Titre :
|
Implementation of G-Computation on a Simulated Data Set : Demonstration of a Causal Inference Technique. (2011)
|
Auteurs :
|
Jonathan-M SNOWDEN ;
Kathleen-M MORTIMER ;
ROSE (Sherri) : USA. Division of Biostatistics. School of Public Health. University of California. Berkeley. Berkeley. CA.
|
Type de document :
|
Article
|
Dans :
|
American journal of epidemiology (vol. 173, n° 7, 2011)
|
Pagination :
|
731-738
|
Langues:
|
Anglais
|
Mots-clés :
|
Asthme
;
Technique simulation
;
Simulation
;
Facteur
;
Pollution atmosphérique
;
Santé environnementale
;
Méthode
;
Méthodologie
;
Epidémiologie
;
Bronchopneumopathie obstructive
|
Résumé :
|
[BDSP. Notice produite par INIST-CNRS 88R0xGsn. Diffusion soumise à autorisation]. The growing body of work in the epidemiology literature focused on G-computation includes theoretical explanations of the method but very few simulations or examples of application. The small number of G-computation analyses in the epidemiology literature relative to other causal inference approaches may be partially due to a lack of didactic explanations of the method targeted toward an epidemiology audience. The authors provide a step-by-step demonstration of G-computation that is intended to familiarize the reader with this procedure. The authors simulate a data set and then demonstrate both G-computation and traditional regression to draw connections and illustrate contrasts between their implementation and interpretation relative to the truth of the simulation protocol. A marginal structural model is used for effect estimation in the G-computation example. The authors conclude by answering a series of questions to emphasize the key characteristics of causal inference techniques and the G-computation procedure in particular.
|