Evaluation et gestion des risques liés à *Pseudomonas aeruginosa* dans les établissements de thermalisme

Référent pédagogique : M. Jean LESNE
Florian BESSE
Aurélie de MONPEZAT
Cédric DUPUIS
Nos remerciements s'adressent tout d'abord à Monsieur Jean Lesne, Professeur à L'Ecole Nationale de la Santé Publique (ENSP) et Directeur Adjoint du Laboratoire d'Etudes et de Recherches en Environnement et Santé, pour avoir gentiment accepté de nous encadrer et de nous conseiller tout au long de ce travail.

Nous en profitons pour adresser également nos remerciements à Madame Nezha Leftah, IGS et déléguée des établissements thermaux à la DGS, pour ses connaissances sur le sujet.
Evaluation et gestion des risques liés à *Pseudomonas aeruginosa* dans les établissements de thermalisme

SOMMAIRE

TABLE DES ILLUSTRATIONS ... 3

INTRODUCTION ... 4

1 PRESENTATION DU CONTAMINANT ... 5

 1.1 NOMENCLATURE ... 5

 1.2 CARACTERISTIQUES ... 5

 1.3 ECOLOGIE .. 6

 1.4 PATHOLOGIES : FORMES CLINIQUES ET GRAVITE 7

 1.5 PATHOGENICITE & TOXICITE ... 7

 1.5.1 Facteurs de virulence ... 7

 1.5.2 Mécanisme d’infection ... 8

 1.6 TRAITEMENT DES INFECTIONS PSEUDOMONALES 9

 1.6.1 Résistance aux antibiotiques ... 9

 1.6.2 Traitement ... 9

2 THERMALISME .. 9

 2.1 DEFINITIONS ... 9

 2.2 RESSOURCE, TRANSPORT ET DISTRIBUTION DE L’EAU MINERALE NATURELLE 10

 2.3 ACTIVITES THERMALES .. 11

3 ENJEUX : PARALLELE AVEC LA GESTION DU RISQUE LEGIONELLES 13

 3.1 REGLEMENTATION .. 13

 3.1.1 Protection de la ressource ... 13

 3.1.2 Organisation du contrôle sanitaire des établissements thermaux 14

 3.2 ENQUETES DE PREVALENCE EN FRANCE 15

4 EXPOSITION AU DANGER ... 18

 4.1 VECTEUR DE CONTAMINATION : L’EAU MINERALE NATURELLE 18

 4.1.1 Caractéristiques microbiologiques des eaux minérales naturelles 18

 4.1.2 Rappel sur *Pseudomonas aeruginosa* .. 18

 4.2 LES VOIES D’EXPOSITION ... 19

 4.2.1 Voies de pénétration dans l’organisme humain 19

 4.2.2 Activités thermales et sources d’exposition 20

 4.2.3 Discussion ... 22
4.3 FACTEURS FAVORISANT L’INFECTION A P AERUGINOSA ... 22
 4.3.1 Facteurs environnementaux .. 22
 4.3.2 Populations à risques ... 23
4.4 DONNEES EPIDEMIOLOGIQUES ET NIVEAUX DE CONTAMINATION 23
 4.4.1 Etudes ponctuelles d’épidémies liées à P. aeruginosa .. 24
 4.4.2 Données sur les niveaux de contamination dans les établissements thermaux 25
4.5 POPULATION EXPOSEE ... 25
4.6 IMPOSSIBILITE ACTUELLE D’UNE EVALUATION QUANTITATIVE DES RISQUES A CAUSE DES LACUNES DANS LES CONNAISSANCES ... 30

5 ELEMENTS DE GESTION DU RISQUE LIE A P AERUGINOSA DANS LES CENTRES THERMAUX.. 30
 5.1 SYSTEME DE SURVEILLANCE EN VIGUEUR (MESURES ANALYTIQUES, PERIODICITE, ACTEURS…). 30
 5.2 EXISTE-T-IL DES AMELIORATIONS POSSIBLES ? ... 33
 5.2.1 Dans la mise en œuvre du dispositif actuel ... 33
 5.2.2 Dans le dispositif de réduction des risques ... 33

CONCLUSION .. 36

BIBLIOGRAPHIE .. 37
TABLE DES ILLUSTRATIONS

FIGURE 1 : SCHEMA DU RESEAU D’ADDUCTION ET DE DISTRIBUTION DE L’EAU. EXEMPLE DES BAINS DE CASTELJALOUX ... 11

FIGURE 2 : EAUX MINERALES NATURELLES : SITE DE THERMALISME EN JUILLET 2003 ... 26

TABLEAU 1 : TYPES TROPHIQUES DE PSEUDOMONAS AERUGINOSA. ... 5
TABLEAU 2 : SENSIBILITE DE P. AERUGINOSA AUX ANTIBIOTIQUES. .. 9
TABLEAU 3 : ORIGINE DES NON CONFORMITES AUX POINTS DE PRELEVEMENT ... 16
TABLEAU 4 : ORIGINE DES NON CONFORMITES POUR LES ETABLISSEMENTS THERMAUX. .. 17
TABLEAU 5 : CARACTERISATION DES VOIES D’EXPOSITION SELON LES ACTIVITES THEMATIQUES. 20
TABLEAU 6 : CARACTERISATION DES VOIES D’EXPOSITION SELON LES ACTIVITES DE SOINS.. 21
TABLEAU 7 : CARACTERISATION DES VOIES D’EXPOSITION SELON LES ACTIVITES ANNEXES .. 22
TABLEAU 8 : MALADIES CAUSEES PAR P. AERUGINOSA ET POPULATIONS A RISQUES ASSOCIEES 23
TABLEAU 9 : REPARTITION DES ANALYSES ET DES POINTS DE PRELEVEMENT NON CONFORMES EN FONCTION DE LA CLASSE DE CONTAMINATION PAR P. AERUGINOSA... 25
TABLEAU 10 : FREQUENTATION DES ETABLISSEMENTS THERMAUX EN 2003.. 26
TABLEAU 12 : CONTROLE A L’EMERGENCE DE LA SOURCE .. 32
TABLEAU 13 : CONTROLE AUX POINTS D’USAGE ... 32
INTRODUCTION

Dans ce contexte sanitaire et législatif, la démarche d’évaluation quantitative des risques, et notamment du risque microbiologique (ERM), permettrait de se préoccuper de l’impact sanitaire potentiel lié aux teneurs de certains pathogènes en définissant des niveaux de risques jugés comme négligeables, y compris pour les populations les plus sensibles [1].

Le présent rapport va donc s’attacher à décrire l’évaluation et la gestion de risque du pathogène Pseudomonas aeruginosa dans les établissements thermaux en s’articulant autour de 3 thèmes :

- Définition de Pseudomonas aeruginosa (caractéristiques, écologie, pathogénicité…) et du thermalisme
- Evaluation du risque microbiologique (exposition, infectiosité, risque…)
- La gestion du risque (communication, gestion des non conformités…)
1 Présentation du contaminant

P. aeruginosa est plus communément appelé bacille pyocyanique.

1.1 Nomenclature

Il s’agit d’une bactérie que l’on répertorie conventionnellement comme suit :

- Famille : Pseudomonadaceae
- Genre : Pseudomonas
- Espèce : aeruginosa

1.2 Caractéristiques

P. aeruginosa se présente sous forme de bâtonnets droits, de 1 à 3 µm de long et de 0,5 à 1 µm de large. C’est un bacille à Gram négatif, non sporulé et rendu mobile, surtout en aérobiose, par une ciliature polaire.

P. aeruginosa est une bactérie avec un métabolisme strictement respiratoire, avec comme accepteur terminal d’électrons, l’oxygène en aérobiose et le nitrate en anaérobiose (respiration des nitrates).

Tableau 1 : Types trophiques de *Pseudomonas aeruginosa*.

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Classe du besoin</th>
<th>Nature du besoin</th>
<th>Type trophique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosynthèses</td>
<td>Source de carbone</td>
<td>Composé organique</td>
<td>Hétérotrophe</td>
</tr>
<tr>
<td></td>
<td>Facteur de croissance</td>
<td>Non indispensable</td>
<td>Prototrophe*</td>
</tr>
<tr>
<td>Catabolisme</td>
<td>Substrat énergétique</td>
<td>Organique</td>
<td>Organotrophe</td>
</tr>
<tr>
<td></td>
<td>Source d’énergie</td>
<td>Oxydation biochimique</td>
<td>Chimiotrophe</td>
</tr>
</tbody>
</table>

On peut ajouter à ces informations l’absence de métabolisme fermentatif des sucres.

P. aeruginosa est capable de faire la synthèse de toutes ses enzymes à partir d’une source unique de carbone et d’énergie (capacité à se développer dans les milieux les moins nutritifs).

Cette espèce produit de façon habituelle deux pigments : la pyocyanine (caractère spécifique de l’espèce) et la pyoverdine (caractère spécifique du groupe génomique fluorescent). On peut noter également la production d’un voile fragile visqueux et peu épais à la surface des milieux liquides avec une odeur aromatique caractéristique (odeur de seringa). *P. aeruginosa* est capable de produire de nombreuses exoprotéines aux fonctions
diverses : l'entérotoxine A, l'exotoxine A, l'exoenzyme S, la phospholipase (enzyme hydrolisant la lécithine), les protéases.

1.3 Ecologie

P. aeruginosa est un germe ubiquitaire très répandu dans l'environnement qui vit habituellement à l'état de saprophyte dans l'eau, les sols humides ou à la surface des végétaux. Le bacille pyocyanique peut également survivre et se multiplier dans une infinie variété de liquides et de milieux, sur tout type de support et de matériel humide.

Relativement rare au contact de l'homme, on le retrouve très occasionnellement sur la peau ou les muqueuses ; il peut vivre en commensal dans le tube digestif de l'homme et de divers animaux.

Cette espèce résiste mal à la dessiccation. Elle peut se développer jusqu'à 41°C sans problème, mais pas à 4°C. Sa croissance est strictement dépendante de la concentration en oxygène dissous, sauf si une respiration anaérobie des nitrates est possible. Le pH du milieu peut être dispersé autour de 7 sans affecter sa croissance.

Le caractère prototrophe de P. aeruginosa lui permet de vivre dans des niches écologiques naturelles très diverses. La richesse de ses voies métaboliques lui confère la capacité de résister à de nombreux antiseptiques ou antibiotiques, ce qui favorise sa sélection dans les milieux hospitaliers par exemple. Les ammoniums quaternaires favorisent même son développement [3]. Quant aux désinfectants à base de iodoforme, aux détergents phénoliques et au chlore, ils ont une action insuffisante sur P. aeruginosa [5].

Toutefois, il faut noter un pouvoir antagoniste puissant de la flore autochtone des eaux minérales naturelles vis à vis du développement de cette espèce [4, 5, 6]. Une étude montre que le bacille pyocyanique peut survivre au moins 70 jours dans une eau minérale mais sans s'y développer du fait de cet effet antagonisme [5].
1.4 Pathologies : formes cliniques et gravité

Pseudomonas aeruginosa est un germe habituellement inclus dans la liste des bactéries pathogènes. Peu virulent chez l’individu sain, il est convenu de le définir comme un agent pathogène opportuniste. C’est un agent infectieux redoutable chez les sujets dont les défenses immunitaires sont faibles (sujets atteints d’affections graves). C’est le germe type des infections nosocomiales (il est en effet classé au 3ème rang des causes d’infections nosocomiales).

Les infections dues à *Pseudomonas aeruginosa* peuvent toucher n’importe quelle partie du corps :
- l’appareil respiratoire en causant des pneumonies ;
- le coeur avec des endocardites ;
- le système nerveux central par des méningites;
- les oreilles par des otites ;
- les yeux au niveau de la cornée par des kératites, des conjonctivites pouvant aller jusqu’à la perte complète de l’œil ;
- les os et articulations ;
- l’appareil digestif avec des gastro-entérites ;
- les infections de l’appareil urinaire sont le plus souvent dues à l’instrumentation en milieu hospitalier ;
- la peau semble être la plus fréquemment affectée par les infections pseudomonales au travers des dermatites et plus particulièrement les folliculites.

Enfin, *P aeruginosa* peut aussi être responsable de septicémie généralisée.

1.5 Pathogénicité & toxicité

1.5.1 Facteurs de virulence

Les facteurs de virulence peuvent être, soit des composants intrinsèques de la surface cellulaire, soit des produits extra-cellulaires (protéases, exotoxine A) [2, 9]. La production simultanée de certains d’entre eux est indispensable pour permettre à une souche de *P. aeruginosa* de coloniser l’homme et de développer un pouvoir infectieux à son encontre. Ainsi, seuls 1 à 2 % des souches de *P. aeruginosa* représenteraient un danger potentiel pour l’homme [8]. L’action cumulée de ces facteurs peut conduire à une inhibition de la synthèse protéique, à une lyse des tissus, à des lésions nécrotiques et hémorragiques ou encore à une diminution des globules blancs.
1.5.2 Mécanisme d'infection

Le processus d'infection commence par des altérations des défenses de l'hôte. La pathogénicité des infections à *P. aeruginosa*, comme le suggèrent le nombre et le large spectre de déterminants virulents possédés par la bactérie, est multifactorielle. La plupart des infections à *P. aeruginosa* sont en même temps invasives et toxicogéniques. Elles peuvent être décomposées en trois étapes (ce processus peut être arrêté à n'importe quel niveau) :

La fixation de la bactérie et la colonisation :

Les fimbriae de *P. aeruginosa* adhèrent aux cellules épithéliales avec l'aide de la synthèse de protéase. Cette adhérence est favorisée par des tissus blessés ou la présence de virus. Ce caractère opportuniste est une étape importante dans les kératites et les infections urinaires pseudomonales.

La production d'exopolysaccharide, d'exoenzyme S favorise l'adhésion et la formation d'un biofilm qui protège alors la bactérie des défenses de l'hôte comme les lymphocytes, les phagocytes, les anticorps…

L'invasion locale :

Deux protéases extra-cellulaires participent à la virulence de l'invasion. L'élastase clive les IgG et les IgA et lyse des protéines pour améliorer l'accrochage aux muqueuses. La protéase alkaline interfère avec la formation des fibres et provoque leur lyse, conduisant par exemple à la destruction de la cornée.

P. aeruginosa produit d'autres protéines solubles comme la leucocidine, cytotoxine qui a une action perforante ou deux hémolysines, la phospholipase et la lécithinase. De plus elle synthétise des pigments, le seul à être virulent étant le bleu (pyocyanine) qui dérègle les fonctions normales des cils nasaux, détruit l'épithélium respiratoire, exerce des effets pro inflammatoires des phagocytes.

La maladie systémique disséminée :

L'encapsulement de *P. aeruginosa* et la présence de lipoprotéines de surface (LPS) caractéristiques de bacilles Gram négatifs favorisent la résistance de la bactérie et permettent sa dissémination. Il semblerait que l'exotoxine A ait une activité nécrotique durant cette étape, avec le même mécanisme d'action que la toxine diphtérique.
1.6 Traitement des infections pseudomonales

1.6.1 Résistance aux antibiotiques

P. aeruginosa est naturellement peu sensible aux antibiotiques. En effet, sa perméabilité aux agents anti-bactériens est médiocre, et la bactérie sécrète des enzymes capables de lyser les molécules antibiotiques (céphalosporine).

Tableau 2 : Sensibilité de P. aeruginosa aux antibiotiques.

<table>
<thead>
<tr>
<th>Antibiotiques</th>
<th>Sensible</th>
<th>Intermédiaire</th>
<th>Résistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticarcilline</td>
<td>54,5 %</td>
<td>14,7 %</td>
<td>30,8 %</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>78,6 %</td>
<td>11,6 %</td>
<td>9,8 %</td>
</tr>
<tr>
<td>Imipénème</td>
<td>72,2 %</td>
<td>12 %</td>
<td>15,8 %</td>
</tr>
<tr>
<td>Ciprofloxacine</td>
<td>60,4 %</td>
<td>2,3 %</td>
<td>37,3 %</td>
</tr>
<tr>
<td>Amikacine</td>
<td>75,3 %</td>
<td>10,1 %</td>
<td>14,6 %</td>
</tr>
</tbody>
</table>

1.6.2 Traitement

Le traitement des infections pseudomonales s’effectue par la combinaison de deux agents anti-microbiens : un anti-pseudomonal beta-lactam et un aminoglycoside.

Cependant selon le type d’infections et les organes touchés il existe des traitements appropriés [10]. Le recours à la chirurgie n’est qu’exceptionnel.

2 Thermalisme

2.1 Définitions

Avant d’appréhender l’évaluation et la gestion des risques, il apparaît nécessaire de poser un certain nombre de définitions relatives aux établissements thermaux et à leur fonctionnement.

Les définitions suivantes sont issues de la norme Afnor X 50-910 :

- établissement thermal : établissement qui utilise, sur place ou par adduction directe, des eaux minérales naturelles et/ou leurs produits dérivés (boues, vapeurs, gaz…) à des fins thérapeutiques. On appelle établissement thermal conventionné un établissement agréé pour l’accueil des assurés sociaux et signataire de la Convention Nationale Thermale fixant les modalités de prise en charge.

- eau minérale naturelle : toute eau qui se distingue nettement des autres eaux destinées à la consommation humaine par sa nature, caractérisée par sa teneur en minéraux, oligo-éléments ou autres constituants et, le cas échéant par certains effets, et par
sa pureté originelle, l’une et l’autre caractéristiques ayant été conservées intactes en raison de l’origine souterraine de cette eau qui a été tenue à l’abri de tout risque de pollution.

Elle a pour origine une nappe ou un gisement souterrain et provient d’une source exploitée à partir d’une ou plusieurs émergences naturelles ou forées.

Elle témoigne, dans le cadre des fluctuations naturelles connues, d’une stabilité de ses caractéristiques essentielles, notamment de composition et de température à l’émergence, qui ne sont pas affectées par le débit de l’eau prélevée.

En outre, lorsqu’elle est utilisée dans un établissement, cette eau est caractérisée par ses effets favorables à la santé.

- eau thermale : dénomination usuelle de l’eau minérale naturelle exploitée dans un établissement thermal

Dans le cadre de son fonctionnement, un établissementthermal prend en compte différents points regroupant :

1. Ressource, transport et distribution de l’eau minérale naturelle
2. Activités thermales
3. Produits thermaux

2.2 Ressource, transport et distribution de l’eau minérale naturelle

L’eau minérale naturelle issue d’une source (ensemble constitué par une ou plusieurs émergences naturelles ou forées provenant d’une même nappe ou d’un même gisement souterrain) est amenée au moyen d’un ensemble continu de canalisations et systèmes hydrauliques, du captage à l’entrée de l’établissement voire jusqu’au réservoir de stockage lorsqu’il est situé à l’intérieur de l’établissement.

Celle-ci est ensuite distribuée jusqu’aux postes de soins également au moyen d’un ensemble continu de canalisations et installations hydrauliques.
Figure 1 : Schéma du réseau d’adduction et de distribution de l’eau. Exemple des Bains de Casteljaloux

2.3 Activités thermales

Quel que soit l’établissement de thermalisme, deux types d’activités peuvent être distingusés utilisant l’eau de forage et l’eau du réseau d’adduction :

- les activités de soins ou produits thermaux
- les activités annexes

 Toujours d’après la norme Afnor X 50-910, les produits thermaux représentent les activités de soins dispensés. On y retrouve notamment les grands thèmes suivants :

- Piscine thermale : bassin artificiel situé dans un établissement thermal, conçu pour un usage collectif thérapeutique, et alimenté en eau minérale naturelle
- Buvette thermale : alimentée en eau minérale naturelle, elle est considérée comme un soin dans le cadre d’une cure thermale conventionnée. A ce titre, elle doit être distinguée de la buvette en accès libre, qui n’est pas utilisée dans le cadre d’une cure thérapeutique
Evaluation et gestion des risques liés à *Pseudomonas aeruginosa* dans les établissements de thermalisme

✓ Climatothérapie : la climatothérapie est l’utilisation thérapeutique des climats, principalement de leurs qualités telluriques, atmosphériques et actiniques

✓ Crénothérapie : traitements thérapeutiques internes ou externes effectués par différentes techniques de soins utilisant les eaux minérales et/ou les produits dérivés (gaz, vapeurs, bioglées…)

Cependant, les activités de soins varient selon la spécificité thermale de l’établissement et, dans le cadre de l’étude, une liste assez exhaustive a pu être définie regroupant les principales activités (accompagnées de leurs catégories de soins décrites en 3.1) :

- douche au jet (3)
- douche pénétrante (3)
- drainage postural (2)
- rééducation respiratoire (1)
- massage sous l’eau (2)
- manudouche (3)
- manumobilisation (3)
- pédidouche (3)
- pédifoulage (3)
- piscinettes (3)
- piscine collective (3)
- piscine à trombe et immersion (3)
- piscine de mobilisation (3)
- piscine individuelle à trombe (3)
- boues (3)
- sudation (1)

Parallèlement à ces activités de soins, une activité annexe peut être définie regroupant toutes les activités dites « non de soins » :

- climatisation
- cuisine
- accueil
- salle de restauration
- salle de repos…
3 Enjeux : parallèle avec la gestion du risque Légionelles

3.1 Réglementation

Pseudomonas aeruginosa est une des principales bactéries responsables des infections nosocomiales. À ce titre, elle est visée par la réglementation sanitaire relative aux eaux minérales embouteillées mais aussi par les normes régissant les établissements hospitaliers et les établissements thermaux.

Il n’existe pas de réglementation spécifique à *P. aeruginosa* c’est-à-dire ne concernant que la surveillance et la gestion des infections dues à cette bactérie. Le suivi de ce microorganisme relève de textes réglementaires généraux régissant le contrôle sanitaire des établissements thermaux et l’analyse des sources d’eaux minérales utilisées dans ces centres. Le niveau de contamination en *P. aeruginosa* n’apparaît donc que comme un critère parmi d’autres dans la détermination de la qualité microbiologique générale de l’eau. De plus, on peut noter que, dans ces textes qui sont présentés ci-dessous, *Pseudomonas aeruginosa* et les légionelles sont souvent traitées de manière similaire.

3.1.1 Protection de la ressource

Les eaux souterraines exploitées par les établissements thermaux doivent faire l’objet d’une protection adéquate. Or, actuellement, la réglementation existante sur ce point est plutôt déficiente ; en effet, les contrôles imposés par l’arrêté du 14 Octobre 1937 concernant l’analyse des sources d’eaux minérales s’avèrent insuffisants pour assurer la qualité (notamment microbiologique) nécessaire à leur utilisation. D’autre part, les périmètres de protection, les règles d’inspection et les Déclarations d’Intérêt Public (DIP) sont eux soumis à la Loi du 14 Juillet 1856.

Cependant, le Code de la Santé Publique a tenté d’encadrer les activités thermales. En effet, les articles L.1322-1 et L.1322-2 indiquent que les établissements thermaux sont soumis à un régime d’autorisation délivrée par le Ministre de la Santé ; cette autorisation ne peut être octroyée qu’au vu d’un dossier fondé principalement sur l’analyse des caractéristiques de l’eau. Les articles L.1322-3 à L.1322-13 fixent le cadre de mise en place des « périmètres sanitaires d’urgence » (périmètres de protection des sources).
3.1.2 Organisation du contrôle sanitaire des établissements thermaux

Les normes régissant le contrôle sanitaire des établissements thermaux ont été « durcies » assez récemment suite aux épidémies de légionnelloses survenues au cours des années 90, notamment à Gréoux les Bains dans les Alpes de Haute Provence et Aix les Bains en Savoie. En effet, le dispositif réglementaire alors en vigueur était particulièrement ancien et grandement insuffisant, surtout au regard du risque de contamination par des bactéries présentes dans les réseaux d’eau chaude sanitaire et dans les aérosols produits lors des différentes activités de soins (*Legionella* et *Pseudomonas*).

Le texte qui régit actuellement les contrôles réalisés sur l’eau utilisés lors des activités de soins en établissement thermal est l’arrêté du 19 Juin 2000.

Cependant, un premier renforcement du système de surveillance des eaux minérales avait été introduit avec l’arrêté du 16 Mai 1989 qui imposait notamment le suivi de nouveaux paramètres microbiologiques : *Legionella* sp. et *Pseudomonas aeruginosa*. La méthode d’échantillonnage des analyses est également revue par ce texte de 1989 qui augmente la fréquence des prélèvements en les répartissant en différents points du réseau (tous les lieux d’usage pour les soins). Ceci montre que la réglementation tient compte dorénavant du fait scientifique que le risque sanitaire peut être directement relié avec l’utilisation qui est faite de l’eau minérale possiblement contaminée. Cet arrêté fait apparaître pour la première fois les notions :

- de gestion de non-conformité : suite à un non respect des normes sur un ou plusieurs critères d’analyse de l’eau, on prévoit un programme de contrôles exceptionnels, une évaluation des causes et des risques engendrés par cette non-conformité et les éventuelles mesures de correction et/ou de prévention à prendre
- d’auto contrôle (ou auto surveillance) : « La vérification de la qualité des eaux minérales repose sur le responsable de l’établissement qui doit prendre toutes les mesures nécessaires pour assurer les bonnes conditions d’hygiène dans son établissement. »

Evaluation et gestion des risques liés à *Pseudomonas aeruginosa* dans les établissements de thermalisme

mauvaises conditions d’exploitation et d’utilisation de l’eau minérale dans les établissements thermaux » et notamment les germes à prendre en compte, les critères de qualité de l’eau à la source et aux points d’usage, les plans de surveillance à mettre en place et la périodicité des contrôles de la qualité de l’eau, le type de traitement et les règles de maintenance à appliquer. Cette circulaire pointe les aérosols produits au cours des activités de soins comme le principal vecteur de contamination dans les établissements thermaux, à la fois pour *Pseudomonas aeruginosa* et *Legionella sp.*

Les analyses seront effectuées à la fois aux différents points d’usage de l’eau mais aussi à l’émergence de la source. La détermination des plans d’échantillonnage pour les contrôles se fait à l’aide de plusieurs classifications. Trois classes ont notamment été définies pour les soins :

- La catégorie 1 regroupe tous les soins en contact direct avec les muqueuses respiratoires ou susceptibles de provoquer un contact avec les muqueuses oculaires et respiratoires.
- La catégorie 2 regroupe les soins en contact avec les autres muqueuses internes et l’ingestion d’eau minérale naturelle.
- La catégorie 3 regroupe les soins externes individuels (bains, douches) ou collectifs (couloir de marche).

Le type et la fréquence des analyses à effectuer en fonction des usages de l’eau et la gestion des éventuels non respects des normes seront détaillés dans le chapitre 5.1 de ce mémoire.

3.2 Enquêtes de prévalence en France

Les infections nosocomiales constituent une problématique de santé publique dont l’impact médiatique est de plus en plus important, car il est très difficile, pour les populations des pays développés, d’accepter le risque de tomber malade à cause d’un séjour à l’hôpital ou plus généralement dans un établissement de soins. Or, des études récentes ont permis de faire ressortir les principaux agents microbiologiques responsables des ces infections. Parmi celles-ci, on peut citer notamment l’Enquête de Prévalence Nationale réalisée en 2001 par le Réseau d’Alerte, d’Investigations et de Surveillance des Infections Nosocomiales (RAISIN) sous l’égide de l’Institut de Veille Sanitaire (InVS) [13]. Il faut noter que cette étude est une enquête de prévalence « un jour donné » qui a été effectuée en Juin 2001 auprès de 1 533 établissements hospitaliers, publics et privés, ce qui correspond à un total de 305 656 patients.

23 024 infections ont été identifiées sur 21 010 patients (taux de patients infectés : 6,9 %). Pour 16 650 de ces infections, la présence de 19 730 microorganismes a pu être caractérisée. Les trois microorganismes les plus représentés sont *Escherichia coli* (23 % des...
Evaluation et gestion des risques liés à *Pseudomonas aeruginosa* dans les établissements de thermalisme

microorganismes), *Staphylococcus aureus* (20 %) et *Pseudomonas aeruginosa* (11 %), les légionelles n’apparaissant pas dans ce « classement » des principaux agents nosocomiaux.

Les infections à *P. aeruginosa* concernent toutes les activités de soins en milieu hospitalier et toutes les localisations corporelles (infections urinaires, du site d’intervention chirurgicale, cutanéo-muqueuses, respiratoires).

Pour ce qui concerne spécifiquement les établissements thermaux, une étude menée par Philippe HARMANT de la Direction Générale de la Santé (DGS) établit un bilan de la saison thermale 2001 [14]. Les informations ont été collectées par l’intermédiaire de questionnaires remplis par les DDASS de 43 départements. Cette enquête englobe donc 119 établissements, soit un total d’environ 550 000 curistes sur l’année. 1 139 prélèvements ont été réalisés dont 18 % à l’émergence de la source et 78 % aux différents points d’usage de l’eau. Ces derniers se répartissent de la manière suivante en fonction des catégories de soins définies au chapitre 3.1 :

- 33 % des prélèvements concernent des soins de catégorie 1
- 19 % concernent des soins de catégorie 2
- 47 % concernent des soins de catégorie 3
- 1 % concernent des soins indéterminés

La nature des micro-organismes à l’origine des non-conformités est présentée dans les tableaux 3 et 4 suivants.

Tableau 3 : Origine des non conformités aux points de prélèvement

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>% d’analyses NC (n=1139)</th>
<th>% de points de prélèvement NC (n= ?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entérocoques</td>
<td>0,9 %</td>
<td>2,9 %</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>0,9 %</td>
<td>3,5 %</td>
</tr>
<tr>
<td>Legionella pneumophila</td>
<td>6,4 %</td>
<td>10,2 %</td>
</tr>
<tr>
<td>Legionella sp</td>
<td>6,9 %</td>
<td>11,7 %</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>16,0 %</td>
<td>22,1 %</td>
</tr>
</tbody>
</table>
Tableau 4 : Origine des non conformités pour les établissements thermaux.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>% d’établissements NC (n=119)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entérocoques</td>
<td>82 %</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>82 %</td>
</tr>
<tr>
<td>Legionella pneumophila</td>
<td>63 %</td>
</tr>
<tr>
<td>Legionella sp</td>
<td>62 %</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>34 %</td>
</tr>
</tbody>
</table>

NC : non conforme

Ces résultats nous laissent penser que la prévalence de Pseudomonas aeruginosa est moins importante que celle des légionelles dans les établissements thermaux français, mais qu’en revanche, pour les établissements dans lesquels elle est présente, P. aeruginosa est identifiée sur un nombre beaucoup plus grand d’échantillons et de points de prélèvement. La représentativité de ces données est cependant limitée par le caractère « enquête un jour donné » de cette étude.

Toutes ces indications montrent que Pseudomonas aeruginosa est un germe réellement ubiquitaire et qu’elle est présente au sein des réseaux d’eau des établissements thermaux pendant des périodes de temps plus importantes que les légionelles. D’autre part, la voie d’exposition majoritaire pour les légionelles est l’inhalation d’aérosols alors que l’exposition à Pseudomonas aeruginosa peut intervenir à la fois par inhalation d’aérosols, ingestion ou contact cutané et conduit à des pathologies variées qui peuvent être graves, notamment chez les personnes immuno-déprimées.

Dès lors, on peut avoir du mal à justifier les différences dans la gestion réglementaire actuelle des risques liés à ces deux microorganismes. En effet, s’il existe des réglementations spécifiques aux légionelles, ce n’est pas le cas pour Pseudomonas aeruginosa. Ces textes spécifiques aux légionelles sont au nombre de trois : la Circulaire DGS n°97/311 du 24 Avril 1997 relative à la surveillance et à la prévention de la légionellose, la Circulaire DGS n°98/771 du 31 Décembre 1998 relative à la mise en œuvre de bonnes pratiques d’entretien des réseaux d’eau dans les établissements de santé et aux moyens de prévention du risque lié aux légionelles dans les installations à risque et dans les bâtiments recevant du public et la Circulaire DGS n°2002/243 du 22 Avril 2002 relative à la prévention du risque lié aux légionelles dans les établissements de santé [15, 16].

Cette différence peut cependant être expliquée par le fait que les réglementations spécifiques aux légionelles ont été adoptées suite à des épidémies présentant un nombre de cas élevés mais également parce que le risque légionelles sort du simple cadre des infections nosocomiales. En effet, il est maintenant établi que les tours aéroréfrigérantes sont...
des sources potentielles de contamination par cette bactérie. En revanche, Pseudomonas aeruginosa est un des germes types des infections nosocomiales mais n’a jamais occasionné d’épidémies très importantes (du moins aucune n’a été rapportée dans la littérature) ; de plus, les cas d’infections constatés se situaient dans des hôpitaux ou des établissements thermaux, quelques-uns seulement (affections cutanées essentiellement) étant liés à l’utilisation de spas dans des hôtels ou chez des particuliers. Contrairement à la légionellose, on n’a donc pas relevé d’épidémie communautaire liée à Pseudomonas. Néanmoins, étant donné la prévalence importante des infections à Pseudomonas dans les établissements de soins et la forte préoccupation sociale soulevée par ce type de risque, il apparaît nécessaire de chercher à mieux connaître l’exposition à cette bactérie, notamment dans les établissements thermaux, et d’améliorer la gestion de ce risque.

4 Exposition au danger

4.1 Vecteur de contamination : l’eau minérale naturelle

4.1.1 Caractéristiques microbiologiques des eaux minérales naturelles

Les établissements thermaux dispensent des soins utilisant l’eau minérale comme agent thérapeutique, à des patients dont les défenses parfois affaiblies peuvent les rendre vulnérables aux infections. Cette eau doit donc répondre aux caractéristiques particulières de qualité microbiologique et de sécurité exigées pour tout produit à usage thérapeutique.

La qualité microbiologique de l’eau aux points d’usage, dépend de plusieurs facteurs, dont :

- l’écosystème constitué naturellement par la ressource
- la présence de micro-organismes
- la contamination de la ressource par des pollutions externes : contamination environnementale pouvant être appréciée par la présence de Pseudomonas aeruginosa,
- la relation existant entre certains micro-organismes

4.1.2 Rappel sur Pseudomonas aeruginosa

Pseudomonas aeruginosa est une bactérie retrouvée fréquemment dans les eaux superficielles et les eaux résiduaires urbaines. Son origine peut être humaine et éventuellement fécale (le portage fécal est cependant rare) [14]. Sa mise en évidence dans les réseaux de distribution d’eau peut traduire une contamination des eaux souterraines par des eaux superficielles.
4.2 Les voies d’exposition

4.2.1 Voies de pénétration dans l’organisme humain

Il nous faut ici préciser que la survenue d’une infection liée à *P. aeruginosa*, après pénétration par l’une des trois voies décrites ci-dessous, dépend fortement de l’état immunitaire de l’hôte. En d’autres termes les trois mécanismes suivants ne sont pas équivalents quant à la survenue d’une infection selon l’individu considéré.

La voie cutanéo-muqueuse

La pénétration par cette voie nécessite une transmission par contact entre une source primaire et l’individu. La pénétration est très fortement liée à l’existence de plaies, de brûlures ou à l’introduction dans le corps de matériel médical. Les sources primaires peuvent être multiples ; mains, éponges, linges, ou encore eaux souillées (vases de fleurs, seau pour le ménage). Il se produit d’abord une colonisation bactérienne locale puis, si les phagocytes sont impuissants à tuer les bactéries, un envahissement des tissus voisins avec une production croissante de toxines. Le facteur de virulence le plus important au stade de l’invasion est l’exotoxine A, qui est la vraie toxine létale de *P. aeruginosa*, et qui diffuse dans tous les organes [2, 3].

La voie respiratoire

Une inhalation d’aérosols contaminés peut constituer une voie de pénétration chez certains individus. Les humidificateurs d’ambiance des circuits de ventilation, les nébuliseurs ou les respirateurs artificiels sont de possibles vecteurs de transmission de la bactérie [3].

La pénétration dans l’organisme de souches de *P. aeruginosa* ne suffit pas à déclencher une infection. L’interaction entre la bactérie et l’hôte dépend, comme nous l’avons déjà mentionné, de la virulence des souches et de l’état immunitaire de l’hôte, mais également du nombre de bactéries incriminées et de l’organe cible [9].

La voie oro-digestive

La pénétration du bacille pyocyanique dans l’organisme humain s’effectue en grande partie par l’alimentation. Chaque jour, nous pouvons ainsi ingérer jusqu’à des millions de bactéries de cette espèce. Les eaux embouteillées semblent être un vecteur de pénétration très marginal, en particulier devant les végétaux (tomates, salades, radis…) dans lesquels le germe est systématiquement présent à des concentrations élevées [8]. Réglementairement, l’eau potable ne doit pas en contenir dans 100 ml, cependant il existe des réservoirs à l’origine d’infections : siphons d’éviers, tuyaux évacuateurs de chasse d’eau, humidificateurs d’ambiance, nébuliseurs,…
4.2.2 Activités thermales et sources d'exposition

De manière à appréhender les activités à risques pour la population cible des établissements thermaux, un tableau croisé selon les activités thématiques puis selon les activités de soins a été réalisé en fonction des voies d'exposition :

<table>
<thead>
<tr>
<th>Activités thématiques</th>
<th>Voies d'exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cutané</td>
</tr>
<tr>
<td>Piscine thermale</td>
<td>x</td>
</tr>
<tr>
<td>Buvette thermale</td>
<td></td>
</tr>
<tr>
<td>Climatothérapie</td>
<td>x</td>
</tr>
<tr>
<td>Crénothérapie</td>
<td>x</td>
</tr>
</tbody>
</table>

Tableau 5 : Caractérisation des voies d'exposition selon les activités thématiques.
Tableau 6 : Caractérisation des voies d'exposition selon les activités de soins

<table>
<thead>
<tr>
<th>Activités de soins</th>
<th>Voies d'exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cutané</td>
</tr>
<tr>
<td>Douche au jet</td>
<td>x</td>
</tr>
<tr>
<td>Douche pénétrante</td>
<td>x</td>
</tr>
<tr>
<td>Drainage postural</td>
<td>x</td>
</tr>
<tr>
<td>Rééducation respiratoire</td>
<td></td>
</tr>
<tr>
<td>Massage sous l'eau</td>
<td>x</td>
</tr>
<tr>
<td>Manudouche</td>
<td>x</td>
</tr>
<tr>
<td>Manumobilisation</td>
<td>x</td>
</tr>
<tr>
<td>Pédidouche</td>
<td>x</td>
</tr>
<tr>
<td>Pédifoulage</td>
<td>x</td>
</tr>
<tr>
<td>Piscinettes</td>
<td>x</td>
</tr>
<tr>
<td>Piscine collective</td>
<td>x</td>
</tr>
<tr>
<td>Piscine à trombe et immersion</td>
<td>x</td>
</tr>
<tr>
<td>Piscine de mobilisation</td>
<td>x</td>
</tr>
<tr>
<td>Piscine individuelle à trombe</td>
<td>x</td>
</tr>
<tr>
<td>Boues</td>
<td>x</td>
</tr>
<tr>
<td>Sudation</td>
<td>x</td>
</tr>
</tbody>
</table>
4.2.3 Discussion

Compte tenu des tableaux ci-dessus et en l’absence de données sur la relation dose-effet, on doit prendre en considération toutes les voies d’exposition. Cependant, la voie cutanée aurait pu être négligée (il existe des contre-indications médicales quant à l’admission en établissement thermal de populations sensibles décrites au chapitre 4.5 comme étant les seules pouvant être affectées par des infections cutanées à *Pseudomonas*) mais, au vu des données épidémiologiques détaillées au chapitre 4.4, celle-ci doit tout de même être prise en compte.

4.3 Facteurs favorisant l’infection à *P aeruginosa*

4.3.1 Facteurs environnementaux

Le développement de *Pseudomonas aeruginosa* ne nécessite pas de facteurs de croissance organiques spécifiques, puisque cette bactérie peut utiliser plus de trente composés organiques. Une preuve de ses besoins minimalistes est sa capacité de croissance dans l’eau déminéralisée. Sa température optimale de croissance est 37°C mais elle est capable de se développer à des températures allant jusqu’à 42°C. Sa tolérance à une large variété de conditions physiques contribue à son succès écologique en tant que pathogène opportuniste. *Pseudomonas aeruginosa* présente cependant une réelle prédilection pour les environnements propices aux moisissures, les sols humides et l’eau.

Or, les spas présentent un taux de matières en suspension relativement élevé (matières organiques notamment) et la température de l’eau qui y est le plus fréquemment rencontrée varie entre 35 et 37°C [17], ce qui correspond à la température optimale pour la
croissance de *Pseudomonas aeruginosa*. Les établissements thermaux, au travers de leurs différentes activités, présentent donc des conditions favorables à la propagation de ce pathogène.

4.3.2 Populations à risques

Pseudomonas aeruginosa étant un pathogène opportuniste, la gravité des infections engendrées est influencée par l’état immunitaire de l’hôte. Selon les infections causées par la bactérie, il existe des populations plus à risques comme précisé ci-après :

<table>
<thead>
<tr>
<th>Pathologies</th>
<th>Population à risques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocardites</td>
<td>Utilisateurs d'intraveineuses</td>
</tr>
<tr>
<td>Infections respiratoires</td>
<td>Personnes à affections respiratoires ou du système immunitaire, cancéreux</td>
</tr>
<tr>
<td>Septicémies</td>
<td>Immunodéprimés, diabétiques, sidéens, brûlés sévères</td>
</tr>
<tr>
<td>Infections du système nerveux central</td>
<td>Personnes ayant un trauma crânien, ayant subi un acte chirurgical invasif</td>
</tr>
<tr>
<td>Infections auditives</td>
<td>Fréquentation de piscine</td>
</tr>
<tr>
<td>Infections oculaires</td>
<td>Néonatal, opérations ophtalmologiques</td>
</tr>
<tr>
<td>Infections osseuses et des articulations</td>
<td>Utilisateurs d'intraveineuses, chirurgie du pied</td>
</tr>
<tr>
<td>Infections urinaires</td>
<td>Hospitalisation (cathéter, …)</td>
</tr>
<tr>
<td>Infections gastro-intestinales</td>
<td>Immunodéprimés</td>
</tr>
<tr>
<td>Infections de la peau et des tissus</td>
<td>Brûlés, trauma, dermatites, humidité (oreilles des nageurs, peau des utilisateurs de bains bouillonnants et de jacuzzi), sidéen, neutropénies</td>
</tr>
</tbody>
</table>

Tableau 8 : Maladies causées par *P. aeruginosa* et populations à risques associées

4.4 Données épidémiologiques et niveaux de contamination

Il n’existe pas vraiment de données synthétiques concernant les niveaux d’exposition en dehors d’informations recueillies lors des études épidémiologiques effectuées au cas par cas et dont nous donnerons ici quelques exemples.

Il existe également des articles traitant de la contamination générale d’établissements thermaux. Par exemple, dans le BEH n°46/1991 [18], MM. Rotily et Potelon présentent une étude menée dans un centre de remise en forme d’Isère afin d’étudier les risques de morbidité liés aux bains bouillonnants ou spas. Sur 22 prélèvements réalisés en deux semaines (prélèvements bi-quotidiens), des *Pseudomonas aeruginosa* ont été dénombrées six fois. Or, cette présence de germes ne pouvant pas être attribuée à un mauvais entretien du spa, on peut supposer que ces micro-organismes devraient se retrouver beaucoup plus fréquemment dans des établissements moins bien équipés ou moins bien entretenus. En revanche, les symptômes tels que des rougeurs ou autres signes cutanés et les irritations oculaires n’ont pas pu être reliés directement à la contamination bactérienne ; en effet, ils pourraient être dus à un taux résiduel de Brome (agent désinfectant) élevé. En tout cas, cette étude montre le manque d’efficacité du traitement au Brome quant à l’élimination de *Pseudomonas aeruginosa*.

4.4.1 Études ponctuelles d’épidémies liées à *P. aeruginosa*

La majeure partie des articles d’épidémiologie traite, de manière ponctuelle, d’épidémies à faible nombre de cas dues à *Pseudomonas aeruginosa*. Leur lecture laisse apparaître que la pathologie la plus couramment associée à cette bactérie est la folliculite (affection cutanée provoquant rougeurs et démangeaisons). Plusieurs articles peuvent être mentionnés concernant cette affection. Un article du CMAJ daté du 15 Avril 1986 [19] fait apparaître une corrélation épidémiologique entre la survenue de folliculite parmi les patients et le personnel soignant d’un établissement canadien possédant une piscine destinée à la physiothérapie, avec comme agent infectieux identifié, *P. aeruginosa* de sérotype O :10. De même, un article du BEH n°20 en date du 21 Mai 1990 [20] rapporte une « flambée de folliculite à *Pseudomonas* associée à des bains bouillonnants en Colombie britannique (Canada) ». Ici, le sérotype en cause n’est pas signalé mais le taux d’atteinte de l’affection est de 75 % pour les adultes (6 personnes sur les 8 exposées ont déclaré la maladie).

De manière générale, les symptômes de la folliculite se déclarent entre 24 et 48 heures après l’exposition et se résorbent dans les 4 à 5 jours suivants. Cependant, des lésions peuvent réapparaître chez certains sujets pendant plusieurs mois voire former des abcès chroniques. De même, la localisation de ces lésions peut être plus ou moins étendue suivant les cas (généralement atteinte de l’abdomen, des aisselles et des fesses).

D’autres affections liées à *Pseudomonas aeruginosa* sont néanmoins rapportées dans la littérature telles que des cystites et des prostatites (infections des voies uro-génitales) et des otites incriminant les sérotypes O :10 et O :11 de la bactérie [21, 22].

Un article de la revue cubaine de médecine tropicale présente également une étude menée par l’institut de médecine tropicale « Pedro Kouri » de La Havane sur les infections
respiratoires se développant chez des malades porteurs du VIH [23]. Sur les 545 échantillons recueillis parmi 63 patients, *Pseudomonas aeruginosa* a été identifiée dans 12,90 % des échantillons et a été considérée comme cause de l’infection respiratoire chez 29,65 % des malades.

Une épidémie de pneumonie à *Pseudomonas* liée à l’utilisation de bains bouillonnants à domicile a aussi été rapportée (JAMA du 21 Octobre 1983) [24].

4.4.2 Données sur les niveaux de contamination dans les établissements thermaux

La seule étude présentant des niveaux de contamination à laquelle nous avons eu accès est celle qui a été menée par Philippe HARMANT de la Direction Générale de la Santé (DGS) dans le but d’établir un bilan de la saison thermale 2001 [14] et dont certains résultats ont déjà été présentés dans le Chapitre 3.1 de ce rapport. On y trouve un tableau récapitulatif des concentrations en *Pseudomonas aeruginosa* (exprimées en nombre de germes pour 250 ml d’eau) observées dans les établissements thermaux investigués.

<table>
<thead>
<tr>
<th>Classe de contamination (nb de germes/250ml)</th>
<th>Nombre d’Analyses Non Conformes</th>
<th>Répartition</th>
<th>Nombre de Points de prélèvement Non Conformes</th>
<th>Répartition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>522</td>
<td>50 %</td>
<td>101</td>
<td>38 %</td>
</tr>
<tr>
<td>11-100</td>
<td>388</td>
<td>37 %</td>
<td>90</td>
<td>34 %</td>
</tr>
<tr>
<td>101-1000</td>
<td>109</td>
<td>10 %</td>
<td>55</td>
<td>21 %</td>
</tr>
<tr>
<td>>1000</td>
<td>20</td>
<td>2 %</td>
<td>17</td>
<td>6 %</td>
</tr>
<tr>
<td>Total</td>
<td>1039</td>
<td>100 %</td>
<td>263</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Tableau 9 : Répartition des analyses et des points de prélèvement non conformes en fonction de la classe de contamination par *P. aeruginosa*

En l’absence d’une relation dose-réponse, il n’est pas possible d’interpréter correctement les niveaux de contamination observés. Cependant, on se rend clairement compte que les concentrations mesurées, tout en restant limitées, ne sont pas pour autant négligeables.

4.5 Population exposée

Les 96 établissements thermaux sont en majorité situés dans le sud et le centre de la France comme le montre la figure 2.
Dans ces établissements deux types de cures sont effectués :

- Les cures pour les assurés sociaux d’une durée de 18 jours, sur prescription médicale,

- Les cures médicales libres qui sont des cures comportant un suivi médical, effectuées à titre curatif, d’une durée minimale de 10 jours de soins et ne donnant pas lieu à une prise en charge.

Elles ont été réparties comme suit en 2003 :

<table>
<thead>
<tr>
<th></th>
<th>Curistes</th>
<th>Journées</th>
<th>Curistes</th>
<th>Journées</th>
<th>Curistes</th>
<th>Journées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fréquentation 2003</td>
<td>536 781</td>
<td>9 633 782</td>
<td>9 837</td>
<td>124 546</td>
<td>546 618</td>
<td>9 758 328</td>
</tr>
</tbody>
</table>

Ces cures hydrominérales sont prescrites pour différentes affections classées selon 12 orientations de la Sécurité Sociale.
Les indications en rhumatologie et séquelles de traumatismes ostéo-articulaires constituent 74 % de la fréquentation actuelle soit 300 000 curistes. 69 des 96 stations possèdent l'agrément en rhumatologie.

Les indications voies respiratoires représentent 14 % de la fréquentation des curistes (majorité d'enfants) pour les pathologies chroniques ORL et bronchiques. Celles-ci sont liées à l'augmentation de l'incidence de l'asthme et de la bronchite chronique et aggravées par la pollution environnementale et le tabac... L'incidence de l'asthme a été multipliée par 4 en trente ans en Europe et concerne 25 % d'enfants et d'adolescents, ce qui en fait un vrai problème de santé publique. 39 sur 96 stations thermales possèdent l'agrément.

Les pathologies vasculaires veineuses (Phlébologie) représentent 7,5 % de la fréquentation, celle-ci concerne les maladies liées au dysfonctionnement de la circulation de retour au niveau des membres inférieurs. Le poids économique concernant cette pathologie est considérable pour les sociétés industrialisées. Douze stations thermales possèdent l'agrément en phlébologie dont les plus connues sont Bagnoles de l’Orne, Barbotan, Evaux les Bains, La Léchère, Rochefort sur Mer.

Les pathologies vasculaires artérielles périphériques : Maladies Cardio-Artérielles (MCA) représentent 2,5 % de la fréquentation. La principale station hydrominérale pratiquant la carbothérapie est Royat, laquelle, par son Institut de Recherches Cardio-Vasculaire participe depuis 58 ans aux réunions internationales concernant la recherche hydrominérale et vasculaire.

La Dermatologie compte elle aussi pour 2,5 % de la fréquentation. La prise en charge s'adresse aux patients atteints de dermatoses chroniques rebelles aux médicaments ou porteurs de séquelles traumatiques de brûlures pré ou post-chirurgicales. Treize stations hydrominérales ont l'agrément. Les principales stations sont : La Roche-Posay, Avène, La Bourboule, Saint Gervais,…

L’appareil digestif et les maladies métaboliques représentent 4,5 % de la fréquentation, mais, compte tenu des progrès pharmacologiques et du grand choix d’eaux minérales embouteillées, leur fréquentation tend à décroître. Les principales stations hydrominérales sont soit sulfatées calciques et magnésiennes pour Vittel, Contrexéville, Brides-les-Bains et Capvern, soit bicarbonatées calciques pour Vichy, Vals et Chatelguyon.

Dans les indications psychosomatiques, un essai randomisé, multicentrique est en cours, son but est d’évaluer les techniques d’hydrothérapie dans le traitement du trouble d’anxiété généralisé (TAG) et concerne les stations de Bagnères de Bigorre, Divonne les Bains, Nérès les Bains, Saujon et Ussat les Bains.

Pour chacune de ces orientations, il existe donc différentes indications, mais celles-ci sont aussi accompagnées de contre-indications par rapport aux différents traitements utilisés :
Tableau 11 : Présentation de prises en charge de cures hydrominérales (12 Orientations Sécurité Sociale 1946) pour les indications les plus prescrites et qui ont fait l’objet de travaux scientifiques français et internationaux, D’après les cours du CSCT 2003, ITEM 180: “PRESCRIPTION DE LA THERAPEUTIQUE HYDROMINERALE”:

<table>
<thead>
<tr>
<th>Orientations Sécurité Sociale</th>
<th>Indications</th>
<th>Différentes thérapies</th>
<th>Contre-indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhumatologie et séquelles de</td>
<td>Manifestations arthrosiques
Lombalgie chronique
Rhumatismes abarticulaires
Rhumatismes inflammatoires chroniques</td>
<td>Balnéation chaude
Douches
Applications de boue
Kinébalnéothérapie en piscine</td>
<td>Poussée de rhumatisme inflammatoire
Radiculalgies aigues, douleur vertébrale aiguë
Maladie de paget évolutive
Varices
Incontinence veineuse
Affections cutanées</td>
</tr>
<tr>
<td>traumatismes ostéo-articulaires</td>
<td>Maladie asthmatique
Otites chroniques séreuses ou séro-muqueuses
Rhinopharyngites chroniques +/- inflammatoires
Séquelles rhino-sinusienennes post-opératoires</td>
<td>Gargarisme
Pulvérisation
Douche pharyngienne
Inhalations
Insufflations tubo-lymaniques
Nébulisation</td>
<td>Asthme cortico-dépendant
Asthme + BPCO
Cholestéatome congénital
Obstruction mécanique
Mucoviscidose
Pathologies infectieuses
Grandes insuffisances cardiaques
Infarctus du myocarde ou AVC de moins de six mois
Une HTA sévère non contrôlée
Chirurgie vasculaire périphérique de moins de trois mois</td>
</tr>
<tr>
<td>Voies respiratoires</td>
<td>Artériopathie Oblitérante Membres Inférieurs, au stade de la claudication intermittente Syndromes de Raynaud, primaires et secondaires invalidants</td>
<td>Bains d’eau carbo-gazeuse
Bains de gaz sec, insufflations sous-cutanées de gaz associées à la marche à contre-courant en eau carbo-gazeuse</td>
<td>Maladies de l’appareil urinaire et maladies métaboliques
Lithiases
Maladies de l’appareil digestif et maladies métaboliques
Dyspepsies
Dyskinésies
Colites spasmodiques simples
Cure de boisson
Hydrothérapie
Ulcère gastro-duodénal
Lithiases biliaires
Gastrites microbioîennes.¹</td>
</tr>
<tr>
<td>Maladies cardio-arterielles</td>
<td>Lithiases</td>
<td>Cure de boisson
Hydrothérapie</td>
<td>Hépatites évolutives
Rectocolite hémorragique
Maladie de Crohn, cirrhoses
Cancer digestif
Gastrites microbioîennes.¹</td>
</tr>
<tr>
<td>Maladies de l’appareil urinaire et maladies métaboliques</td>
<td>Dyspepsies
Dyskinésies
Colites spasmodiques simples</td>
<td>Cure de boisson
Hydrothérapie</td>
<td>Maladies de l’appareil digestif et maladies métaboliques
Cure de boisson
Hydrothérapie
Ulcère gastro-duodénal
Lithiases biliaires
Gastrites microbioîennes.¹</td>
</tr>
</tbody>
</table>

¹ Non-indication
<table>
<thead>
<tr>
<th>Orientations Sécurité Sociale</th>
<th>Indications</th>
<th>Différentes thérapies</th>
<th>Contre-indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phlébologie</td>
<td>Insuffisances veineuses chroniques sévères comportant des signes cutanées</td>
<td>Balnéation en eau profonde</td>
<td>Maladie thrombo-embolie aigue à risque embolie élevé</td>
</tr>
<tr>
<td></td>
<td>Formes évolutive aux décours thrombose veineuse profonde ou d’œdème veineux</td>
<td>Déambulation en piscine</td>
<td>Eréspèle ou la lymphangite en poussée</td>
</tr>
<tr>
<td></td>
<td>Lymphoédème avec ou sans fibrose</td>
<td>Bains hydroxeurs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternance de douches froides/ fraîches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massages sous l’eau</td>
<td></td>
</tr>
<tr>
<td>Gynécologie</td>
<td></td>
<td>Pulvérisations</td>
<td>Infections : bactériennes, virales, fongiques ou parasitaires.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brouillard</td>
<td></td>
</tr>
<tr>
<td>Dermatologie</td>
<td>Eczémas rebelles</td>
<td>Douches filiformes mono ou multi jets pratiquées par le médecin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psoriasis</td>
<td>Action décapante, excoriante.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ichtyoses</td>
<td>Bains généraux ou localisés</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cicatrices de brûlures</td>
<td>Massages et rééducation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Héliothérapie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cure de boisson</td>
<td></td>
</tr>
<tr>
<td>Affection des muqueuses bucco-linguales Neurologie</td>
<td>Trouble d’anxiété généralisé</td>
<td>Hydrothérapie</td>
<td></td>
</tr>
<tr>
<td>Thérapeutiques des affections psychosomatiques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troubles du développement chez l’enfant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La population susceptible d’être exposée à *Pseudomonas aeruginosa* dans les centres thermaux correspond à une population immunodéprimée. Les affections répertoriées sont plus ou moins sévères et selon leur type elles augmentent le risque de gravité d’une éventuelle infection à *Pseudomonas aeruginosa*. L’évaluation des risques ne peut être quantitative dans le cadre général. Pour caractériser le risque ou du moins prendre des précautions spécifiques pour certains curistes, il est nécessaire de mettre en place une évaluation spécifique au site et à la population qui le fréquente.

4.6 **Impossibilité actuelle d’une Évaluation Quantitative des Risques à cause des lacunes dans les connaissances**

On constate donc qu’il existe un manque certain de données épidémiologiques synthétiques concernant les infections liées aux micro-organismes dans les établissements thermaux, puisqu’on ne dispose que d’études ponctuelles portant sur un nombre relativement faible de cas. Ce manque de données peut s’expliquer par les réticences des médecins thermaux à rendre compte des infections constatées au sein de leurs établissements. En effet, l’activité de thermalisme est génératrice de flux financiers considérables. Le chiffre d’affaires produit était de 6 milliards de francs en 1989 (en augmentation constante depuis 1970) [25].

Pour pallier ce manque de données, M. Armengaud, dans un article du BEH n°41 daté d’Octobre 1994, soulignait déjà le fait que « vu les faibles effectifs de cas cliniques observés en routine, il faudrait envisager la conduite d’études multi-centriques sur plusieurs établissements thermaux afin de mieux apprécier les relations entre la contamination bactériologique accidentelle des eaux thermales et une fréquence accrue de cas cliniques observés » [26]. Ces travaux permettraient donc éventuellement de déterminer les relations dose-réponse manquantes et ainsi de mener à bien une véritable évaluation quantitative des risques.

5 **Eléments de gestion du risque lié à *P aeruginosa* dans les centres thermaux**

5.1 **Système de surveillance en vigueur (mesures analytiques, périodicité, acteurs…)**

La plupart des établissements thermaux pratique aujourd’hui l’auto-surveillance dont les résultats doivent être contrôlés et validés par les services déconcentrés de l’Etat et principalement les Directions Départementales des Affaires Sanitaires et Sociales (DDASS).

Pour ce qui est des indicateurs de contamination microbiologique et des micro-organismes pathogènes suivis, ils donnent lieu à deux types de critères de qualité : des valeurs guides pour ce qui concerne les micro-organismes revivifiables à 22 °C et 37 °C et des valeurs impératives pour des paramètres plus importants et notamment Legionella pneumophila et Pseudomonas aeruginosa. Pour cette dernière bactérie, le critère retenu, quel que soit le point de prélèvement considéré, est l’absence de germe dans 250 ml d’eau. Il est à noter que « absence » prend ici le sens d’ « inférieur à la limite de détection ».

La norme retenue est donc la plus restrictive possible, car la présence de Pseudomonas aeruginosa dans l’eau n’est pas admissible, notamment en raison [27] :

- De son caractère pathogène opportuniste qui se manifeste sous des formes variées et qui représente une menace en particulier pour la santé de certaines catégories de personnes (immunodéprimés, jeunes enfants, femmes enceintes, personnes âgées ou atteintes d'affections graves, chroniques ou métaboliques, hématologiques ou cancéreuses ou encore présentant des plaies et brûlures) notamment lors d’inhalation d’aérosols ou de contact avec les muqueuses oculaires ou des téguments lésés ;
- De sa résistance à certains antibiotiques ;
- De sa capacité à se multiplier en milieu humide sur des substrats très variés ;
- De la difficulté à éliminer cette bactérie lorsqu’elle colonise des réseaux ou d'autres installations.

Trois types d’analyses différentes ont finalement été définis :

- **Analyse de type CM** incluant la mesure du pH, de la température, de la conductivité à 25°C, de l’alcalinité ainsi que le dosage d’au moins un élément caractéristique de l’eau minérale (chlorures, sulfates, sulfures totaux ou CO₂ par exemple)

- **Analyse de type BM0** incluant la mesure de plusieurs paramètres microbiologiques à savoir :
 - Le dénombrement des micro-organismes revivifiables après 24h à 37°C et 72h à 22°C dans 1 ml d’eau
- Le dénombrement des coliformes totaux à 37°C dans 250 ml d’eau
- Le dénombrement des coliformes thermotolérants (*Escherchia coli*) à 44,5°C dans 250 ml d’eau
- **Le dénombrement** des streptocoques fécaux (entérocoques) et des *Pseudomonas aeruginosa* dans 250 ml d’eau
- Le dénombrement des germes anaérobies sporulés sulfito-réducteurs dans 50 ml d’eau

✔ **Analyse de type BM1** consistant en un dénombrement des légionelles dont *Legionella pneumophila* dans 1 l d’eau

On obtient finalement les tableaux récapitulatifs suivants pour déterminer la fréquence des différentes analyses de l’eau à effectuer dans les établissements thermaux.

<table>
<thead>
<tr>
<th>OUVERTURE DE L’ETABLISSEMENT</th>
<th>NOMBRE DE CONTROLES</th>
<th>TYPE D’ANALYSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus de 7 mois / an</td>
<td>4 dont 1 avant l'ouverture</td>
<td>CM + BMO + BM1</td>
</tr>
<tr>
<td>Moins de 7 mois / an</td>
<td>3 dont 1 avant l'ouverture</td>
<td>CM + BMO + BM1</td>
</tr>
</tbody>
</table>

Tableau 12 : Contrôle à l’émergence de la source.

<table>
<thead>
<tr>
<th>CATEGORIES DE SOINS</th>
<th>NOMBRE DE CONTROLES</th>
<th>TYPE D’ANALYSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catégorie 1</td>
<td>1 par mois</td>
<td>BMO</td>
</tr>
<tr>
<td></td>
<td>1 par mois</td>
<td>BM1</td>
</tr>
<tr>
<td></td>
<td>1 par trimestre</td>
<td>CM</td>
</tr>
<tr>
<td>Catégorie 2</td>
<td>1 par mois</td>
<td>BMO</td>
</tr>
<tr>
<td></td>
<td>au moins 1 par trimestre</td>
<td>BM1</td>
</tr>
<tr>
<td></td>
<td>1 par trimestre</td>
<td>CM</td>
</tr>
<tr>
<td>Catégorie 3</td>
<td>1 par mois</td>
<td>BMO</td>
</tr>
<tr>
<td></td>
<td>au moins 1 par trimestre</td>
<td>BM1</td>
</tr>
<tr>
<td></td>
<td>1 par trimestre</td>
<td>CM</td>
</tr>
</tbody>
</table>

Tableau 13 : Contrôle aux points d’usage.
En cas de non-conformité, l’arrêté du 19 Juin 2000 précise également la démarche à suivre (éléments de gestion du risque) en fondant ses préconisations sur l’application du principe de précaution. Ainsi, en cas de contamination microbiologique de l’eau par un des micro-organismes soumis à des valeurs impératives, « l’exploitant devra mettre en œuvre les mesures nécessaires à la suppression de la contamination (nettoyage, rinçage, désinfection, rinçage), assurer l’information du corps médical et transmettre à l’autorité sanitaire le protocole particulier d’entretien, de maintenance et de désinfection des réseaux mis en place ».

De plus, si la contamination concerne un point d’usage destiné aux soins de catégorie 1 (usage le plus sensible), celui-ci devra être fermé dès connaissance des résultats de l’analyse.

Pour les autres catégories de soins, l’utilisation de l’eau pourra être maintenue mais une deuxième série d’analyse devra être menée dans les cinq jours suivant l’obtention des premiers résultats afin de vérifier le retour à la conformité de l’eau. En cas de confirmation de la contamination, les points d’usage de la zone de soins concernée devront être fermés.

Les points d’usage contaminés qui ont fait l’objet d’une mesure de fermeture ne pourront être à nouveau utilisés qu’après deux contrôles négatifs.

5.2 Existe-t-il des améliorations possibles ?

5.2.1 Dans la mise en œuvre du dispositif actuel

A partir d’études épidémiologiques multi-centriques telles qu’envisagées par M. Armegaud (voir chapitre 4.6), on pourrait définir d’une manière plus satisfaisante les normes bactériologiques de qualité des eaux minérales naturelles utilisées pour les soins thermaux et ainsi passer de l’application du principe de précaution à celle du principe de prévention.

Dans le même article du BEH n°41/1994 [26], M. Armengaud propose également de repenser le système de contrôle en le fondant à la fois sur des critères épidémiologiques et bactériologiques. L’idéal serait donc de coupler la surveillance épidémiologique et le suivi bactériologique et de fixer une fréquence hebdomadaire pour la remontée des données afin d’avoir une réactivité plus grande et de pouvoir mettre en œuvre les mesures préventives ou compensatoires adaptées plus rapidement.

5.2.2 Dans le dispositif de réduction des risques

Une réunion des représentants des services déconcentrés de l’état (DDASS et DRASS) du 22 novembre 2000 a fait apparaître des insuffisances dans les modes de gestion des non-conformités. Il a été notamment évoqué la possibilité de définir des mesures graduées en fonction de la nature et de l’importance de la contamination constatée lorsqu’elle se produit à l’émergence. Plus généralement, les acteurs du contrôle
souhaiteraient voir définie la conduite à tenir lorsque cette contamination s'avère faible (teneurs comprises entre 1 et 5 germes pour 250 mL).

En effet, « une interprétation indifférenciée des résultats peut être à l'origine d'effets pervers » tels qu'une désinfection continue de l'eau susceptible d'induire un sentiment injustifié de sécurité, et des opérations très fréquentes de nettoyage du réseau conduisant à une dégradation importante du matériau et à la sélection de microorganismes pathogènes résistants (perte de l'effet de compétition avec la flore autochtone).

En l'absence de réalisation complète l'évaluation du risque (notamment relation dose-effet), trois niveaux de concentration pourraient être utilisés de manière à prévoir une intégration dans le système de démarche d'assurance qualité [28]. :

- **Niveau cible** : indiquant ce que l'on veut atteindre (absence de *Pseudomonas aeruginosa*)
- **Niveau d’alerte** : niveau de concentration pour lequel le bruit de fond est dépassé
- **Niveau impératif** : entraînant une intervention lourde et donc l’arrêt des soins

On peut à ce stade s’interroger sur la nécessité de la mise en place d’une réglementation spécifique aux risques liés à *P. aeruginosa* s’inspirant de celle élaborée pour les légionelles. Les éléments d’évaluation rassemblés dans ce rapport permettent de montrer l’existence d’un risque lié à *Pseudomonas aeruginosa* dans les établissements thermaux. Toutefois les infections encourues sont le reflet de concours de circonstances propices au développement de la bactérie pathogène. Le respect des règles d'hygiènes préconisées sur les centres thermaux suffit a priori à se prémunir du risque lié à *Pseudomonas aeruginosa*. Dès lors, l’introduction de mesures spécifiques de gestion par rapport à ce pathogène ne semble pas nécessaire et ce d’autant moins si les recommandations décrites dans la circulaire DGS/VS4 n° 98-771 du 31/12/98 relative à la mise en œuvre de bonnes pratiques d'entretien des réseaux d'eau dans les établissements de santé et aux moyens de prévention du risque lié aux légionelles dans les installations à risque et dans les bâtiments recevant du public sont mises en œuvre. Il est à noter que ce texte englobe les établissements thermaux au sein des « établissements de santé ».

Cette réglementation demande, entre autres, aux gestionnaires de ces établissements de :

- Mieux connaître leur réseau de distribution d'eau (établissement d'un diagnostic et d'un schéma général par exemple)
Evaluation et gestion des risques liés à *Pseudomonas aeruginosa* dans les établissements de thermalisme

- Assurer un entretien régulier de ce réseau (cf. Circulaire DGS 97/311 du 24 Avril 1997 relative à la surveillance et à la prévention de la légionellose)
- Formaliser les procédures d'utilisation de l'eau pour les soins et pour la désinfection des dispositifs médicaux

Les lacunes réglementaires mises en évidence dans ce rapport semblent donc être comblées par les directives relatives à la légionellose.
CONCLUSION

Ce présent rapport s’est attaché à décrire l’évaluation et la gestion du risque d’infection par la bactérie aquatique *Pseudomonas aeruginosa* dans les établissements thermaux.

L’étude des différentes activités des centres thermaux nous a permis de mettre en évidence la pluralité des voies d’exposition à considérer, ainsi que les différentes pathologies soignées, et de définir la population sensible sans pour autant avoir de quantification exacte du risque. À l’inverse de la légionnelle, peu de données synthétiques concernant les niveaux d’exposition existent en dehors d’informations recueillies lors des études épidémiologiques effectuées au cas par cas sont existantes.

Dans ce contexte sanitaire, la plupart des établissements thermaux pratique aujourd’hui l’auto-surveillance en application des textes réglementaires relatifs aux contrôles sanitaires de ces établissements. Les résultats doivent être contrôlés et validés par les services déconcentrés de l’Etat et principalement les Directions Départementales des Affaires Sanitaires et Sociales (DDASS).

Une réunion des représentants des services déconcentrés de l’état (DDASS) du 22 novembre 2000 a fait apparaître des insuffisances dans les modes de gestion des non-conformités avec la possibilité de définir des mesures graduées en fonction de la nature et de l’importance de la contamination constatée lorsqu’elle se produit à l’émergence.

L’objet des démarches ainsi proposées est de permettre aux autorités sanitaires d’assurer la gestion du risque *Pseudomonas aeruginosa* en cernant les défaillances des installations potentiellement concernées par ce risque et de n’exiger la mise en œuvre des actions correctives que sur ces dernières.

Evaluation et gestion des risques liés à *Pseudomonas aeruginosa* dans les établissements de thermalisme

[14]. Première synthèse du bilan de la saison thermale 2001 présentée par Philippe HARMANT (DGS/SD7A) à la conférence des IGSR de Septembre 2003 (http://rese.intranet.sante.gouv.fr/santenv/interven/thermal/cad_.htm)

[20]. Enquête : Flambée de folliculite à *Pseudomonas* associée à bains bouillants, Colombie Britannique (Canada), BEH n°20/90, p. 87.

[27]. CSHPF, Recommandations relatives à la gestion du risque microbien lié à l’eau naturelle minérale dans les piscines des établissements thermaux, mars 2002.

[29]. Circulaire DGS 98/771 du 31 Décembre 1998 relative à la mise en œuvre de bonnes pratiques d'entretien des réseaux d'eau dans les établissements de santé et aux moyens de prévention du risque lié aux légionelles dans les installations à risque et dans les bâtiments recevant du public.