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2.19E-02</td>
<td>4.6E-09</td>
<td>1.95E-02</td>
<td>4.2E-11</td>
<td>2.14E-02</td>
<td>1.6E-08</td>
</tr>
<tr>
<td>DEHP</td>
<td>6.25E-02</td>
<td>1.3E-08</td>
<td>1.00E-01</td>
<td>2.1E-10</td>
<td>3.91E-02</td>
<td>3.0E-08</td>
</tr>
<tr>
<td>NPE</td>
<td>1.32E-01</td>
<td>2.8E-08</td>
<td>1.32E-01</td>
<td>2.8E-10</td>
<td>1.32E-01</td>
<td>1.0E-07</td>
</tr>
<tr>
<td>LAS</td>
<td>1.50E+00</td>
<td>3.1E-07</td>
<td>1.50E+00</td>
<td>3.2E-09</td>
<td>1.50E+00</td>
<td>1.1E-06</td>
</tr>
</tbody>
</table>
Voie d'exposition Contact cutane

<table>
<thead>
<tr>
<th></th>
<th>Contact cutane (extérieur) (mg adm/kg,j)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>concentration sol pour cette expo</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,66E-01</td>
</tr>
<tr>
<td>Chrome</td>
<td>3,30E+00</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,50E+01</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>1,14E-01</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1,15E-03</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,47E+00</td>
</tr>
<tr>
<td>plomb</td>
<td>4,70E+00</td>
</tr>
<tr>
<td>zinc</td>
<td>3,87E+01</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,42E-07</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>6,00E-03</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2,19E-02</td>
</tr>
<tr>
<td>DEHP</td>
<td>6,25E-02</td>
</tr>
<tr>
<td>NPE</td>
<td>1,32E-01</td>
</tr>
<tr>
<td>LAS</td>
<td>1,50E+00</td>
</tr>
</tbody>
</table>
Voie d'exposition Inhalation de poussières

<table>
<thead>
<tr>
<th>Métal</th>
<th>Concentration sol pour cette expo</th>
<th>Rivail enfant</th>
<th>Concentration sol pour cette expo</th>
<th>Rivail adulte</th>
<th>Concentration sol pour cette expo</th>
<th>Agriculteur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1.66E-01</td>
<td>9.2E-11</td>
<td>9.47E-02</td>
<td>7.5E-12</td>
<td>1.24E-01</td>
<td>3.1E-08</td>
</tr>
<tr>
<td>Chrome</td>
<td>3.30E+00</td>
<td>1.8E-09</td>
<td>1.88E+00</td>
<td>1.5E-10</td>
<td>2.47E+00</td>
<td>6.1E-07</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1.50E+01</td>
<td>8.2E-09</td>
<td>8.53E+00</td>
<td>6.7E-10</td>
<td>1.12E+01</td>
<td>2.8E-06</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>1.14E-01</td>
<td>6.3E-11</td>
<td>6.49E-02</td>
<td>5.1E-12</td>
<td>8.52E-02</td>
<td>2.1E-08</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1.15E-03</td>
<td>6.3E-13</td>
<td>6.56E-04</td>
<td>5.2E-14</td>
<td>8.60E-04</td>
<td>2.1E-10</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.47E+00</td>
<td>8.1E-10</td>
<td>8.41E-01</td>
<td>6.6E-11</td>
<td>1.10E+00</td>
<td>2.7E-07</td>
</tr>
<tr>
<td>Plomb</td>
<td>4.70E+00</td>
<td>2.6E-09</td>
<td>2.68E+00</td>
<td>2.1E-10</td>
<td>3.52E+00</td>
<td>8.7E-07</td>
</tr>
<tr>
<td>Zinc</td>
<td>3.87E+01</td>
<td>2.1E-08</td>
<td>2.21E+01</td>
<td>1.7E-09</td>
<td>2.90E+01</td>
<td>7.2E-06</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1.42E-07</td>
<td>7.8E-17</td>
<td>1.19E-07</td>
<td>9.4E-18</td>
<td>1.35E-07</td>
<td>3.3E-14</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>6.00E-03</td>
<td>3.3E-12</td>
<td>3.42E-03</td>
<td>2.7E-13</td>
<td>4.49E-03</td>
<td>1.1E-09</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2.19E-02</td>
<td>1.2E-11</td>
<td>1.95E-02</td>
<td>1.5E-12</td>
<td>2.14E-02</td>
<td>5.3E-09</td>
</tr>
<tr>
<td>DEHP</td>
<td>6.25E-02</td>
<td>3.4E-11</td>
<td>1.00E-01</td>
<td>7.9E-12</td>
<td>3.91E-02</td>
<td>9.7E-09</td>
</tr>
<tr>
<td>NPE</td>
<td>1.32E-01</td>
<td>7.3E-11</td>
<td>1.32E-01</td>
<td>1.0E-11</td>
<td>1.32E-01</td>
<td>3.3E-08</td>
</tr>
<tr>
<td>LAS</td>
<td>1.50E+00</td>
<td>8.2E-10</td>
<td>1.50E+00</td>
<td>1.2E-10</td>
<td>1.50E+00</td>
<td>3.7E-07</td>
</tr>
</tbody>
</table>
VOIE D’EXPOSITION INGESTION DE VÉGÉTAUX

<table>
<thead>
<tr>
<th>Ingestion végétaux (mg/kg/j)</th>
<th>riverain enfant</th>
<th>riverain adulte</th>
<th>consommateur enfant</th>
<th>consommateur adulte</th>
<th>agriculteur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium 1,66E-01 2,92E-05 9,47E-02 4,58E-06 1,24E-01 6,00E-06 1,66E-01 2,33E-05</td>
<td>3,30E+00 3,71E-04 1,88E+00 7,41E-05 2,47E+00 9,72E-05 3,30E+00 3,78E-04</td>
<td>1,50E+00 3,50E-03 8,53E+00 6,99E-04 1,12E+01 9,17E-04 1,50E+01 3,57E-03</td>
<td>1,14E+00 1,26E-05 6,49E-02 2,52E-06 8,55E-02 3,30E-06 1,14E-01 1,29E-05</td>
<td>1,15E-03 1,94E-07 1,94E-03 3,84E-08 8,60E-04 5,04E-08 1,15E-03 1,96E-07</td>
<td>1,47E+00 1,72E-04 8,41E-01 3,44E-05 1,10E+00 4,52E-05 1,47E+00 1,76E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>consommateur adulte</th>
<th>consommateur enfant</th>
<th>riverain adulte</th>
<th>riverain enfant</th>
<th>agriculteur adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>conso de céréales Kg/j</td>
<td>0,187</td>
<td>0,106</td>
<td>0,17</td>
<td>0,104</td>
<td>0,17</td>
</tr>
<tr>
<td>conso de légumes feuilles Kg/j</td>
<td>0,044</td>
<td>0,02</td>
<td>0,051</td>
<td>0,019</td>
<td>0,051</td>
</tr>
<tr>
<td>conso de légumes fruits Kg/j</td>
<td>0,181</td>
<td>0,115</td>
<td>0,156</td>
<td>0,11</td>
<td>0,156</td>
</tr>
<tr>
<td>conso de légumes racines Kg/j</td>
<td>0,029</td>
<td>0,018</td>
<td>0,031</td>
<td>0,022</td>
<td>0,031</td>
</tr>
<tr>
<td>conso de pomme de terre Kg/j</td>
<td>0,065</td>
<td>0,049</td>
<td>0,078</td>
<td>0,056</td>
<td>0,078</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>fraction sol amend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,03</td>
</tr>
</tbody>
</table>
Voie d'exposition : Ingestion d'Animaux

<table>
<thead>
<tr>
<th></th>
<th>Ingestion animaux (mg/kg,j)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>concentration sol pour cette expo</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,66E-01</td>
</tr>
<tr>
<td>Chrome</td>
<td>3,30E+00</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,50E+01</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>1,14E-01</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1,15E-03</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,47E+00</td>
</tr>
<tr>
<td>plomb</td>
<td>4,70E+00</td>
</tr>
<tr>
<td>zinc</td>
<td>3,87E+01</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,42E-07</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>6,00E-03</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2,19E-02</td>
</tr>
<tr>
<td>DEHP</td>
<td>6,25E-02</td>
</tr>
<tr>
<td>NPE</td>
<td>1,32E-01</td>
</tr>
<tr>
<td>LAS</td>
<td>1,50E+00</td>
</tr>
</tbody>
</table>
Résultats de la quantification des effets à seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>Ingestion sol</th>
<th>Voie contact cutanée</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DJTo (mg/kg,j)</td>
<td>QD (riverain enfant)</td>
</tr>
<tr>
<td></td>
<td>enfant</td>
<td>adulte</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,00E-03</td>
<td>3,49E-05</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,50E+00</td>
<td>4,62E-07</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-01</td>
<td>2,24E-05</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>2,00E-02</td>
<td>2,42E-05</td>
</tr>
<tr>
<td>plomb</td>
<td>3,50E-03</td>
<td>2,82E-04</td>
</tr>
<tr>
<td>zinc</td>
<td>3,00E-01</td>
<td>2,71E-05</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,00E-09</td>
<td>2,99E-05</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>2,00E-05</td>
<td>6,30E-05</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>3,00E-02</td>
<td>1,53E-07</td>
</tr>
<tr>
<td>DEHP</td>
<td>2,00E-02</td>
<td>6,56E-05</td>
</tr>
<tr>
<td>NPE</td>
<td>4,40E-02</td>
<td>6,29E-06</td>
</tr>
<tr>
<td>LAS</td>
<td>8,50E-01</td>
<td>3,66E-07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>Conso végétaux</th>
<th>Conso animaux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DJTo (mg/kg,j)</td>
<td>QD (riverain enfant)</td>
</tr>
<tr>
<td></td>
<td>enfant</td>
<td>adulte</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1,00E-03</td>
<td>2,29E-02</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,50E+00</td>
<td>2,47E-04</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-01</td>
<td>2,50E-02</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>2,00E-02</td>
<td>1,94E-03</td>
</tr>
<tr>
<td>plomb</td>
<td>3,50E-03</td>
<td>1,46E-03</td>
</tr>
<tr>
<td>zinc</td>
<td>3,00E-01</td>
<td>1,46E-03</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,00E-09</td>
<td>1,94E-03</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>2,00E-05</td>
<td>1,33E-02</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>3,00E-02</td>
<td>1,94E-03</td>
</tr>
<tr>
<td>DEHP</td>
<td>2,00E-02</td>
<td>1,46E-03</td>
</tr>
<tr>
<td>NPE</td>
<td>4,40E-02</td>
<td>1,33E-02</td>
</tr>
<tr>
<td>LAS</td>
<td>8,50E-01</td>
<td>1,94E-03</td>
</tr>
<tr>
<td>Substances</td>
<td>CT (mg/m³) enfant</td>
<td>CT (mg/m³) adulte</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>cadmium</td>
<td>2,00E-05</td>
<td>2,00E-05</td>
</tr>
<tr>
<td>Chrome</td>
<td>6,00E-02</td>
<td>6,00E-02</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,00E-03</td>
<td>1,00E-03</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>3,00E-04</td>
<td>3,00E-04</td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>5,00E-05</td>
<td>5,00E-05</td>
</tr>
<tr>
<td>plomb</td>
<td>5,00E-04</td>
<td>5,00E-04</td>
</tr>
<tr>
<td>zinc</td>
<td>3,20E-09</td>
<td>1,80E-09</td>
</tr>
<tr>
<td>Dioxines</td>
<td>6,00E-02</td>
<td>6,00E-02</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>5,00E-04</td>
<td>5,00E-04</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2,00E-05</td>
<td>2,00E-05</td>
</tr>
<tr>
<td>DEHP</td>
<td>3,00E-04</td>
<td>3,00E-04</td>
</tr>
<tr>
<td>NPE</td>
<td>1,00E-04</td>
<td>1,00E-04</td>
</tr>
<tr>
<td>LAS</td>
<td>6,00E-02</td>
<td>6,00E-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain adulte)</th>
<th>QD(agriculteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>2,31E-02</td>
<td>4,58E-03</td>
<td>8,27E-03</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,50E-04</td>
<td>4,95E-05</td>
<td>8,46E-05</td>
</tr>
<tr>
<td>Cuivre</td>
<td>3,20E-02</td>
<td>6,53E-03</td>
<td>2,20E-02</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2,09E-07</td>
<td>1,70E-08</td>
<td>7,01E-05</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1,95E-03</td>
<td>3,84E-04</td>
<td>5,13E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>8,70E-03</td>
<td>1,72E-03</td>
<td>7,95E-03</td>
</tr>
<tr>
<td>plomb</td>
<td>5,18E-01</td>
<td>3,17E-02</td>
<td>5,20E-02</td>
</tr>
<tr>
<td>zinc</td>
<td>4,88E-02</td>
<td>1,02E-02</td>
<td>4,99E-02</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,79E-02</td>
<td>5,19E-03</td>
<td>9,80E-03</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>3,47E-02</td>
<td>6,86E-03</td>
<td>1,11E-02</td>
</tr>
<tr>
<td>HAP (11)</td>
<td>8,68E-05</td>
<td>2,69E-05</td>
<td>3,28E-05</td>
</tr>
<tr>
<td>DEHP</td>
<td>5,61E-04</td>
<td>3,07E-04</td>
<td>3,77E-04</td>
</tr>
<tr>
<td>NPE</td>
<td>3,59E-04</td>
<td>1,21E-04</td>
<td>2,07E-04</td>
</tr>
<tr>
<td>LAS</td>
<td>2,63E-04</td>
<td>9,63E-05</td>
<td>1,42E-04</td>
</tr>
</tbody>
</table>

Contribution

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain adulte)</th>
<th>QD(agriculteur)</th>
<th>QD (consommé enfant)</th>
<th>QD (consommé adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>7,1%</td>
<td>6,8%</td>
<td>5,1%</td>
<td>7,6%</td>
<td>7,3%</td>
</tr>
<tr>
<td>Chrome</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Cuivre</td>
<td>9,8%</td>
<td>9,6%</td>
<td>13,5%</td>
<td>9,2%</td>
<td>6,8%</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>0,6%</td>
<td>0,6%</td>
<td>0,3%</td>
<td>0,6%</td>
<td>0,6%</td>
</tr>
<tr>
<td>Nickel</td>
<td>2,7%</td>
<td>2,5%</td>
<td>4,9%</td>
<td>2,8%</td>
<td>2,8%</td>
</tr>
<tr>
<td>plomb</td>
<td>48,4%</td>
<td>46,8%</td>
<td>32,0%</td>
<td>51,2%</td>
<td>49,7%</td>
</tr>
<tr>
<td>zinc</td>
<td>14,9%</td>
<td>15,1%</td>
<td>30,7%</td>
<td>11,3%</td>
<td>11,1%</td>
</tr>
<tr>
<td>Dioxines</td>
<td>5,5%</td>
<td>7,7%</td>
<td>6,0%</td>
<td>5,6%</td>
<td>7,9%</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>10,6%</td>
<td>10,1%</td>
<td>6,9%</td>
<td>11,2%</td>
<td>10,9%</td>
</tr>
<tr>
<td>HAP (11)</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>DEHP</td>
<td>0,2%</td>
<td>0,5%</td>
<td>0,2%</td>
<td>0,2%</td>
<td>0,4%</td>
</tr>
<tr>
<td>NPE</td>
<td>0,1%</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,2%</td>
</tr>
<tr>
<td>LAS</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,2%</td>
</tr>
</tbody>
</table>
RÉSULTATS DE LA QUANTIFICATION DES EFFETS SANS SEUIL

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERUo(mg/kg,j)-1 enfant</th>
<th>ERUo(mg/kg,j)-1 adulte</th>
<th>Ingestion sol</th>
<th>Voie contact cutané</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERUo(riverain enfant)</td>
<td>ERUo(riverain adulte)</td>
<td>ERI(riverain enfant)</td>
<td>ERI(riverain adulte)</td>
</tr>
<tr>
<td></td>
<td>ERI(riverain enfant)</td>
<td>ERI(riverain adulte)</td>
<td>ERI(riverain enfant)</td>
<td>ERI(riverain adulte)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2,00E+00</td>
<td>4,00E-01</td>
<td>2,52E-09</td>
<td>2,93E-12</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,00E-01</td>
<td>2,00E-01</td>
<td>9,20E-10</td>
<td>8,35E-12</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-02</td>
<td>1,40E-02</td>
<td>1,84E-10</td>
<td>3,00E-12</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td>3,62E-09</td>
<td>1,43E-11</td>
<td>5,05E-09</td>
<td>1,35E-09</td>
</tr>
<tr>
<td>Part voie ds ERI total</td>
<td>0,18%</td>
<td>0,00%</td>
<td>0,91%</td>
<td>0,61%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERUo(mg/kg,j)-1 enfant</th>
<th>ERUo(mg/kg,j)-1 adulte</th>
<th>Conso végétaux</th>
<th>Conso animaux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERUo(riverain enfant)</td>
<td>ERUo(riverain adulte)</td>
<td>ERI (conso enfant)</td>
<td>ERI (conso adulte)</td>
</tr>
<tr>
<td></td>
<td>ERUo(riverain enfant)</td>
<td>ERUo(riverain adulte)</td>
<td>ERI (conso enfant)</td>
<td>ERI (conso adulte)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2,00E+00</td>
<td>4,00E-01</td>
<td>1,35E-06</td>
<td>5,38E-08</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,00E-01</td>
<td>2,00E-01</td>
<td>5,16E-07</td>
<td>1,61E-07</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-02</td>
<td>1,40E-02</td>
<td>9,72E-08</td>
<td>5,45E-08</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td>1,94E-06</td>
<td>2,69E-07</td>
<td>2,69E-07</td>
<td>2,00E-06</td>
</tr>
<tr>
<td>Part voie ds ERI total</td>
<td>94,92%</td>
<td>89,07%</td>
<td>48,29%</td>
<td>97,77%</td>
</tr>
<tr>
<td>Substances</td>
<td>ERUI (mg/m³)-1 enfant</td>
<td>ERUI (mg/m³)-1 adulte</td>
<td>ERi(riverain enfant)</td>
<td>ERi(riverain adulte)</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.80E+00</td>
<td>1.80E+00</td>
<td>1.65E-10</td>
<td>1.34E-11</td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>3.80E-01</td>
<td>3.80E-01</td>
<td>3.09E-10</td>
<td>2.52E-11</td>
</tr>
<tr>
<td>(congénères)</td>
<td>1.00E+00</td>
<td>1.10E+00</td>
<td>3.31E-12</td>
<td>2.96E-14</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>1.10E+00</td>
<td>1.10E+00</td>
<td>1.33E-11</td>
<td>1.69E-12</td>
</tr>
<tr>
<td>DEHP NPE LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td></td>
<td></td>
<td>4.90E-10</td>
<td>4.03E-11</td>
</tr>
<tr>
<td>Part voie ds ERI total</td>
<td>0.02%</td>
<td>0.01%</td>
<td>29.60%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERi(riverain enfant)</th>
<th>ERi(riverain adulte)</th>
<th>ERi(ingestur)</th>
<th>ERi (consom. enfant)</th>
<th>ERi (consom. adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1.65E-10</td>
<td>1.34E-11</td>
<td>5.52E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>3.09E-10</td>
<td>2.52E-11</td>
<td>1.04E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(congénères)</td>
<td>1.39E-06</td>
<td>5.49E-08</td>
<td>8.93E-08</td>
<td>1.39E-06</td>
<td>5.97E-08</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>5.21E-07</td>
<td>1.61E-07</td>
<td>2.03E-07</td>
<td>5.26E-07</td>
<td>1.77E-07</td>
</tr>
<tr>
<td>DEHP NPE LAS</td>
<td>1.57E-07</td>
<td>8.59E-08</td>
<td>1.06E-07</td>
<td>1.30E-07</td>
<td>7.62E-08</td>
</tr>
<tr>
<td>SOMME TOTALE</td>
<td>2.06E-06</td>
<td>3.02E-07</td>
<td>5.56E-07</td>
<td>2.04E-06</td>
<td>3.13E-07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERi(riverain enfant)</th>
<th>ERi(riverain adulte)</th>
<th>ERi(ingestur)</th>
<th>ERi (consom. enfant)</th>
<th>ERi (consom. adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.0%</td>
<td>0.0%</td>
<td>9.9%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>67.1%</td>
<td>18.2%</td>
<td>16.0%</td>
<td>67.9%</td>
<td>19.1%</td>
</tr>
<tr>
<td>(congénères)</td>
<td>25.2%</td>
<td>53.4%</td>
<td>36.4%</td>
<td>25.8%</td>
<td>56.6%</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>7.6%</td>
<td>28.4%</td>
<td>19.0%</td>
<td>6.4%</td>
<td>24.4%</td>
</tr>
<tr>
<td>DEHP NPE LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
ANNEXE XII.: RESULTATS DES CALCULS DANS LE CAS 1 B)

RÉSULTATS DE LA QUANTIFICATION DES EFFETS À SEUL

<table>
<thead>
<tr>
<th>Substances</th>
<th>DJTo (mg/kg,j)</th>
<th>DJTo (mg/kg,j)</th>
<th>IR (rivernais enfant)</th>
<th>IR (rivernais adulte)</th>
<th>IR (agriculteur enfant)</th>
<th>IR (agriculteur adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1,00E-03</td>
<td>1,00E-03</td>
<td>1,05E-04</td>
<td>6,11E-07</td>
<td>2,85E-04</td>
<td>4,68E-04</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,50E+00</td>
<td>1,50E+00</td>
<td>7,00E-06</td>
<td>4,07E-08</td>
<td>1,90E-05</td>
<td>3,15E-05</td>
</tr>
<tr>
<td>Cuiivre</td>
<td>1,40E-01</td>
<td>1,40E-01</td>
<td>7,50E-05</td>
<td>4,37E-07</td>
<td>2,04E-04</td>
<td>1,12E-05</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td>3,50E-03</td>
<td>3,50E-03</td>
<td>2,25E-03</td>
<td>1,31E-05</td>
<td>6,11E-03</td>
<td>2,51E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>3,00E-01</td>
<td>3,00E-01</td>
<td>8,75E-05</td>
<td>5,09E-07</td>
<td>2,38E-04</td>
<td>2,44E-05</td>
</tr>
<tr>
<td>Zinc</td>
<td>1,00E-09</td>
<td>1,00E-09</td>
<td>2,72E-04</td>
<td>2,32E-06</td>
<td>9,39E-04</td>
<td>2,02E-04</td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>2,00E-02</td>
<td>2,00E-02</td>
<td>5,58E-06</td>
<td>9,12E-08</td>
<td>1,27E-05</td>
<td>1,25E-06</td>
</tr>
<tr>
<td>NPE</td>
<td>4,00E-02</td>
<td>4,00E-02</td>
<td>1,95E-06</td>
<td>1,96E-08</td>
<td>7,08E-06</td>
<td>4,35E-05</td>
</tr>
<tr>
<td>LAS</td>
<td>8,50E-01</td>
<td>8,50E-01</td>
<td>9,15E-07</td>
<td>9,34E-09</td>
<td>3,32E-06</td>
<td>2,04E-05</td>
</tr>
<tr>
<td>somme</td>
<td></td>
<td></td>
<td>3,39E-03</td>
<td>2,06E-05</td>
<td>9,41E-03</td>
<td>3,20E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>conso végétaux</th>
<th>conso animaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuiivre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>somme</td>
<td>1,93E+00</td>
<td>1,65E-02</td>
</tr>
</tbody>
</table>

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
<table>
<thead>
<tr>
<th>Substances</th>
<th>CT (mg/m3) enfant</th>
<th>CT (mg/m3) adulte</th>
<th>IR(riverain enfant)</th>
<th>IR(riverain adulte)</th>
<th>IR(agriculteur)</th>
<th>IR (conso enfant)</th>
<th>IR (conso adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadnium</td>
<td>2,00E-05</td>
<td>2,00E-05</td>
<td>1,38E-05</td>
<td>1,12E-06</td>
<td>4,62E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td>6,00E-02</td>
<td>6,00E-02</td>
<td>4,59E-07</td>
<td>3,74E-08</td>
<td>1,54E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,00E-03</td>
<td>1,00E-03</td>
<td>2,76E-05</td>
<td>2,25E-06</td>
<td>9,24E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>3,00E-04</td>
<td>3,00E-04</td>
<td>1,50E-07</td>
<td>7,41E-08</td>
<td>3,05E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>5,00E-05</td>
<td>5,00E-05</td>
<td>1,65E-04</td>
<td>1,35E-05</td>
<td>5,54E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td>5,00E-04</td>
<td>5,00E-04</td>
<td>4,13E-05</td>
<td>3,37E-06</td>
<td>1,39E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td>3,20E-09</td>
<td>1,80E-09</td>
<td>2,23E-07</td>
<td>4,73E-08</td>
<td>1,69E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>5,00E-04</td>
<td>5,00E-04</td>
<td>4,41E-08</td>
<td>3,59E-09</td>
<td>1,48E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadnium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,10E-07</td>
<td>7,41E-08</td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,12E-06</td>
<td>7,36E-02</td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,96E-02</td>
<td>9,46E-02</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,04E-02</td>
</tr>
<tr>
<td>Mercury organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,3%</td>
<td>3,3%</td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,2%</td>
<td>0,2%</td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>zinech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,5%</td>
<td>3,5%</td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,10E-07</td>
<td>7,41E-08</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,12E-06</td>
<td>7,36E-02</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,46E-03</td>
<td>6,51E-03</td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,76E-02</td>
<td>8,94E-02</td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,45E-02</td>
<td>1,93E-02</td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,46E-03</td>
<td>6,51E-03</td>
</tr>
<tr>
<td>somme</td>
<td>2,50E-04</td>
<td>2,04E-05</td>
<td>8,38E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,10E-07</td>
<td>7,41E-08</td>
</tr>
<tr>
<td>Contribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,12E-06</td>
<td>7,36E-02</td>
</tr>
<tr>
<td>Cadnium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,3%</td>
<td>3,3%</td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,2%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,7%</td>
<td>4,7%</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Mercury organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4%</td>
<td>0,4%</td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,0%</td>
<td>4,0%</td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59,5%</td>
<td>59,5%</td>
</tr>
<tr>
<td>zinech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,9%</td>
<td>0,9%</td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,5%</td>
<td>7,5%</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,5%</td>
<td>10,5%</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,2%</td>
<td>0,2%</td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>
Résultats de la quantification des effets sans seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERUo(mg/kg,j)</th>
<th>ERUo(mg/kg,j)</th>
<th>ERI(riverain enfant)</th>
<th>ERI(riverain adulte)</th>
<th>ERI(ingestion sol)</th>
<th>ERI(ingestion sol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 enfant</td>
<td>1 adulte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>2,00E+00</td>
<td>4,00E-01</td>
<td>1,68E-08</td>
<td>1,96E-11</td>
<td>6,56E-08</td>
<td>3,73E-10</td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique nikel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td>2,08E-08</td>
<td>6,69E-11</td>
<td>2,12E-08</td>
<td>7,28E-08</td>
<td>9,33E-08</td>
<td></td>
</tr>
<tr>
<td>Part ERI total</td>
<td>0,17%</td>
<td>0,00%</td>
<td>0,66%</td>
<td>0,61%</td>
<td>2,91%</td>
<td></td>
</tr>
<tr>
<td>Conso végétaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substances</td>
<td>ERUo(mg/kg,j)</td>
<td>ERUo(mg/kg,j)</td>
<td>ERI(riverain enfant)</td>
<td>ERI(riverain adulte)</td>
<td>ERI(ingestion sol)</td>
<td>ERI(ingestion sol)</td>
</tr>
<tr>
<td></td>
<td>1 enfant</td>
<td>1 adulte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>2,00E+00</td>
<td>4,00E-01</td>
<td>8,98E-06</td>
<td>3,59E-07</td>
<td>4,71E-07</td>
<td>9,15E-06</td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique nikel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td>1,12E-05</td>
<td>1,24E-06</td>
<td>1,11E-06</td>
<td>1,14E-05</td>
<td>1,37E-06</td>
<td>7,92E-07</td>
</tr>
<tr>
<td>Part ERI total</td>
<td>92,62%</td>
<td>82,50%</td>
<td>34,71%</td>
<td>96,94%</td>
<td>90,56%</td>
<td>6,58%</td>
</tr>
</tbody>
</table>

Hélène MORIN · Mémoire de l’École Nationale de la Santé Publique – 2006
<table>
<thead>
<tr>
<th>Substances</th>
<th>ERU (mg/m³)</th>
<th>ERI (riverain enfant)</th>
<th>ERI (riverain adulte)</th>
<th>ERI (agriculteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1,96E+00</td>
<td>4,96E-10</td>
<td>4,96E-11</td>
<td>1,66E-07</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,96E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>3,80E-01</td>
<td>3,14E-09</td>
<td>2,56E-10</td>
<td>1,05E-06</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>3,80E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>3,80E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel plomb</td>
<td>1,00E+00</td>
<td>2,21E-11</td>
<td>1,98E-13</td>
<td>8,13E-10</td>
</tr>
<tr>
<td>zinc</td>
<td>1,10E+00</td>
<td>3,47E-11</td>
<td>4,40E-12</td>
<td>1,52E-08</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>1,10E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>1,10E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>3,01E-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>3,69E-09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>1,24E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td>1,24E-06</td>
<td>1,24E-06</td>
<td>1,24E-06</td>
<td></td>
</tr>
<tr>
<td>Part ERI total</td>
<td>0,03%</td>
<td>0,02%</td>
<td>38,54%</td>
<td></td>
</tr>
</tbody>
</table>

Tableau de sommation par type de substance

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERI (riverain enfant)</th>
<th>ERI (riverain adulte)</th>
<th>ERI (agriculteur)</th>
<th>ERI (conso enfant)</th>
<th>ERI (conso adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>4,96E-10</td>
<td>4,96E-10</td>
<td>1,66E-07</td>
<td>4,96E-10</td>
<td>4,96E-10</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,98E-13</td>
<td>1,66E-10</td>
<td>4,96E-10</td>
<td>1,98E-13</td>
<td>1,98E-13</td>
</tr>
<tr>
<td>Cuivre</td>
<td>2,56E-10</td>
<td>1,05E-06</td>
<td>4,96E-10</td>
<td>2,56E-10</td>
<td>2,56E-10</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>8,13E-10</td>
<td>1,52E-08</td>
<td>4,96E-10</td>
<td>8,13E-10</td>
<td>8,13E-10</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>1,05E-06</td>
<td></td>
<td>4,96E-10</td>
<td>1,05E-06</td>
<td>1,05E-06</td>
</tr>
<tr>
<td>Nickel plomb</td>
<td>8,13E-10</td>
<td>1,52E-08</td>
<td>4,96E-10</td>
<td>8,13E-10</td>
<td>8,13E-10</td>
</tr>
<tr>
<td>zinc</td>
<td>2,56E-10</td>
<td>1,05E-06</td>
<td>4,96E-10</td>
<td>2,56E-10</td>
<td>2,56E-10</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>9,27E-06</td>
<td>5,29E-07</td>
<td>4,96E-10</td>
<td>9,27E-06</td>
<td>9,27E-06</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>1,36E-06</td>
<td>1,37E-06</td>
<td>4,96E-10</td>
<td>1,36E-06</td>
<td>1,36E-06</td>
</tr>
<tr>
<td>DEHP</td>
<td>7,18E-07</td>
<td>6,65E-07</td>
<td>4,96E-10</td>
<td>7,18E-07</td>
<td>7,18E-07</td>
</tr>
<tr>
<td>NPE</td>
<td>4,21E-07</td>
<td>4,61E-07</td>
<td>4,96E-10</td>
<td>4,21E-07</td>
<td>4,21E-07</td>
</tr>
<tr>
<td>LAS</td>
<td>4,40E-12</td>
<td>6,48E-07</td>
<td>4,96E-10</td>
<td>4,40E-12</td>
<td>4,40E-12</td>
</tr>
<tr>
<td>SOMME TOTALE</td>
<td>1,20E-05</td>
<td>1,50E-06</td>
<td>3,21E-06</td>
<td>1,17E-05</td>
<td>1,51E-06</td>
</tr>
</tbody>
</table>

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
ANNEXE XIII.: RESULTATS DES CALCULS DANS LE CAS 2

RÉSULTATS DE LA QUANTIFICATION DES EFFETS À SEUIL

<table>
<thead>
<tr>
<th>Substances</th>
<th>DJTo(mg/kg.j)</th>
<th>DJTo(mg/kg.j)</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain n adulte)</th>
<th>QD(agriculteur enfant)</th>
<th>QD(agriculteur adulte)</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain n adulte)</th>
<th>QD(agriculteur enfant)</th>
<th>QD(agriculteur adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>1,00E-03</td>
<td>1,00E-03</td>
<td>1,40E-03</td>
<td>8,45E-06</td>
<td>3,94E-03</td>
<td>6,48E-03</td>
<td>1,84E-04</td>
<td>2,65E-02</td>
<td>3,68E-03</td>
<td>5,71E-02</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,50E-00</td>
<td>1,50E-00</td>
<td>1,19E-04</td>
<td>6,92E-07</td>
<td>3,23E-04</td>
<td>5,30E-04</td>
<td>1,51E-05</td>
<td>2,17E-03</td>
<td>3,29E-04</td>
<td>5,09E-02</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-01</td>
<td>1,40E-01</td>
<td>4,88E-04</td>
<td>2,84E-06</td>
<td>1,33E-03</td>
<td>7,26E-05</td>
<td>2,06E-06</td>
<td>2,97E-04</td>
<td>4,40E-03</td>
<td>6,72E-02</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>Mercure organique</td>
<td>1,00E-04</td>
<td>1,00E-04</td>
<td>2,60E-05</td>
<td>1,52E-07</td>
<td>7,07E-05</td>
<td>6,11E-06</td>
<td>1,74E-07</td>
<td>2,50E-05</td>
<td>3,32E-06</td>
</tr>
<tr>
<td>nickel</td>
<td>2,00E-02</td>
<td>2,00E-02</td>
<td>4,83E-03</td>
<td>2,81E-05</td>
<td>1,31E-02</td>
<td>1,54E-02</td>
<td>4,38E-04</td>
<td>6,30E-02</td>
<td>8,94E-04</td>
<td>1,26E-02</td>
</tr>
<tr>
<td>plomb</td>
<td>3,50E-03</td>
<td>3,50E-03</td>
<td>4,12E-02</td>
<td>2,40E-04</td>
<td>1,12E-01</td>
<td>4,59E-03</td>
<td>1,31E-04</td>
<td>7,52E-02</td>
<td>1,21E-04</td>
<td>3,46E-03</td>
</tr>
<tr>
<td>zinc</td>
<td>3,00E-01</td>
<td>3,00E-01</td>
<td>9,56E-04</td>
<td>5,78E-06</td>
<td>2,60E-03</td>
<td>2,67E-04</td>
<td>7,58E-06</td>
<td>1,09E-03</td>
<td>2,37E-04</td>
<td>6,40E-03</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,00E-09</td>
<td>1,00E-09</td>
<td>1,25E-03</td>
<td>1,07E-05</td>
<td>4,33E-03</td>
<td>9,31E-04</td>
<td>3,88E-05</td>
<td>4,85E-03</td>
<td>9,25E-04</td>
<td>5,43E-03</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>HAP (11 européens)</td>
<td>2,00E-05</td>
<td>2,00E-05</td>
<td>1,63E-03</td>
<td>9,48E-06</td>
<td>4,42E-03</td>
<td>6,36E-03</td>
<td>1,81E-04</td>
<td>2,60E-02</td>
<td>3,98E-03</td>
</tr>
<tr>
<td>DEHP</td>
<td>3,00E-02</td>
<td>3,00E-02</td>
<td>2,84E-05</td>
<td>2,57E-07</td>
<td>1,01E-04</td>
<td>8,22E-05</td>
<td>3,64E-06</td>
<td>4,40E-04</td>
<td>8,07E-05</td>
<td>1,20E-04</td>
</tr>
<tr>
<td>NPE</td>
<td>2,00E-02</td>
<td>2,00E-02</td>
<td>9,36E-03</td>
<td>1,53E-08</td>
<td>2,12E-06</td>
<td>2,09E-07</td>
<td>1,65E-08</td>
<td>1,43E-06</td>
<td>8,64E-05</td>
<td>1,18E-06</td>
</tr>
<tr>
<td>LAS</td>
<td>8,50E-01</td>
<td>8,50E-01</td>
<td>3,69E-07</td>
<td>3,77E-09</td>
<td>1,34E-06</td>
<td>8,24E-06</td>
<td>4,10E-07</td>
<td>4,51E-05</td>
<td>1,58E-06</td>
<td>3,32E-05</td>
</tr>
</tbody>
</table>

Part du risque

<table>
<thead>
<tr>
<th>Substance</th>
<th>conséquence</th>
<th>to the exposure</th>
<th>0.01%</th>
<th>0.00%</th>
<th>0.05%</th>
<th>0.00%</th>
<th>0.00%</th>
<th>0.08%</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>QD(riverain enfant)</td>
<td>1,11E+01</td>
<td>2,61E+00</td>
<td>8,14E+00</td>
<td>3,17E+01</td>
<td>6,82E+00</td>
<td>8,30E-04</td>
<td>1,78E-04</td>
</tr>
<tr>
<td>Chrome</td>
<td>QD(riverain enfant)</td>
<td>2,11E+00</td>
<td>4,22E+00</td>
<td>5,54E-01</td>
<td>2,15E+01</td>
<td>4,64E-01</td>
<td>1,26E+00</td>
<td>2,37E-07</td>
</tr>
<tr>
<td>Cuivre</td>
<td>QD(riverain enfant)</td>
<td>1,73E+01</td>
<td>3,45E+00</td>
<td>4,54E+00</td>
<td>1,72E+01</td>
<td>3,61E+00</td>
<td>1,95E+00</td>
<td>4,31E-01</td>
</tr>
<tr>
<td>nickel</td>
<td>QD(riverain enfant)</td>
<td>6,36E-01</td>
<td>1,26E-01</td>
<td>1,65E-01</td>
<td>6,40E-01</td>
<td>1,36E-01</td>
<td>2,96E-07</td>
<td>5,55E-08</td>
</tr>
<tr>
<td>plomb</td>
<td>QD(riverain enfant)</td>
<td>2,11E+00</td>
<td>4,22E+00</td>
<td>5,54E-01</td>
<td>2,15E+01</td>
<td>4,64E-01</td>
<td>1,26E+00</td>
<td>2,37E-07</td>
</tr>
<tr>
<td>Dioxines</td>
<td>QD(riverain enfant)</td>
<td>1,73E+01</td>
<td>3,45E+00</td>
<td>4,54E+00</td>
<td>1,72E+01</td>
<td>3,61E+00</td>
<td>1,95E+00</td>
<td>4,31E-01</td>
</tr>
<tr>
<td>PCB</td>
<td>QD(riverain enfant)</td>
<td>6,36E-01</td>
<td>1,26E-01</td>
<td>1,65E-01</td>
<td>6,40E-01</td>
<td>1,36E-01</td>
<td>2,96E-07</td>
<td>5,55E-08</td>
</tr>
<tr>
<td>DEHP</td>
<td>QD(riverain enfant)</td>
<td>2,11E+00</td>
<td>4,22E+00</td>
<td>5,54E-01</td>
<td>2,15E+01</td>
<td>4,64E-01</td>
<td>1,26E+00</td>
<td>2,37E-07</td>
</tr>
<tr>
<td>NPE</td>
<td>QD(riverain enfant)</td>
<td>1,73E+01</td>
<td>3,45E+00</td>
<td>4,54E+00</td>
<td>1,72E+01</td>
<td>3,61E+00</td>
<td>1,95E+00</td>
<td>4,31E-01</td>
</tr>
</tbody>
</table>

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
Part du risque dû au boues

<table>
<thead>
<tr>
<th>Substances</th>
<th>CT (mg/m³) enfant</th>
<th>CT (mg/m³) adulte</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain adulte)</th>
<th>QD(agriculteur)</th>
<th>QD (cons enfant)</th>
<th>QD (cons adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2,00E-05</td>
<td>2,00E-05</td>
<td>1,91E-04</td>
<td>1,55E-05</td>
<td>2,63E-02</td>
<td>3,17E-01</td>
<td>3,17E-01</td>
</tr>
<tr>
<td>Chrome</td>
<td>6,00E-02</td>
<td>6,00E-02</td>
<td>7,80E-06</td>
<td>6,36E-07</td>
<td>2,63E-03</td>
<td>2,15E-06</td>
<td>4,46E-06</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,00E-03</td>
<td>1,00E-03</td>
<td>1,79E-04</td>
<td>1,46E-05</td>
<td>6,01E-02</td>
<td>1,16E-01</td>
<td>2,42E-04</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>3,00E-04</td>
<td>3,00E-04</td>
<td>2,29E-06</td>
<td>1,84E-07</td>
<td>7,56E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercur organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>5,00E-05</td>
<td>5,00E-05</td>
<td>5,08E-03</td>
<td>4,14E-04</td>
<td>1,70E+00</td>
<td>6,39E-02</td>
<td>6,39E-02</td>
</tr>
<tr>
<td>plomb</td>
<td>5,00E-04</td>
<td>5,00E-04</td>
<td>7,57E-04</td>
<td>6,17E-05</td>
<td>2,54E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td>3,20E-03</td>
<td>1,60E-03</td>
<td>1,02E-06</td>
<td>2,18E-07</td>
<td>7,70E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>5,00E-04</td>
<td>5,00E-04</td>
<td>1,71E-07</td>
<td>1,39E-08</td>
<td>5,74E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contribution

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain adulte)</th>
<th>QD(conso enfant)</th>
<th>QD(conso adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>3,11E+01</td>
<td>6,21E+00</td>
<td>3,17E+01</td>
<td>3,17E+01</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,11E-06</td>
<td>4,22E-03</td>
<td>2,15E-06</td>
<td>4,46E-06</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,16E-04</td>
<td>3,18E-02</td>
<td>1,16E-01</td>
<td>2,42E-04</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2,26E-00</td>
<td>1,84E-07</td>
<td>7,56E-04</td>
<td></td>
</tr>
<tr>
<td>Mercur organique</td>
<td>6,36E-01</td>
<td>1,26E-01</td>
<td>6,40E-01</td>
<td>1,36E-01</td>
</tr>
<tr>
<td>Nickel</td>
<td>6,05E+02</td>
<td>1,78E+01</td>
<td>9,12E+01</td>
<td>1,97E+01</td>
</tr>
<tr>
<td>plomb</td>
<td>7,51E+00</td>
<td>4,22E-01</td>
<td>5,18E+00</td>
<td>3,17E+01</td>
</tr>
<tr>
<td>zinc</td>
<td>3,95E+01</td>
<td>8,12E+00</td>
<td>1,07E+01</td>
<td>4,01E+01</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>5,28E-01</td>
<td>1,64E-01</td>
<td>5,38E-01</td>
<td>1,81E-01</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>7,07E-03</td>
<td>3,90E-03</td>
<td>1,78E-03</td>
<td>7,60E-03</td>
</tr>
<tr>
<td>DEHP</td>
<td>2,83E-04</td>
<td>7,94E-04</td>
<td>21,17E-04</td>
<td>6,57E-04</td>
</tr>
<tr>
<td>NPE</td>
<td>33,60E+00</td>
<td>32,82E+00</td>
<td>30,06E+00</td>
<td>32,5E-00</td>
</tr>
<tr>
<td>LAS</td>
<td>99,96E+00</td>
<td>99,96E+00</td>
<td>99,96E+00</td>
<td>99,96E+00</td>
</tr>
</tbody>
</table>
Résultats de la quantification des effets sans seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERUo(mg/kg, j-1 enfant)</th>
<th>ERUo(mg/kg, j-1 adulte)</th>
<th>ERI(riverain enfant)</th>
<th>ERI(riverain adulte)</th>
<th>ERI(agriculteur)</th>
<th>ERI(riverain enfant)</th>
<th>ERI(riverain adulte)</th>
<th>ERI(agriculteur)</th>
<th>ERI(riverain enfant)</th>
<th>ERI(riverain adulte)</th>
<th>ERI(agriculteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2.00E+00</td>
<td>4.00E-01</td>
<td>6.52E-08</td>
<td>7.59E-11</td>
<td>3.54E-08</td>
<td>2.54E-07</td>
<td>1.45E-09</td>
<td>2.08E-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td>2.00E-01</td>
<td>2.00E-01</td>
<td>1.70E-07</td>
<td>1.54E-09</td>
<td>6.04E-07</td>
<td>4.93E-07</td>
<td>2.19E-08</td>
<td>2.64E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>1.40E-02</td>
<td>1.40E-02</td>
<td>2.62E-10</td>
<td>4.28E-12</td>
<td>5.95E-10</td>
<td>5.85E-11</td>
<td>4.66E-12</td>
<td>4.00E-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure</td>
<td></td>
</tr>
<tr>
<td>inorganique</td>
<td></td>
</tr>
<tr>
<td>organique</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>Plomb</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td></td>
</tr>
<tr>
<td>(congénères)</td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2.00E-01</td>
<td>2.00E-01</td>
<td>1.70E-07</td>
<td>1.54E-09</td>
<td>6.04E-07</td>
<td>4.93E-07</td>
<td>2.19E-08</td>
<td>2.64E-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>1.40E-02</td>
<td>1.40E-02</td>
<td>2.62E-10</td>
<td>4.28E-12</td>
<td>5.95E-10</td>
<td>5.85E-11</td>
<td>4.66E-12</td>
<td>4.00E-10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Somme

2.38E-07 | 1.62E-06 | 6.40E-07 | 7.48E-07 | 2.33E-08 | 2.85E-06 |

Part voie ds ERI total

0.01% | 0.00% | 0.05% | 0.02% | 0.00% | 0.24% |

Consommation végétal

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERUo(mg/kg, j-1 enfant)</th>
<th>ERUo(mg/kg, j-1 adulte)</th>
<th>ERI(riverain enfant)</th>
<th>ERI(riverain adulte)</th>
<th>ERI(conso enfant)</th>
<th>ERI(conso adulte)</th>
<th>ERI(conso enfant)</th>
<th>ERI(conso adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2.00E+00</td>
<td>4.00E-01</td>
<td>1.12E-03</td>
<td>4.47E-05</td>
<td>5.86E-05</td>
<td>1.14E-03</td>
<td>4.91E-05</td>
<td>1.17E-05</td>
</tr>
<tr>
<td>Chrome</td>
<td>2.00E-01</td>
<td>2.00E-01</td>
<td>3.16E-03</td>
<td>9.86E-04</td>
<td>1.08E-03</td>
<td>3.22E-03</td>
<td>1.08E-03</td>
<td>3.76E-06</td>
</tr>
<tr>
<td>Mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>2.00E-01</td>
<td>2.00E-01</td>
<td>1.70E-07</td>
<td>1.54E-09</td>
<td>6.04E-07</td>
<td>4.93E-07</td>
<td>2.19E-08</td>
<td>2.64E-06</td>
</tr>
<tr>
<td>DEHP</td>
<td>1.40E-02</td>
<td>1.40E-02</td>
<td>2.62E-10</td>
<td>4.28E-12</td>
<td>5.95E-10</td>
<td>5.85E-11</td>
<td>4.66E-12</td>
<td>4.00E-10</td>
</tr>
</tbody>
</table>

Somme

4.28E-03 | 1.03E-03 | 1.14E-03 | 4.36E-03 | 1.13E-03 | 1.60E-05 | 1.80E-06 | 1.97E-06 | 1.59E-05 | 1.79E-06 |

Part voie ds ERI total

99.60% | 99.82% | 96.52% | 99.64% | 99.84% | 0.37% | 0.17% | 0.17% | 0.36% | 0.16% |

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
Inhalation

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERU (mg/m³)</th>
<th>ERU (mg/m³)</th>
<th>ERI (riverain enfant)</th>
<th>ERI (riverain adulte)</th>
<th>ERI (agriculteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1,80E+00</td>
<td>1,80E+00</td>
<td>6,86E-09</td>
<td>5,59E-10</td>
<td>2,30E-06</td>
</tr>
<tr>
<td>Chrome</td>
<td>3,80E-01</td>
<td>3,80E-01</td>
<td>9,65E-08</td>
<td>7,86E-09</td>
<td>3,23E-05</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,00E+00</td>
<td>1,10E-01</td>
<td>8,55E-11</td>
<td>7,67E-13</td>
<td>3,15E-09</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>1,10E+00</td>
<td>1,10E+00</td>
<td>2,46E-09</td>
<td>3,12E-10</td>
<td>1,08E-06</td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>3,80E-01</td>
<td>3,80E-01</td>
<td>9,65E-08</td>
<td>7,86E-09</td>
<td>3,23E-05</td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>1,00E+00</td>
<td>1,10E-01</td>
<td>8,55E-11</td>
<td>7,67E-13</td>
<td>3,15E-09</td>
</tr>
<tr>
<td>(congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>1,10E+00</td>
<td>1,10E+00</td>
<td>2,46E-09</td>
<td>3,12E-10</td>
<td>1,08E-06</td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td>1,06E-07</td>
<td>8,73E-09</td>
<td>3,57E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part voie ds ERI total</td>
<td>0,00%</td>
<td>0,00%</td>
<td>3,02%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sommation par type de substance

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERI (riverain enfant)</th>
<th>ERI (riverain adulte)</th>
<th>ERI (agriculteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>6,86E-09</td>
<td>5,59E-10</td>
<td>2,30E-06</td>
</tr>
<tr>
<td>Chrome</td>
<td>9,65E-08</td>
<td>7,86E-09</td>
<td>3,23E-05</td>
</tr>
<tr>
<td>Cuivre</td>
<td>8,55E-11</td>
<td>7,67E-13</td>
<td>3,15E-09</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2,46E-09</td>
<td>3,12E-10</td>
<td>1,08E-06</td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>9,65E-08</td>
<td>7,86E-09</td>
<td>3,23E-05</td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>1,13E-03</td>
<td>4,51E-05</td>
<td>5,94E-05</td>
</tr>
<tr>
<td>(congénères)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>3,17E-03</td>
<td>9,87E-04</td>
<td>1,09E-03</td>
</tr>
<tr>
<td>DEHP</td>
<td>1,98E-06</td>
<td>1,09E-06</td>
<td>4,99E-07</td>
</tr>
<tr>
<td>NPE</td>
<td>4,30E-03</td>
<td>1,03E-03</td>
<td>1,18E-03</td>
</tr>
<tr>
<td>LAS</td>
<td>4,38E-03</td>
<td>1,14E-03</td>
<td></td>
</tr>
<tr>
<td>SOMME TOTALE</td>
<td>4,30E-03</td>
<td>1,03E-03</td>
<td>1,18E-03</td>
</tr>
</tbody>
</table>

Sommation par type de substance

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERI (riverain enfant)</th>
<th>ERI (riverain adulte)</th>
<th>ERI (agriculteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Chrome</td>
<td>0,0%</td>
<td>0,0%</td>
<td>2,7%</td>
</tr>
<tr>
<td>Cuivre</td>
<td>26,3%</td>
<td>4,4%</td>
<td>5,0%</td>
</tr>
<tr>
<td>DEHP</td>
<td>0,0%</td>
<td>0,1%</td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>0,0%</td>
<td>0,0%</td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>0,0%</td>
<td>0,0%</td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE XIV.: RESULTATS DES CALCULS DANS LE CAS 3

RÉSULTATS DE LA QUANTIFICATION DES EFFETS À SEUIL

Ingestion sol

<table>
<thead>
<tr>
<th>Substances</th>
<th>DJTo(mg/kg,j) enfant</th>
<th>DJTo(mg/kg,j) adulte</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain adulte)</th>
<th>QD(agriculture enfant)</th>
<th>QD(agriculture adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>1,00E-03</td>
<td>1,00E-03</td>
<td>1,42E-03</td>
<td>6,25E-06</td>
<td>3,85E-03</td>
<td>6,32E-03</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,50E-00</td>
<td>1,50E-00</td>
<td>1,18E-04</td>
<td>6,89E-07</td>
<td>3,22E-04</td>
<td>5,28E-04</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-01</td>
<td>1,40E-01</td>
<td>4,66E-04</td>
<td>2,71E-06</td>
<td>1,26E-03</td>
<td>6,93E-05</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>2,00E-02</td>
<td>2,00E-02</td>
<td>4,82E-03</td>
<td>2,81E-05</td>
<td>1,31E-02</td>
<td>1,54E-02</td>
</tr>
<tr>
<td>plomb</td>
<td>3,50E-03</td>
<td>3,50E-03</td>
<td>4,09E-02</td>
<td>2,38E-04</td>
<td>1,11E-01</td>
<td>4,56E-03</td>
</tr>
<tr>
<td>zinc</td>
<td>3,00E-01</td>
<td>3,00E-01</td>
<td>9,29E-04</td>
<td>5,41E-06</td>
<td>2,52E-03</td>
<td>2,59E-04</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>1,00E-04</td>
<td>1,00E-04</td>
<td>2,36E-05</td>
<td>1,38E-07</td>
<td>6,41E-05</td>
<td>5,55E-06</td>
</tr>
<tr>
<td>DEHP</td>
<td>2,00E-02</td>
<td>2,00E-02</td>
<td>4,82E-03</td>
<td>2,81E-05</td>
<td>1,31E-02</td>
<td>6,28E-02</td>
</tr>
<tr>
<td>NPE</td>
<td>4,40E-02</td>
<td>4,40E-02</td>
<td>3,90E-08</td>
<td>3,98E-10</td>
<td>1,42E-07</td>
<td>4,76E-06</td>
</tr>
<tr>
<td>LAS</td>
<td>8,50E-01</td>
<td>8,50E-01</td>
<td>4,12E-12</td>
<td>4,20E-14</td>
<td>1,49E-11</td>
<td>9,19E-11</td>
</tr>
</tbody>
</table>

Voie contact cutanée

<table>
<thead>
<tr>
<th>Substances</th>
<th>DJTo(mg/kg,j) enfant</th>
<th>DJTo(mg/kg,j) adulte</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain adulte)</th>
<th>QD(consomme enfant)</th>
<th>QD(consomme adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>1,00E-03</td>
<td>1,00E-03</td>
<td>3,11E+00</td>
<td>6,20E+00</td>
<td>8,14E+00</td>
<td>3,16E+01</td>
</tr>
<tr>
<td>Chrome</td>
<td>1,50E-00</td>
<td>1,50E-00</td>
<td>2,11E+00</td>
<td>4,22E+01</td>
<td>5,54E-01</td>
<td>2,15E+00</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-01</td>
<td>1,40E-01</td>
<td>1,73E+00</td>
<td>3,46E+00</td>
<td>4,54E+00</td>
<td>1,76E+01</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>1,00E-04</td>
<td>1,00E-04</td>
<td>6,34E-01</td>
<td>1,25E-01</td>
<td>1,64E-01</td>
<td>6,38E-01</td>
</tr>
<tr>
<td>plomb</td>
<td>3,50E-03</td>
<td>3,50E-03</td>
<td>7,41E-02</td>
<td>1,48E-02</td>
<td>1,94E+02</td>
<td>7,55E+02</td>
</tr>
<tr>
<td>zinc</td>
<td>3,00E-01</td>
<td>3,00E-01</td>
<td>2,64E-01</td>
<td>5,68E+00</td>
<td>7,45E-02</td>
<td>2,90E+00</td>
</tr>
<tr>
<td>Dioxines</td>
<td>1,00E-09</td>
<td>1,00E-09</td>
<td>2,18E+01</td>
<td>6,33E+00</td>
<td>7,21E-02</td>
<td>2,20E+01</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>1,00E-04</td>
<td>1,00E-04</td>
<td>5,72E-01</td>
<td>1,64E-01</td>
<td>1,81E-01</td>
<td>5,37E-01</td>
</tr>
<tr>
<td>DEHP</td>
<td>3,00E-02</td>
<td>3,00E-02</td>
<td>5,27E-01</td>
<td>1,64E-01</td>
<td>1,81E-01</td>
<td>5,37E-01</td>
</tr>
<tr>
<td>NPE</td>
<td>4,40E-02</td>
<td>4,40E-02</td>
<td>7,04E-04</td>
<td>2,47E-04</td>
<td>2,47E-04</td>
<td>7,17E-04</td>
</tr>
<tr>
<td>LAS</td>
<td>8,50E-01</td>
<td>8,50E-01</td>
<td>1,02E-07</td>
<td>3,56E-08</td>
<td>3,56E-08</td>
<td>1,04E-07</td>
</tr>
<tr>
<td>Substances</td>
<td>CT (mg/m³) enfant</td>
<td>CT (mg/m³) adulte</td>
<td>QD(riverain enfant)</td>
<td>QD(riverain adulte)</td>
<td>QD(agriculteur)</td>
<td>QD (consommation enfant)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>cadmium</td>
<td>2,00E-05</td>
<td>2,00E-05</td>
<td>1,86E-04</td>
<td>1,52E-05</td>
<td>6,24E-02</td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td>6,00E-02</td>
<td>6,00E-02</td>
<td>7,77E-06</td>
<td>6,33E-07</td>
<td>2,61E-03</td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,00E-03</td>
<td>1,00E-03</td>
<td>1,71E-04</td>
<td>1,39E-05</td>
<td>5,74E-02</td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>3,00E-04</td>
<td>3,00E-04</td>
<td>2,05E-06</td>
<td>1,67E-07</td>
<td>6,86E-04</td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>5,00E-05</td>
<td>5,00E-05</td>
<td>5,06E-03</td>
<td>4,12E-04</td>
<td>1,70E+00</td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td>5,00E-04</td>
<td>5,00E-04</td>
<td>7,32E-04</td>
<td>6,12E-05</td>
<td>2,52E-01</td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td>3,20E-09</td>
<td>1,80E-09</td>
<td>1,00E-06</td>
<td>2,13E-07</td>
<td>7,60E-04</td>
<td></td>
</tr>
<tr>
<td>PCB (congéneres)</td>
<td>5,00E-04</td>
<td>5,00E-04</td>
<td>1,64E-07</td>
<td>1,34E-08</td>
<td>5,51E-05</td>
<td></td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>6,50E-03</td>
<td>3,59E-03</td>
<td>1,40E-03</td>
<td>6,60E-03</td>
<td>3,87E-03</td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>7,09E-04</td>
<td>2,48E-04</td>
<td>2,53E-04</td>
<td>7,21E-04</td>
<td>2,72E-04</td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>1,02E-07</td>
<td>3,56E-08</td>
<td>3,82E-08</td>
<td>1,04E-07</td>
<td>3,91E-08</td>
<td></td>
</tr>
<tr>
<td>Sommation</td>
<td>9,84E+02</td>
<td>1,99E+02</td>
<td>2,63E+02</td>
<td>1,00E+03</td>
<td>2,19E+02</td>
<td></td>
</tr>
</tbody>
</table>

Sommation

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain adulte)</th>
<th>QD(agriculteur)</th>
<th>QD (consommation enfant)</th>
<th>QD (consommation adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>3,1E+01</td>
<td>6,20E+00</td>
<td>8,23E+00</td>
<td>2,0E+01</td>
<td>4,64E+00</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,1E+01</td>
<td>4,22E+00</td>
<td>5,59E+01</td>
<td>1,6E+01</td>
<td>4,64E+00</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,93E+01</td>
<td>3,88E+00</td>
<td>4,15E+00</td>
<td>1,45E+01</td>
<td>4,23E+00</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>2,05E+00</td>
<td>1,67E-07</td>
<td>6,86E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>6,34E+01</td>
<td>1,25E+00</td>
<td>1,65E+01</td>
<td>6,38E+00</td>
<td>1,36E-01</td>
</tr>
<tr>
<td>Nickel</td>
<td>8,68E+00</td>
<td>1,75E-01</td>
<td>2,52E-01</td>
<td>9,12E+01</td>
<td>1,97E+01</td>
</tr>
<tr>
<td>plomb</td>
<td>5,73E+01</td>
<td>1,50E+02</td>
<td>1,97E-01</td>
<td>7,65E-02</td>
<td>1,65E+02</td>
</tr>
<tr>
<td>zinc</td>
<td>9,06E+00</td>
<td>1,06E+00</td>
<td>4,00E+01</td>
<td>8,68E+00</td>
<td>1,66E-01</td>
</tr>
<tr>
<td>Dioxines</td>
<td>8,82E+01</td>
<td>6,62E+00</td>
<td>7,67E+00</td>
<td>2,34E+01</td>
<td>7,35E+00</td>
</tr>
<tr>
<td>PCB (congéneres)</td>
<td>6,82E+01</td>
<td>5,63E+00</td>
<td>7,41E+00</td>
<td>2,87E+01</td>
<td>6,19E+00</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>5,28E+01</td>
<td>1,64E-01</td>
<td>1,81E-01</td>
<td>5,38E-01</td>
<td>1,81E-01</td>
</tr>
<tr>
<td>DEHP</td>
<td>6,50E-03</td>
<td>3,59E-03</td>
<td>1,40E-03</td>
<td>6,60E-03</td>
<td>3,87E-03</td>
</tr>
<tr>
<td>NPE</td>
<td>7,09E-04</td>
<td>2,48E-04</td>
<td>2,53E-04</td>
<td>7,21E-04</td>
<td>2,72E-04</td>
</tr>
<tr>
<td>LAS</td>
<td>1,02E-07</td>
<td>3,56E-08</td>
<td>3,82E-08</td>
<td>1,04E-07</td>
<td>3,91E-08</td>
</tr>
<tr>
<td>Sommation</td>
<td>9,84E+02</td>
<td>1,99E+02</td>
<td>2,63E+02</td>
<td>1,00E+03</td>
<td>2,19E+02</td>
</tr>
</tbody>
</table>

Contribution

<table>
<thead>
<tr>
<th>Substances</th>
<th>QD(riverain enfant)</th>
<th>QD(riverain adulte)</th>
<th>QD(agriculteur)</th>
<th>QD (consommation enfant)</th>
<th>QD (consommation adulte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cadmium</td>
<td>3,2%</td>
<td>3,1%</td>
<td>3,1%</td>
<td>3,2%</td>
<td>3,1%</td>
</tr>
<tr>
<td>Chrome</td>
<td>0,2%</td>
<td>0,2%</td>
<td>0,2%</td>
<td>0,2%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Cuivre</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
<td>2,0%</td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Mercure organique</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Nickel</td>
<td>9,1%</td>
<td>9,0%</td>
<td>9,6%</td>
<td>9,1%</td>
<td>9,0%</td>
</tr>
<tr>
<td>plomb</td>
<td>76,2%</td>
<td>75,3%</td>
<td>75,3%</td>
<td>75,3%</td>
<td>75,4%</td>
</tr>
<tr>
<td>zinc</td>
<td>4,0%</td>
<td>4,1%</td>
<td>4,1%</td>
<td>4,0%</td>
<td>4,0%</td>
</tr>
<tr>
<td>Dioxines</td>
<td>2,3%</td>
<td>3,4%</td>
<td>2,3%</td>
<td>3,4%</td>
<td>3,4%</td>
</tr>
<tr>
<td>PCB (congéneres)</td>
<td>2,9%</td>
<td>2,8%</td>
<td>2,8%</td>
<td>2,8%</td>
<td>2,8%</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>DEHP</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>NPE</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>LAS</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>
Résultats de la quantification des effets sans seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERUo(mg/kg,j)-1 enfant</th>
<th>ERUo(mg/kg,j)-1 adulte</th>
<th>Ingestion sol</th>
<th>Voie contact cutané</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERI(riverai n enfant)</td>
<td>ERI(riverai n adulte)</td>
<td>ERI(agricu iteur)</td>
<td>ERI(riverai n enfant)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2,00E+00</td>
<td>4,00E-01</td>
<td>6,27E-08</td>
<td>1,92E-08</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,00E-01</td>
<td>2,00E-01</td>
<td>1,69E-07</td>
<td>1,27E-07</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-02</td>
<td>1,40E-02</td>
<td>7,84E-11</td>
<td>1,28E-11</td>
</tr>
<tr>
<td>Mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>européens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td>2,32E-07</td>
<td>1,61E-09</td>
<td>6,35E-07</td>
<td>2,31E-06</td>
</tr>
<tr>
<td>Part voie du ERI total</td>
<td>0,01%</td>
<td>0,00%</td>
<td>0,05%</td>
<td>0,02%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERUo(mg/kg,j)-1 enfant</th>
<th>ERUo(mg/kg,j)-1 adulte</th>
<th>Conso végétaux</th>
<th>Conso animaux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERI(riverai n enfant)</td>
<td>ERI(riverai n adulte)</td>
<td>ERI (conso enfant)</td>
<td>ERI (conso adulte)</td>
</tr>
<tr>
<td></td>
<td>ERI(riverai n enfant)</td>
<td>ERI(riverai n adulte)</td>
<td>ERI (agricul teur)</td>
<td>ERI (conso enfant)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2,00E+00</td>
<td>4,00E-01</td>
<td>1,12E-03</td>
<td>4,46E-05</td>
</tr>
<tr>
<td>Chrome</td>
<td>2,00E-01</td>
<td>2,00E-01</td>
<td>3,16E-03</td>
<td>9,85E-04</td>
</tr>
<tr>
<td>Cuivre</td>
<td>1,40E-02</td>
<td>1,40E-02</td>
<td>3,32E-06</td>
<td>7,74E-07</td>
</tr>
<tr>
<td>Mercure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAP (11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>européens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme</td>
<td>4,28E-03</td>
<td>1,03E-03</td>
<td>1,14E-03</td>
<td>4,36E-03</td>
</tr>
<tr>
<td>Part voie du ERI total</td>
<td>99,61%</td>
<td>99,83%</td>
<td>96,55%</td>
<td>99,64%</td>
</tr>
</tbody>
</table>

Hélène MORIN - Mémoire de l’École Nationale de la Santé Publique – 2006
<table>
<thead>
<tr>
<th>Substances</th>
<th>ERU (mg/m3)-1 enfant</th>
<th>ERU (mg/m3)-1 adulte</th>
<th>ERI(riverain enfant)</th>
<th>ERI(riverain adulte)</th>
<th>ERI(agriculteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1,80E+00</td>
<td>1,80E+00</td>
<td>6,70E-09</td>
<td>5,46E-10</td>
<td>2,25E-06</td>
</tr>
<tr>
<td>Chrome</td>
<td>3,80E-01</td>
<td>3,80E-01</td>
<td>9,61E-08</td>
<td>7,83E-09</td>
<td>3,22E-05</td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel plomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>1,00E+00</td>
<td>1,10E-01</td>
<td>8,22E-11</td>
<td>7,37E-13</td>
<td>3,03E-09</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>1,10E+00</td>
<td>1,10E+00</td>
<td>2,44E-09</td>
<td>3,11E-10</td>
<td>1,07E-06</td>
</tr>
<tr>
<td>DEHP NPE LAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Somme | 1,05E-07 | 8,69E-09 | 3,56E-05 | | |

| Part voie ds ERI total | 0,00% | 0,00% | 3,00% | | |

<table>
<thead>
<tr>
<th>Substances</th>
<th>ERI(riverain enfant)</th>
<th>ERI(riverain adulte)</th>
<th>ERI(agriculteur)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel plomb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>1,13E-03</td>
<td>4,50E-05</td>
<td>5,93E-05</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>3,17E-03</td>
<td>9,87E-04</td>
<td>1,09E-03</td>
</tr>
<tr>
<td>DEHP NPE LAS</td>
<td>1,82E-06</td>
<td>1,01E-06</td>
<td>3,93E-07</td>
</tr>
</tbody>
</table>

| Somme TOTALE | 4,30E-03 | 1,03E-03 | 1,18E-03 |

<table>
<thead>
<tr>
<th>Part de chaque substance</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Chrome</td>
<td>0,0%</td>
<td>0,0%</td>
<td>2,7%</td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel plomb</td>
<td>26,3%</td>
<td>4,4%</td>
<td>50,0%</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>73,7%</td>
<td>95,5%</td>
<td>92,0%</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP NPE LAS</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>
ANNEXE XV.: REGLEMENTATION PROPRE AUX ETABLISSEMENTS D’ABATTAGE D’ANIMaux

EXTRATS DE L’ARRÊTE DU 30 AVRIL 2004, RELATIF AUX PRESCRIPTIONS APPLICABLES AUX INSTALLATIONS CLASSÉES POUR LA PROTECTION DE L’ENVIRONNEMENT SOUMISES À AUTORISATION SOUS LA RUBRIQUE N°2210 “ABATTAGE D’ANIMaux”.

Article 2 (extrait)

“Matériels à risque spécifiés (MRS) : tissus de ruminants désignés sur la base de la pathogénèse des encéphalopathies spongiformes subaiguës transmissibles (ESST), tels que décrits à l'article 31, point p, de l'arrêté du 17 mars 1992 relatif aux conditions auxquelles doivent satisfaire les abattoirs d'animaux de boucherie pour la production et la mise sur le marché de viandes fraîches et déterminant les conditions de l'inspection sanitaire de ces établissements ;”

Article 19 :

“Les déchets et les sous-produits animaux fermentescibles, y compris ceux récupérés en amont du dégrillage, sont conservés dans des locaux ou dispositifs adaptés pour éviter les odeurs, le contact avec les eaux pluviales et l'accès à ces matières par d'autres animaux. Pendant le stockage et au moment de l'enlèvement de ces déchets et sous-produits, et notamment dans les abattoirs de ruminants procédant au retrait des MRS, les jus d'écoulement sont dirigés vers l'installation de prétraitement des effluents d'abattoir.

Les eaux résultant du nettoyage des locaux et des dispositifs de stockage des déchets et sous-produits (bacs ayant contenu des viandes et des abats saisis et, dans les abattoirs de ruminants, des MRS) sont collectées et dirigées vers l'installation de prétraitement des effluents de l'abattoir.

Les cadavres, déchets et sous-produits fermentescibles non destinés à la consommation humaine sont enlevés ou traités à la fin de chaque journée de travail s'ils sont entreposés à température ambiante. Tout entreposage supérieur à 24 heures est réalisé dans des locaux ou dispositifs assurant leur confinement, le cas échéant réfrigérés.

L'aire réservée aux fumiers et matières stercoraires est implantée de façon à ne pas gêner le voisinage. Elle est protégée des intempéries et isolée de façon à récupérer les jus d'égouttage afin de les diriger vers la station de prétraitement de l'établissement ou les ouvrages de stockage du lisier. A l'exception des procédés de traitement anaérobiques, l'apparition de conditions anaérobiques dans les bassins de stockage ou de traitement ou dans les canaux à ciel ouvert est évitée en toutes circonstances. Ces installations sont pourvues de dispositifs d'aération et/ou couvertes, si cela s'avère nécessaire. »

Article 25 :

“On entend par effluents :

-les eau résultant de l’activité (process, lavage);
-les eaux vannes”
Article 26 :

"L'installation possède un dispositif de prétraitement des effluents produits comportant, au minimum, un dégrillage et, le cas échéant, un tamisage, un dessablage et un dégraissage. Le dégrillage est équipé d’ouvertures ou de mailles dont la taille n’excède pas 6 mm ou de systèmes équivalents assurant que la taille des particules solides des eaux résiduaires qui passent au travers de ces systèmes n’excède pas 6 mm. Tout broyage, macération ou tout autre procédé pouvant faciliter le passage de matières animales au-delà du stade de prétraitement est exclu. Ce dispositif est conçu de manière à faire face aux variations de débit, de température ou de composition des effluents à traiter, en particulier à l’occasion du démarrage ou de l’arrêt de l’installation."

Article 30 :

Les matières recueillies lors du prétraitement des effluents d’installation défini à l’article 26 du présent arrêté ainsi que les boues de curage des canalisations situées en amont de ce prétraitement sont collectées, transportées et éliminées conformément au règlement (CE) n°1774/2002 susvisé.

Article 31 :

"Sans préjudice des restrictions définies par la réglementation pour des motifs sanitaires, peuvent faire l’objet d’un épandage sur ou dans les terres agricoles :

- les effluents, à l’exclusion des eaux-vannes, qui ont subi le prétraitement défini à l’article 26 du présent arrêté dès lors que l’exploitant ne possède pas de station d’épuration ;

- les boues produites et récupérées dans les dispositifs épuratoires situés en aval du dégrillage défini à l’article 26 du présent arrêté ;

- le lisier, avec ou sans litière, transformé ou non, ainsi que le contenu de l'appareil digestif séparé de l'appareil digestif conformément à la réglementation en vigueur.

Ne peuvent pas faire l’objet d’un épandage les sous-produits de l’abattage non transformés, y compris le sang ainsi que les matières récupérées en amont du prétraitement défini à l’article 26 du présent arrêté. Il s’agit des déchets arrêtés par les siphons de sol grillagés situés dans les locaux de travail, les déchets de dégrillage, les boues de curage des canalisations situées en amont de ce prétraitement ainsi que les résidus bruts de dégraissage susceptibles de colmater les sols. Pour les abattoirs de ruminants, ces matières sont soumises à destruction par incinération ou co-incinération. Dans les autres cas, ces matières peuvent être valorisées dans les installations autorisées conformément à la réglementation en vigueur.

Art. 37. - II.

« - L'épandage est interdit :

- pendant les périodes où le sol est pris en masse par le gel ou abondamment enneigé, exception faite des déchets solides ;
- pendant les périodes de forte pluviosité et pendant les périodes où il existe un risque d'inondation ;
- en dehors des terres régulièrement travaillées et des prairies ou des forêts exploitées ;
- sur les terrains à forte pente, dans des conditions qui entraîneraient leur ruissellement hors du champ d'épandage ;
- à l'aide de dispositifs d'aéro-aspersion qui produisent des brouillards fins lorsque les effluents sont susceptibles de contenir des microorganismes pathogènes ;
- pour les boues issues des stations d'épuration des installations d'équarrissage suivantes :
 - les installations de traitement de cadavres, des saisies sanitaires d'abattoir et des matériels à risques spécifiés au regard des encéphalopathies spongiformes subaiguës transmissibles (ESST) ;
 - les centres de collecte et les dépôts de cadavres dans lesquels ces cadavres sont soumis à un premier traitement (dépouille, découpe, broyage,...). »
ANNEXE XVI. : TENEURS SOUHAITABLES DES MICROPOLLUANTS DANS LES SOLS

EFFET A SEUIL

<table>
<thead>
<tr>
<th>Substances</th>
<th>Concentration totale dans les sols (mg/kg sol)</th>
<th>Profondeur d’enfouissement (en m)</th>
<th>masse volumique de la terre amendée (Kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>2.77E-04</td>
<td>3.00E-01</td>
<td>1.50E+03</td>
</tr>
<tr>
<td>Chrome</td>
<td>3.48E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td>1.42E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure organique</td>
<td>4.62E-07</td>
<td>Quantités de boues</td>
<td>1.00E+03</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.89E-02</td>
<td>Surface totale épardue</td>
<td>1.00E+02</td>
</tr>
<tr>
<td>plomb</td>
<td>2.84E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td>7.54E-02</td>
<td>Masse boue étendue en moyenne</td>
<td>t MS/ha</td>
</tr>
<tr>
<td>Dioxines</td>
<td>9.84E-10</td>
<td></td>
<td>1.00E+01</td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td>6.19E-06</td>
<td></td>
<td>kg MS/m²</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td>8.70E-04</td>
<td></td>
<td>1.00E+00</td>
</tr>
<tr>
<td>DEHP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effet sans seuil

<table>
<thead>
<tr>
<th>Substances</th>
<th>Concentration totale dans les sols (mg/kg sol)</th>
<th>Profondeur d'enfouissement (en m)</th>
<th>masse volumique de la terre amendée (Kg/m3)</th>
<th>Substances</th>
<th>quelle limite? (à seuil ou sans seuil)</th>
<th>concentration (en mg/kg sol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>3,00E-01</td>
<td></td>
<td>1,50E+03</td>
<td>Cadmium</td>
<td>2,77E-04</td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td>Chrome</td>
<td>3,48E-02</td>
<td></td>
</tr>
<tr>
<td>Cuivre</td>
<td></td>
<td></td>
<td></td>
<td>Cuivre</td>
<td>1,42E-02</td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td></td>
<td></td>
<td>Mercure inorganique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercure inorganique</td>
<td></td>
<td>Quantités de boues</td>
<td>1,00E+03</td>
<td></td>
<td>Mercure</td>
<td>4,62E-07</td>
</tr>
<tr>
<td>Nickel</td>
<td>7,10E-04</td>
<td>Surface totale épandue (ha)</td>
<td>1,00E+02</td>
<td>Nickel</td>
<td>7,10E-04</td>
<td></td>
</tr>
<tr>
<td>plomb</td>
<td></td>
<td></td>
<td></td>
<td>plomb</td>
<td>2,84E-02</td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td>Masse boue étendue en moyenne</td>
<td>1,00E+01</td>
<td>zinc</td>
<td>7,54E-02</td>
<td></td>
</tr>
<tr>
<td>Dioxines</td>
<td>3,73E-06</td>
<td>kg MS/ha</td>
<td>1,00E+00</td>
<td>Dioxines</td>
<td>9,84E-10</td>
<td></td>
</tr>
<tr>
<td>PCB (congénères)</td>
<td></td>
<td></td>
<td></td>
<td>PCB (congénères)</td>
<td></td>
<td>3,73E-06</td>
</tr>
<tr>
<td>HAP (11 européens)</td>
<td></td>
<td></td>
<td></td>
<td>HAP (11 européens)</td>
<td></td>
<td>8,14E-05</td>
</tr>
<tr>
<td>DEHP</td>
<td>2,22E-08</td>
<td></td>
<td></td>
<td>DEHP</td>
<td>2,22E-08</td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td></td>
<td></td>
<td></td>
<td>NPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
<td>LAS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>