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Abstract 

Introduction: Patients with multiple sclerosis (MS) are susceptible to experience recurrent events 

of disability progression and relapses. Many studies still focus on analyzing MS events with 

traditional methods such as Cox Proportional Hazard, Poisson, and logistic regression that either 

ignore subsequent events or fail to account overdispersion and dependency between events. 

Therefore, considering recurrent event methods may improve treatment development. 

Objective: To conduct a literature review to identify recurrent event methods in the context of MS 

and apply them on the MS Outcome Assessments Consortium (MSOAC) to provide 

recommendations for MS research. 

Methods: A literature review was conducted to identify main methods, which were then 

summarized based on their classification and main characteristics. These methods were applied 

to the MSOAC database to evaluate the effect of the disease course on the number of confirmed 

disability progression (CDP) and the Annualized Relapse Rate (ARR). 

Results: A total of 54 articles were included in the literature review, identifying 9 main recurrent 

event models. The most documented were the Andersen-Gill, Prentice Williams and Peterson 

and Frailty models. Marginal models may be recommended in experimental studies over 

conditional approaches, while event-specific models are accurate for estimating overall or event-

specific effects in patients with one or more events. Random effect models are suited for studies 

with patient heterogeneity. In the MSOAC database, recurrent events have provided more precise 

estimates than traditional methods. Common and event-specific estimates for CDP and ARR were 

consistent across models. 

Conclusion: This study provides methodological guidance for health researchers to select and 

implement appropriate methods in recurrent event analyses. The model choice may vary 

depending on the research study and different factors. Researchers should prioritize recurrent 

event methods in their statistical plans to avoid information loss and improve the precision of 

estimated effects. 

Key words: Recurrent events, Count data, Proportional Hazards Models, Multiple Sclerosis 
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Resume 

Titre : Analyse des événements récurrents dans la sclérose en plaques : Revue de la littérature 

et application à la base de données MSOAC 

Introduction : Les patients atteints de sclérose en plaques (SEP) sont susceptibles d’expérimenter 

des événements récurrents de progression du handicap et de rechutes. Toutefois, de 

nombreuses études appliquent des méthodes statistiques usuelles telles que la régression de 

Cox, de Poisson ou logistique. Or, ces méthodes ignorent soit les événements ultérieurs ou bien 

ne tiennent pas compte de là sur dispersion et de la dépendance entre les événements. 

L’utilisation de méthodes dédiées aux évènements récurrents serait plus pertinente et pourrait 

donc améliorer significativement le développement de futur traitement. 

Objectif : Mettre en place une revue de la littérature afin d’identifier les méthodes d’analyse des 

événements récurrents dans le contexte de la SEP et les appliquer au Multiple Sclerosis Outcome 

Assessments Consortium (MSOAC) dans le but de fournir des recommandations claires pour les 

cliniciens du domaine. 

Méthodes : Une revue de la littérature a été menée afin d’identifier les principales méthodes 

d'analyse des événements récurrents. Ces méthodes ont été résumées et classifiées selon leurs 

principales caractéristiques. Ensuite, elles ont été appliquées sur la base de données du MSOAC 

afin d’évaluer la récurrence de progression confirmées de l’incapacité (CDP) et la récurrence de 

rechute (ARR) en fonction de la typologie de la SEP (récurrente-rémittente ou forme 

secondairement progressive). 

Résultats : Au total, 54 articles ont été inclus dans la revue de la littérature, identifiant 9 modèles 

d'événements récurrents. Les modèles les plus documentés sont ceux d'Andersen-Gill, de 

Prentice Williams et Peterson et à fragilité partagée. Les modèles marginaux peuvent être 

recommandés dans les études expérimentales par rapport aux approches conditionnelles, tandis 

que les modèles spécifiques à l'événement sont précis pour estimer les effets globaux ou 

spécifiques à l'événement chez les patients ayant un ou plusieurs événements. Les modèles à 

effets aléatoires conviennent aux études avec hétérogénéité des patients. Dans la base de 

données MSOAC, les événements récurrents ont fourni des estimations plus précises que les 

méthodes traditionnelles. Les estimations communes et spécifiques à l'événement pour le CDP 

et l'ARR étaient cohérentes d'un modèle à l'autre.  

Conclusion : Cette étude fournit des recommandations aux cliniciens spécialisés dans la sclérose 

en plaque pour les aider à sélectionner et à mettre en œuvre les méthodes dédiées aux 



ix 
 

évènements récurrents. Le choix du modèle peut varier en fonction de l'étude de recherche et de 

différents facteurs. Les cliniciens devraient favoriser ce type de méthode en tant que critère de 

jugement principal lors de l’élaboration de futures études cliniques afin de maximiser l’information 

et donc d’améliorer la précision des effets estimés.
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1. INTRODUCTION 

1.1.  Multiple Sclerosis and associated clinical outcomes 

Multiple sclerosis (MS) is a leading cause of non-traumatic neurological disability in young adults. 

It affects the brain and spinal cord, resulting in symptoms like blurred vision, weak limbs, tingling 

sensations, dizziness, and fatigue (1). With over 2 million global prevalent cases and an annual 

incidence rate of 2.1 per 100,000 person-year, in 2016, MS led to 18,932 deaths and 1,151,478 

Disability-Adjusted Life Years (DALYs) (2). 

The disease is classified into three types (or disease courses): the relapsing-remitting (RRMS), 

secondary progressive (SPMS) and primary progressive (PPMS). The RRMS and SPMS are the 

most frequent and are characterized for the presentation of repeated events of isolated attacks 

(relapses) or progressive disability (3–6). The RRMS, which is the most prevalent (85% of total 

cases), is defined by relapses of new or increasing neurological symptoms. The SPMS type 

involves an initial relapsing-remitting phase followed by a progressive worsening of symptoms, 

independent of relapses (7,8). Although MS prevalence has increased partly due to improved 

survival, there is still no cure, and the disease-modifying therapies with earlier diagnosis are the 

main interventions to reduce symptoms and slow the worsening of the disease (1,9,10).  

Relapses and disability progression are the main outcomes to evaluate disease progression in 

MS (10). The latter is often measured by the changes in the Expanded Disability Status Scale 

(EDSS), which ranges from 0 to 10, with higher score indicating more severe disease (11,12). 

These changes are frequent primary endpoints in clinical trials and can be derived by measuring 

confirmed disability progressions (CDP) during follow-up (8,11,13–15). Relapses, defined as new 

or worsening clinical signs or symptoms lasting at least 24 h without fever, are mainly measured 

by the Annualized Relapse Rate (ARR) in RRMS clinical trials (6,10,16). The combination of these 

endpoints describes more accurately a heterogeneous disease with a variety of subtypes (4,10). 

1.2. Traditional statistical methods in MS research. 

Most of researchers often analyze repeated events of disability progression and relapses in MS 

using well-established methods (6,17,18). Their choice varies according to the nature of the 

outcome variable. For time-to-event data, survival models are used, with the Cox proportional 

hazards model (CoxPH) being a common choice, focusing on the time to the first event (8). For 

count data, Poisson regression is often implemented to examine the number of events over time. 

For the continuous and categorical results, linear regression and logistic regression models are 

used, respectively (6). 
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Nevertheless, when these traditional methods are applied to recurrent event data, various issues 

may arise. The CoxPH can be inefficient because the information following the first disability 

progression or relapse is ignored (6,17–20). For Poisson, the problem is that recurrent event data 

(i.e. MS relapses) often present over-dispersion with variance larger than the mean, which results 

in parameters with lack of precision and statistical significance can be overestimated (6). 

Moreover, in Poisson regression, the within-subject correlation is not correctly accounted (19). 

Both linear and logistic regression may be inappropriate for analyzing this type of data, due to 

specific assumptions and outcome redefinition, which may lead to waste of information and impact 

the statistical power and parameter estimation (6,17). 

1.3. Recurrent events methods 

1.3.1. Definition 

In view of these limitations, a variety of counts and survival statistical methods, called recurrent 

events methods, have been developed for the correct estimation of repeated events while 

accounting for its lack of independence (4,6,8,19,21–23). Recurrent events refer to the repeated 

occurrence of the same type of event over time for the same individual, such as hospitalizations, 

asthma attacks and multiple sclerosis relapses or disability progressions (8,19,22). Although 

recurrent events can also consider terminal events (i.e. death), in MS the likelihood of terminal 

events is low and the interest of recurrent events methods rely on non-terminal events (8,24,25).  

Recurrent events are characterized with five main components: 1) time scale defined as calendar 

time (the time measured from the time origin) or gap time (time is reset to zero after each event);  

2) risk interval which defines when an individual is at risk of having an event along a given 

timescale; 3) risk set or the number of individuals who are at risk at a given point in time; 4) an 

event-specific or common baseline hazard; and 5) the way of handling the within-subject 

correlation, which can be conditional, marginal or random effects (8,22,26).  

The risk interval is a key concept in recurrent events that allows to define whether a model is 

either marginal or conditional, and can be categorized as counting process, total time, and gap 

time (Figure 1) (8). The counting process uses calendar time as time scale but considers also left 

truncation (i.e. delayed entry). For example, individual B is at-risk for the first event between [0, 

7) and for the second, third and fourth event during [7, 11), [11, 16) and [16, 25), respectively. An 

individual is not at-risk for a specific event before previous event has been observed. Total time 

corresponds to the time from time since the beginning of the observation in the study. For instance, 

individual B is at-risk for the first event in the time interval [0, 7), for the second event during [0, 

11), for the third event during [0, 16) and for the fourth event during [0, 25). On the other hand, 
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gap time is the time from the prior event. The individual B is assumed to be at risk for the first 

event during [0, 7) and for the second, third and fourth event during [0, 4), [0, 4) and [0, 9). 

 

Source: modified from Būhler (8). 

Figure 1. Risk intervals illustration recurrent event data for four hypothetical individuals.  

Another important concept in recurrent event methods is the type of intervention effect measure 

obtained (27). Methods can be based on cumulative events (number of events by end of study), 

event rate1 (number of events per unit time), time to event (time to successive events) and gap 

time (times between successive events are accounted). Event rate models yield a rate ratio (RR) 

as estimation measure (i.e. Poisson and negative binomial models), and models based on time-

to-event (i.e. CoxPH) provide a hazard ratio (HR) as measure of effect.  

1.3.2. Classification 

The classification of recurrent event methods may vary depending on the approach considered 

by the author (18,20,22,28,29). However, this is mainly based on risk interval and within-subject 

correlation definitions as well as the type of intervention effect measure (8,26,27). 

Based on risk intervals, recurrent events methods are classified as conditionals or marginals 

models (8,26,28). Conditional models use a full specification of the recurrent event process 

through the event history (8). The conditioning on the event history can be, either through a 

random effect term (i.e. frailty term) or through time-dependent covariates (i.e. symptoms and 

event counters) (8,29). In marginals, full specification of the recurrent event process may remain 

unspecified and models are focused on marginal parameters as the dependence structure is not 

 
1 Some models also known as count-based models such as Poisson or Negative Binomial models. These are 
statistical models used to analyze count data. 
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of interest (8,19). These can be classified as marginal hazard models or mean/marginal rate 

models depending on the intervention effect measure obtained, which are the hazard ratio and 

the event rate, respectively (8,27).  

1.3.3. Applicability of recurrent events  

Recurrent event methods are designed to address several research questions (Table 1). Although 

they can be adapted to individual analyses, characterization and association studies, recurrent 

event are predominantly focused on treatment effect estimation in clinical trials (27). Common 

research questions are related to the measuring of the intervention effect or in estimating the 

number of prevented cases in the experimental group. 

The use of recurrent event methods provides significant advantages in both statistical analysis 

and public health. Its application can lead to more accurate hypothesis testing, as these methods 

appropriately accounts for the occurrence of repeated events over time (19). If correlations 

between events are ignored, the null hypothesis may be incorrectly rejected (18). In addition, 

recurrent events methods allow to estimate direct and indirect effect of an intervention and to gain 

considerable statistical power, leading to smaller sample sizes, shorter follow-up, or both (24,30).  

Within the MS context, the use of recurrent events methods is widely suggested by the scientific 

community, and it was recently recommended by the European Medicines Agency (EMA) (31). 

Their use may enhance greater precision and better understanding of the disease burden. In 

particular, they may allow for the consideration of about 10% and 23% of disability events in 

RRMS and PPMS trials, respectively, that are often excluded (21,24,32–34). In addition, enable 

to supply the real target for treatment both from a patient, provider (i.e. economic) and societal 

perspective, examine the potential benefit of a new treatment, to better characterize the prognosis 

of patients, and to facilitate access to potential new therapies (6,8,21–24,32–34).  
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Table 1. Research questions and objectives in recurrent events methods with examples based on MS. 

Domain Question Objective  Example 

Individual states 
What are the factors 

associated with 
relapses/death in patients? 

Understanding and 
describing individual 

event processes 

Evaluation of factors 
on the risk of illness-

relapse/death process 
in a patient 

Characterization 

What factors contribute to 
variations in the frequency 
and severity of recurrent 

MS relapses among 
individuals? 

Identifying and 
characterizing 

variation across a 
population of 

processes 

Risk factors or 
protective factors 

identification for severe 
or frequent relapses 

Group comparations 

How many events does the 
treatment prevent, on 

average? 

Does the treatment 
decrease the event 

number/rate over the study 
period? 

What is the intervention 
effect on the number of 
higher-order events? 

What is the effect of 
intervention on the number 

of subsequent events?  

Comparing groups of 
processes 

Treatment effect 
evaluation in a clinical 
trial and estimation of 
disability progression 

reduction rate 

Association 

How factors like age, 
treatment type, and lifestyle 
influence the likelihood of 

getting a new relapse? 

Determining the 
relationship of fixed 

covariates, 
treatments, and 

time-varying factors 

Influential risk factors 
of MS patients with 

relapses 

Source: author's own creation with objectives and questions modified from (22,27) 

1.4.  Research problem 

Despite all the mentioned advantages and several reviews suggestions, there remains a lack of 

consensus agreement on which methods and models should be applied in MS to answer specific 

research questions (4,6,8,20,35). Most researchers still rely on traditional statistical techniques 

for analyzing their data with recurrent events, possibly due to lack of awareness, consensus, no 

external validation of recent models or limited knowledge for its application because of their 

general complexity (6,10,17,28,29,33). The differences between methods and its advantages and 

disadvantages remain unclear for most health professionals (33).  
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Since it may affect the development of optimal treatment strategies and resource allocation in 

health systems, there is a need to bridge the gap between theoretical advancements in statistical 

methodology and their practical application in MS research. Thus, this study aims to conduct a 

well-structured literature review to identify available models, and subsequently, to summarize and 

apply these models to generate recommendations for improving future research in MS. 

1.5. Objectives 

General:  

To conduct a comprehensive review with an application of recurrent event methods in a MS 

database to provide recommendations for general use in MS research. 

Specific objectives: 

1. Identify recurrent event methods in MS and other low-rate mortality diseases through 

literature review. 

2. Describe the advantages and weaknesses of the identified approaches. 

3. Apply recurrent event methods to the Multiple Sclerosis Outcome Assessments Consortium 

(MSOAC) placebo database. 

This master’s thesis was conducted during a six-month internship at Quinten, a French consulting 

company in Paris, France. The master's thesis was developed in at the company while the student 

was also trained in code quality with different tools (Python, VS Code, Docker, GitLab and 

Amazon Web Service) as well as participating in different meetings. This work arises from the 

detected gap in the company to make available the statistical models available in recurrent events 

and its application in future projects. It also seeks to make the information available to the entire 

research field for the development of research methodologies in chronic diseases. 

2. METHODS 

2.1. Literature review 

A literature review was conducted on PubMed in accordance with Cochrane recommendations 

for searching and selecting studies (36). Prior reference articles related to the topic were 

considered and manual searches were also carried out to search other relevant literature sources 

(i.e. conferences and thesis). 

Research query code included the following key words for title and abstract search [tiab] and 

associated mesh terms [Mesh]: “recurrent event”, “count data”, “chronic disease” and “statistical 
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models”. The search was not limited to MS to be more sensitive and to obtain a broad range of 

models applied to chronic diseases that could be also used in MS. The selection criteria targeted 

documents published during the last 20 years (from 2004 onwards), in English and with access 

to the abstract and full text. The exclusion criteria were based on the type of statistical model 

mentioned. Records were classified in “recurrent event methods”, “time to first event methods”, 

“other methods” (i.e. logistic regression) and “not mentioned a method or statistical model in the 

abstract”. Articles that were not related to the type of study of interest were also excluded. 

Extraction was performed in February 2024. After the first step of filtering records, the screening 

of articles was carried out following the mentioned exclusion criteria. In addition, full-text records 

were added from Research rabbit & Connected papers2 by using all the screened articles as main 

source of searching. Manual searched, and reference articles based on recurrent events were 

also included. In the final eligibility phase, non-relevant articles were removed. Selected articles 

were characterized based on type of research item (i.e. review, original research article) and type 

of recurrent event model addressed. 

2.2.  Information summarization 

Relevant statistical models identified from articles were summarized and organized following 

Buhler classification, with minor adaptations (8). In this summary, only models for non-terminal 

events were considered as they are predominant in chronic diseases. For instance,  multi-state 

models (MSM) were not finally considered as these models are mainly used for composite 

endpoints (illness-death models) in which MS and many other low mortality rate diseases do not 

apply (37). Each model was outlined with the following components: definition, primary 

assumptions, advantages and disadvantages, and its relevance in MS. 

2.3. Application 

2.3.1. Data source and study population 

Data from the Multiple Sclerosis Outcome Assessments Consortium (MSOAC) Placebo Database 

was used in this study (38). It was established in December 2012 by the National Multiple 

Sclerosis Society and the Critical Path Institute (C-path). 

The MSOAC comprises 2465 placebo arms patients from 9 MS clinical trials, conducted primarily 

from 2000 to 2013 with participants from different countries. All data were acquired prospectively 

except for some variables (e.g., time since diagnosis), which are typically determined 

 
2 Both are AI-based tools for exploring and finding research article suggestions based on similarity. 
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retrospectively. The database does not contain standard-of-care or active comparator data. Data 

followed the Clinical Data Interchange Standard Consortium (CDISC) standard, widely used in 

clinical trials and is available to researchers who submit and are approved for its use (38). 

For this study, 1313 participants with complete data of the end of the follow-up were included to 

evaluate the effect of disease course (RRMS diagnoses or SPMS diagnoses) on the of CDP and 

relapse recurrences. The follow-up was from the first day of the study until the last day of follow-

up documented for each patient. Patients were right censored at the end of the study and 

censoring was assumed to be non-informative3. 

2.3.2. Main outcome measures 

The primary endpoint was the confirmed disability progression (CDP) through the EDSS score, 

defined as an increase from baseline of at least 1.0 EDSS point (baseline EDSS ≤5.5) or ≥0.5 

points (baseline EDSS >5·5 points). This definition also considered EDSS progression events 

regardless of the subsequent EDSS scores (Figure S6) (11). The secondary endpoint was the 

ARR, calculated as the total number of confirmed relapses that occurred between baseline and 

the end of the follow-up in years (9,39).  

The main exposure variable was disease progression, defined as patients with a diagnosis of 

RRMS or SPMS type. Results were adjusted by age (years), sex (male, female), race (white, no 

white) and time since diagnosis (years) as these are known factors associated with MS disease 

(5). Socio-economic factors were not available in the MSOAC database and country of origin was 

not considered due to the high proportion of missing values (>50%). 

2.3.3. Statistical methods  

Descriptive statistics were used to summarize baseline characteristics. Continuous variables were 

presented as mean and standard deviation (SD) or median and interquartile range (IQR), 

depending on the distribution. Categorical variables were presented as total number and 

percentage. 

Regarding statistical modelling, several survival and event rate models were applied based on 

the literature review results. A CoxPH and a Poisson model were used as baseline models. As 

recurrent event models, extended versions of the CoxPH model (i.e. AG, PWP and WLW) and 

other event rate models (i.e. NB and Quasi-Poisson) were applied. Hazard Ratio (HR) and Event 

 
3 Censored patients have the same risk for relapses as those who are not censored (6). 
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Rate Ratio (RR) were the effect measured estimated. All presented models were adjusted on 

established confounding factors (40). 

Across similar models, the goodness of fit was assessed and compared using the Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC), and log-likelihood (20,41). 

These results are shown in supplementary material (Table S11). Proportional hazard assumption 

for the baseline CoxPH model was tested. No imputation was done for missing data to the 

selected variables, except for start of observation, which was defined as time t = 1 to all 

participants.  

Data structure for fitting models were constructed based on models’ characteristics (8,18,42). 

Analyses were performed in R (Version 2023.12.0) and syntax for fitting each model with 

appropriate packages was provided in the supplementary material (Table S11) (8,19,42,43). 

2.3.4. Ethical aspects 

Main author received approval from C-path to use the MSOAC data. All data are fully anonymized 

and de-identified and ethical considerations have been met. 

3. RESULTS 

3.1. Literature review findings 

A total of 287 articles were found in PubMed. Other 21 publications were added from the manual 

search and 9 using AI-recommended search tools (Figure 2). After filtering and removing records 

that not fulfilling the inclusion criteria, 54 publications were selected. These included original 

statistical model application reviews (n = 28), research articles (n = 14), methodological articles 

(n = 8), a book (n = 1), a guideline (n = 1), a thesis (n = 1), and a conference article (n = 1).  

A total of 9 main statistical models for non-terminal events were identified in the literature review 

(Figure S5). The most applied model was the Andersen-Gill (AG) model in 29 publications. Other 

well-documented models were the Frailty models (n = 19), Prentice-Williams-Peterson (PWP-TT 

or PWP-GT) model (n = 18), Negative Binomial (NB) model (n = 15), and Wei-Lin-Weissfeld 

(WLW) model (n = 15). Less documented models in recurrent event were the Poisson or its 

variance-corrected versions (n = 7), the marginals Lin-Wei-Yang-Ying (LWYY) (n = 6), Lee-Wei-

Amato (LWA) model (n = 4) and the Partially conditional rate-based (PCRB) model (n = 2). 
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Source: Author creation with Lucid ® 

Figure 2. Attrition flowchart for literature review strategy. 



11 
 

3.2. Classification and description of main statistical models 

Following a modified classification from Buhler (8), statistical models for recurrent events are 

described and detailed information of each model are summarized in the Table 2. This modified 

version retains aspects proposed by different reviewed authors, allowing the most relevant 

statistical models to be presented in a simplified approach (8,26,27). It is important to mention 

that several modifications can be found in a specific model (i.e. Frailty), in which arguments can 

be adjusted to generate a modified version of the general formula (44). 

A. Conditional models 

i. Conditional based models 

Poisson regression 

The general Poisson regression is often used to model recurrent event data in the form of counts 

(6). If survival time follows an exponential distribution, Poisson is equivalent to a parametric 

survival model (4).  

This model has three main assumptions that generally affects its application in recurrent events: 

a) its variance should be equals to the mean (equidispersion assumption); b) the successive 

events occur independently at a constant rate among all patients in each subgroup; and c) the 

event count should follow a Poisson distribution (6,45).  

As recurrent event data often exhibit over-dispersion, the estimated parameters may lack 

precision and the statistical significance will be overestimated (6). This over-dispersion is often 

corrected by the inflation of the variance with in the Quasi-Poisson or GEE Poisson models (4,6). 

The latter models are frequently used in recurrent events as correct the standard errors of the 

effect estimates and the GEE Poisson also accounts for heterogeneity (46). 

Negative Binomial (NB)  

The NB regression provides an improved model for recurrent events data compared with Poisson 

regression (46). This model assumes that each individual has their own underlying event rate 

over time, but may differ across individuals when it includes a random component reflecting the 

uncertainty about the true rates (6,8,47). The number of events for each individual follows a 

Poisson distribution but the expected number is allowed to vary across patients according to a 

gamma distribution (24,46,48). 
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Because the NB model with random effect accounts for subject heterogeneity and provides a valid 

mean rate estimates with a relative easy application, it is frequently suggested in analyses of 

recurrent events (8,24,46) 

Andersen-Gill (AG) 

The AG model is a generalization of the CoxPH model and is considered a reference model for 

recurrent events (21,24,48). It is based on the idea that a patient who experiences a non-fatal 

event remains in the set of patients at risk (common baseline hazard), recording several events 

for an individual patient, by considering the interval times and estimating a global estimate effect 

(8,18,24).  

An important assumption of this model, which is often not fulfilled in many diseases, is that the 

events themselves do not affect the patient's risk of other events, which means that the events 

are assumed to be independent (30). This common baseline assumption may limit its use in 

practice, as it can significantly underestimate the overall effect (4,6,24,45,49). For relaxing this 

assumption, is possible to introduce in the model measured covariates that induce correlation 

among events for each individual (19). If not possible, a robust sandwich covariance can be used 

to anticipate correlations among the observations (19,20).  

The AG model is usually indicated for analyzing data when all dependence between subsequent 

events is mediated through time-varying covariates (6,19,22).  

Prentice, Williams and Peterson (PWP) 

The general PWP model is a stratified AG model, with a separate fitted model for each event 

(26,45,50). This model accounts for the dependence between repeated events by stratifying on 

the number of preceding events (event-specific baseline hazard), which means that a subject is 

assumed not to be at risk for a subsequent event until a current event has terminated (8,19,49).   

There are two variations of PWP that depend on the type of risk interval: the PWP-TT  (total time)4, 

which is similar to the AG model but evaluates the effect of a covariate by stratifying the event 

and, the PWP-GT (gap time), that is similar PWP-TT, but assumes all events start at the time 

since the previous event (19,49).  

 
4 PWP-TT can be also found as PWP-CT as it actually uses counting process formulation (26). 
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An inherent problem with PWP is that, in practice, it may be necessary to limit the data to a specific 

number of recurrent events, as the risk set may be small for the strata and event-specific 

estimates may be unreliable (19).  

PWP-TT models can be appropriate when risk of event increases with subsequent event while 

the PWP-GP can be of interest when the distribution of event per subject is small or prediction of 

time to the next event is of interest (18). 

ii. Random effect models 

Frailty model 

The frailty model is an extension of the CoxPH model, in which the hazard function depends on 

an unmeasured random variable or “frailty term” that induces a correlation (18,24). Frailty models 

assume that the within-subject correlation is due to the tendency of some individuals being more 

prone to develop recurrent events as compared with others because of some unobserved or 

unmeasured factors (8,19,20). Estimate interpretation is similar to the mixed models in 

longitudinal data (18). The most used is a shared frailty model with random effects assumed to 

follow a gamma distribution with mean equal to one and unknown variance (19).  

A common limitation comes from the assumption that the effect estimates are constant over the 

time which can be invalid in experimental designs. Moreover, the potential presence of time-

dependent covariates may affect the analyses since it is complex to separate time-dependent 

effects from unobserved heterogeneity (51). When random effects are large, a small number of 

events may be adequate for implementation, otherwise a larger number is needed (9,19). 

Frailty models are indicated when there exist heterogeneous susceptibility to the risk of recurrent 

events that cannot be explained by covariates alone (18,19). 

B. Marginal models 

i. Marginal hazard models 

Wei-Lin-Weissfeld (WLW) 

This marginal model is based on a total time scale, uses event-specific baseline hazards and a 

semi-restricted risk set (8). The main assumption of this model is the individual is simultaneously 

at risk for all events (6). 

The WLW approach present some limitations. When it is used in ordered events, this model tend 

to overestimate the effect (6,26,52). In addition, as other stratified models, data should be limited 

to an adequate number of recurrent events to still get precise estimates (8).  



14 
 

Compared to other models in which events happen successively, the WLW method is well suited 

to multi-type event data in which the natural order of the repeated events is no predictable (8). 

This method preserves the randomization groups in clinical trial with unordered events, providing 

clear interpretation of the between-group differences (52,53). 

Lee-Wei-Amato (LWA) 

This is a less known marginal model that only differs to the WLW in its common baseline hazard 

and unrestricted risk set (8). LWA model was developed originally with the aim to study clustered 

data (42). 

This model often provide bias estimates effect because it allows a subject to be at risk for several 

events simultaneously (26). However, due to its unrestricted risk set, the LWA is suitable for 

clustered data such as siblings, where it can be assumed that the baseline hazard is the same, 

and the beginning of risk of the event is the same within the cluster (26). 

ii. Marginal means/rate models 

Lin-Wei-Yang-Ying (LWYY) 

LWYY can be seen as analogue to the AG model, but with less stronger assumptions as it allows 

arbitrary dependence structure between recurrent events and a varying rate function over time 

(8,19). The target estimate measure is the rate ratio and the inference is based on a robust 

sandwich variance estimator (21).  

No assumptions regarding the baseline rate function or the dependence structure between the 

recurrent events are required, but it typically assumes recurrent event process and time to 

censoring to be independent (given covariates) (21).  

This is one of the most used rate-based models for recurrent event analyses in absence of 

terminal events or with negligible mortality in clinical trial designs (8). 

Partially conditional rate based (PCRB) 

This is a less used marginal rate-based model. The PCRB model with a common effect is similar 

to the LWYY model, but additionally adjusts for event-specific baseline rate functions (21). The 

event-specific PCRB gives effect estimates of the among all subjects for each stratum as the 

conditional event-specific PWP (21). 

Marginal methods based on PCRB are increasingly used for the analysis of recurrent results in 

recent years in experimental designs (8).  
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Table 2. Summary table of main models used in recurrent event analyses. 

Models 
Risk 
interval 

Risk set 
Baseline 
hazard 

Within-
individual 
correlation 

Strengths Weaknesses References 

Poisson TT na na 
Non-
accounted • Simplicity in results interpretation. 

• Events are independent. 

• No timing of events. 

• Ignores heterogeneity. 

• Estimated parameters may lack 
precision and significancy may be 
overestimated 

(4,6,8,19,24,
43,45,46) 

Quasi- 
or GEE 
Poisson 

TT na na 
Random 
effects 
(GEE) 

• Simplicity in results interpretation. 

• Variance correction. 

• Accounts heterogeneity (GEE) 

• No timing of events. 

• Ignores heterogeneity (Quasi-Poisson) 
(4,6,8,46,54) 

NB* TT na na 
Random 
effects 

• Accounts for heterogeneity. 

• Provides valid mean rates and 
reliable estimate of RR. 

• Statistical flexibility. 

• No timing of events. 

• Assumes a constant rate function that 
can be not true in practice. 

(6,8,24,46–
48,55) 

AG CT Unrestricted Common Conditional 

• Make full use of the data. 

• Useful when all dependence between 
subsequent events is mediated 
through time-varying covariates. 

• Broader application for the estimation 
of the overall effect. 

• Robust variance account for 
correlation within events. 

• Events are assumed to be 
independent. 

• The common baseline does not apply 
to many diseases. 

• May underestimate the overall effect. 

• May lose the benefits of randomization 
in experimental designs. 

• Proportionality hazard assumption 
may be not true in practice. 

• Ignores heterogeneity. 

(4,6,8,19,21,
24,30,45,49,
56,57) 
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PWP-GT GT Restricted 
Event-
specific 

Conditional 

• Useful if a renewal happens after 
each event. 

• Recommended when the distribution 
of event per subject is small. 

• Prediction of time to the next event is 
of interest. 

• Robust variance account for 
correlation within events 

• Does not coincide with the nature of 
most chronic diseases. 

• The risk set may become small for the 
strata. 

• Event-specific estimates may be 
unreliable. 

• Ignores heterogeneity. 

(6,8,18,19,45
,49) 

PWP-TT CT/TT Restricted 
Event-
specific 

Conditional 

• Useful if there is more interest in 
estimate the separate risk for each 
event. 

• Allows evidence about risk factors 
associated with different strata. 

• Robust variance account for 
correlation within events 

• The risk set may become small for the 
strata. 

• Event-specific estimates may be 
unreliable. 

• Ignores heterogeneity 

(4,6,8,18,19,
45,49) 

Frailty TT 
Semi-
restricted 

Common 
Random 
effect 

• Accounts for within subject correlation 
and heterogeneity 

• Useful when unmeasured 
heterogeneity cannot be explained by 
covariates alone (individuals with 
different risk). 

• Event rates are constant over the 
follow-up time. 

• It becomes complicated to separate 
time-dependent effects from 
unobserved heterogeneity. 

• Sample size needs to be considered 
for stable estimates. 

(18–
20,24,50,51) 

WLW TT 
Semi-
restricted 

Event-
specific 

Marginal 

• Useful when the order of the events is 
not predictable, and the subject is 
simultaneously at risk for all events 
(compatibility with unordered events). 

• Limited to a few events in health. 

• Subjects are at risk for all events even 
in those with only one event. 

• May overestimate the treatment effect. 

• Difficult to interpret global estimate 
effects. 

(4,6,8,26,50,
52,53,58) 
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LWA TT Unrestricted Common Marginal 
• Useful for clustered data where it can 

be assumed that the baseline hazard 
is the same. 

• Limited to a few events in health. 

• Subjects are at risk for several events 
simultaneously. 

• May provide biased estimates effects. 

(4,8,55) 

LWYY TT Unrestricted Common Marginal 

• Useful when there are no time 
dependent covariates, and the 
dependence structure is not of 
interest. 

• Allows for causal interpretation. 

• Rate functions are more interpretable 
than the hazard. 

• Less stronger assumptions. 

• It is valid regardless of the shape of 
the baseline rate function. 

• Does not specify dependence 
structures among recurrent event 
times within a subject. 

• Assumption of independent time to 
censoring and recurrent event is often 
violated when the observation is 
stopped after a predefined number of 
events. 

(8,13,19,21,5
8,58,59) 

PCRB TT Restricted 
Event-
specific 

Marginal 

• Adjusts for event-specific baseline 
rate functions. 

• Rate functions are more interpretable 
than the hazard. 

• The risk set may become small for the 
strata. 

• Event-specific estimates may be 
unreliable. 

(8,21) 

Abbreviations: Generalized Estimating Equations (GEE), Negative Binomial (NB), Andersen Gill (AG), Prentice-Williams-Peterson (PWP-GT), Prentice-Williams-Peterson (PWP-TT), Wei-Lin-
Weissfeld (WLW), Lee-Wei-Amato (LWA), Lin-Wei-Yang-Ying (LWYY), Partially conditional rate-based (PCRB), na (not apply), TT (total time), CT (Counting time), GP (Gap time); * NB model 
with random effect.  
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3.3. Application to the MSOAC database 

3.3.1. Implementation of recurrent events in R 

3.3.1.1. Data set layout 

ARR endpoints from the MSOAC were used to exemplify the data structure appropriate for fitting 

all recurrent event models without terminal events addressed in this study. 

In classical count-based models such as Poisson regression, each participant contributes one 

record, which includes the number of events as main outcome and total length of follow-up (Table 

3). For Data layout 1, Id (modified for illustrative purposes) represents the unique identifier of the 

individual, Disease Course the type of disease, Count the total number of observations during the 

total Length Time since study start. 

Table 3. Data layout 1: count-based models for three individuals. 

Id Disease Course Count Length Time 

1 SPMS 0 667 

2 RRMS 1 813 

3 RRMS 2 534 

Identification number (id); Number of total events (Count); Relapse Remitting MS (RRMS) and Secondary Progressive 
MS (SPMS). 

On the other hand, data organization in survival-based models is essentially differentiated on the 

time scale used (CT, TT and GT) and the occurrence of successive events (42,60). In the 

conditional and marginals rate base models, a subject is assumed not to be at risk for a 

subsequent event until the current event has finished. However, in the marginal hazards models 

(WLW and LWA) this assumption is different, as each participant is simultaneously at risk for the 

occurrence of any event from the beginning of the study (8).  

For illustrate these differences, in the Table 4 is displayed the data layout for conditionals and 

marginals rate-based models. The variable Id is a unique patient identifier. Tstart and Tstop 

represent the time interval of each observation while Tgap the difference of time between 

observations. Event (0 or 1) represents whether an event occurs at the end of the time interval. If 

an event has been observed at time Tstop, Event is equal to 1. If Tstop is a right censoring time 

Event is equal to 0. Sevent records the event sequence for each patient, which is necessary for 

stratified models such as PWP and WLW. Nevents summarizes the total number of events 

experienced by a patient during follow-up. Disease course defines the patient’s group that in this 

study is RRMS or SPMS. In data layout 2, patients without relapses have only 1 line, whereas 
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patients with at least one event have more than 1 line, with the last line corresponding to the time 

of right-censoring. 

Table 4. Data layout 2: conditionals and marginals rate models for three individuals. 

Id Tstart Tstop Tgap Event Sevent Nevents Disease Course 

1 1 667 666 0 1 0 SPMS 

2 1 268 267 1 1 1 RRMS 

2 268 813 545 0 2 1 RRMS 

3 1 131 130 1 1 2 RRMS 

3 131 401 270 1 2 2 RRMS 

3 401 534 133 0 3 2 RRMS 

Identification number (id); time start (tstart); time stop (Tstop); time gap (tgap); event sequence (Sevent); Number of 
total events (Nevents) Relapse Remitting MS (RRMS) and Secondary Progressive MS (SPMS). 

Data layout 3 for WLW and LWA should be arranged as each participant have the same number 

of entries (Table 5). That means that each id has many lines as the maximum number of events 

that could be observed. In this example, maximum number of Sevent was defined Sevent <= 3 for 

illustrative purposes. 

Table 5. Data layout 3: WLW and LWA marginals hazards models for three participants. 

Id Tstop Event Sevent Disease Course 

1 

1 

1 

2 

2 

667 0 1 SPMS 

667 0 2 SPMS 

667 0 3 SPMS 

268 1 1 RRMS 

813 0 2 RRMS 

2 

3 

3 

3 
 

813 0 3 RRMS 

131 1 1 RRMS 

401 1 2 RRMS 

534 0 3 RRMS 

Identification number (id); time stop (Tstop); event sequence (Sevent); Relapse Remitting MS(RRMS) and Secondary 
Progressive MS (SPMS). 

 

3.3.1.2. Packages and R commands 

Survival, Stats, frailtyEM and Reda packages from R were used for conducting the analyses. The 

survival package provides the functions for conducting CoxPH extended models and testing 

proportional hazard assumptions while the Stats package offers the generalized linear models 

function for count-based models. The frailtyEM was only employed to get the frailty variance. Reda 
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was used for graphs and estimation of the mean cumulative function. R commands for fitting 

models are shown in the supplementary material (Table S11). 

3.3.2. Database overview 

3.3.2.1. Baseline characteristics and outcome descriptions 

From the total participants, 60.2% (721/1313) had a RRMS diagnosis while the remaining 39.8% 

(522/1313) had a SPMS diagnosis. The mean age of the RRMS population was significantly lower 

than the SPMS population. Most of participants were female and white in both groups. The SPMS 

group exhibited a significant longer mean duration since diagnosis, averaging 15.5 years. 

Additionally, their mean EDSS score was higher (mean = 5.4). Overall, the median total follow-up 

for all participants was 540 days (Q1: 337, Q3: 673). 

Table 6. Baseline characteristics of study population by disease course type.  

Variable 

 

RRMS, N = 791 SPMS, N = 522 
Age (years) 

   

Mean (SD) 36.5 (9.1) 49.4 (8.1) 

Sex 
   

Male  
 

240 (30%) 193 (37%) 

Female 
 

551 (70%) 329 (63%) 

Race 
  

 

White 
 

687 (88%) 503 (96%) 

No white 98 (12%) 19 (4%) 

Missing 6 0 

Time since diagnosis (years) 
   

Median (Q1-Q3) 2.0 (1.0, 5.0) 14.5 (7.8, 22.0) 

Missing 0 26 

EDSS overall 
   

Median (Q1-Q3) 2.00 (1.50, 3.50) 6.00 (4.50, 6.50) 

Relapse Remitting MS (RRMS) and Secondary Progressive MS (SPMS). 

 

Regarding outcome description for both groups, there were a total of 497 CDP and 406 relapses 

at the end of the follow-up. The 25.1% (330/1313) and 18.8% (248/1313) of participants had at 

least 1 CDP or relapse respectively. Around 12% of participants had more than one CDP and 

relapses, with a maximum of 6 CDP and 9 relapses observed (Table 3). The proportion of events 

per group was considerably similar for both outcomes. 
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Table 7. Number of confirmed disability progression (CDP) and relapses by disease course. 

Variable RRMS, N = 791 SPMS, N = 522 

Number of CDP   

0 526 (66%) 299 (57%) 

1 168 (21%) 162 (31%) 

2 69 (8.7%) 53 (10%) 

3 15 (1.9%) 7 (1.3%) 

4 10 (1.3%) 1 (0.2%) 

5 2 (0.3%) 0 (0%) 

6 1 (0.1%) 0 (0%) 

Number of relapses   

0 500 (63%) 407 (78%) 

1 171 (22%) 77 (15%) 

2 73 (9.2%) 27 (5.2%) 

3 29 (3.7%) 8 (1.5%) 

4 9 (1.1%) 3 (0.6%) 

5 5 (0.6%) 0 (0%) 

6 3 (0.4%) 0 (0%) 

9 1 (0.1%) 0 (0%) 

Relapse Remitting MS (RRMS) and Secondary Progressive MS (SPMS). 

3.3.2.2. Cumulative number of CDP and relapses. 

The mean cumulative function (MCF) is recommended for illustrating recurrent events, as the 

Kaplan–Meier curves only look at the first event. The MCF represents the average number of 

cumulative events experienced by an individual in the study at each point in time since the start 

of follow-up (43). 

The figure 3 shows how the cumulative rates of CDP and relapses in RRMS and SPMS groups 

varies over time. The x-axis and the y-axis represent the time since study entry in years and the 

average number of events that an individual had experienced during follow-up, respectively. 

Participants with a RRMS or SPMS diagnosis had in overall, a similar average of CDP during time 

of follow-up. However, after 1.5 years can be observed a higher average number of CDP in those 

with RRMS diagnosis. For relapses endpoints, the cumulative relapse rate was lower in the SPMS 

group. The MCF value was close to 0.9 at year 2, which means that RRMS patients experienced, 
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on average, 0.9 relapses over the first 2 years of follow-up in the study compared with 0.4 relapses 

for SPMS participants. It can be also seen that both cumulative mean of CDP and relapses are 

approximately linear in both groups, suggesting constant relapse rates over time. 

 

 

Relapse Remitting MS (RRMS) and Secondary Progressive MS (SPMS). 

Figure 3. Mean cumulative function of (a) confirmed disability progression and (b) relapse events by disease 

course. 

3.3.3. Effect of disease course on CDP and ARR. 

3.3.3.1. Overall effect of disease course on CDP and ARR 

In figure 4, is presented the estimates and its corresponding 95% confidence intervals for CDP 

and ARR endpoints by disease course for reviewed models and the CoxPH. 

a

. 

b
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From a qualitative point of view, the results of the model appeared to be consistent. CDP rates 

tend to be similar in both groups, while the annualized relapse rate was lower in participants with 

a diagnosed SPMS. When comparing time to first event methods with recurrent event methods, 

CoxPH model had wider confidence intervals. Furthermore, in survival cox extensions, it was 

observed that estimated HR or RR tended to be similar in magnitude within conditionals and within 

marginal models, except for frailty models. Count-based models showed similar results for both 

endpoints, apart from the Poisson model which presented smaller confidence intervals in the ARR. 

Even though the recurrent CDP were not significantly different in both groups, the number of 

relapses was significantly lower in the SPMS group in all fitted models (Figure 4). The risk of 

relapses was 43% (WLW), 39% (LWA, Poisson and Quasi-Poisson), 38% (Andersen-Gill and 

LWYY), 36% (Negative Binominal), 34% (PWP-TT and PWP-GT) and 26% (Frailty) lower in the 

SPMS group compared with the RRMS group (Table S10).  

On further details, when individuals were assumed to be simultaneously at risk for all events, WLW 

and LWA resulted in a 43% (HR = 0.57; 95% CI: 0.39 - 0.78) and 39% (HR = 0.61; 95% CI: 0.44 

- 0.82) lower risk of relapse in the SPMS group than in the RRMS, respectively. By conditioning 

by covariates, the AG model revealed that patients with SPMS diagnosis had a reduction of 38% 

on the risk of relapses compared with the RRMS group (HR = 0.62; 95% CI: 0.48 - 0.79). Both 

PWP-TT and PWP-GT models estimated a 34% reduction in the risk of relapse (HR = 0.66, 95% 

CI:  0.52 - 0.85) in SPMS participants when an event-specific baseline hazard was assumed. This 

risk was 26% lower in the Frailty model when accounting for unmeasured heterogeneity (HR = 

0.74; 95% CI: 0.58 - 0.94). The Poisson regression yielded a decreasing risk of 39% (RR = 0.61; 

95% CI: 0.48 - 0.78). By correcting overdispersion, the Quasi-Poisson model yielded the same 

estimate rate ratio as Poisson model but with different confidence intervals (RR = 0.61; 95% CI: 

0.45 - 0.83). The risk of relapses was also reduced in the SPMS group in the NB model (RR = 

0.64; 95% CI 0.48 - 0.86) while correcting for heterogeneity and assuming gamma distribution. 

Finally, when not considering the dependency structure, the LWYY model estimated a similar risk 

reduction of 38% (RR: 0.62; 95% CI: 0.45 - 0.84) in the SPMS group compared to RRMS than the 

AG model.  
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Abbreviations: Cox Proportional Hazard (CoxPH), Quasi-Poisson (QPoisson), Negative Binomial model (NB), Andersen 
Gill (AG), Prentice-Williams-Peterson (PWP-GT), Prentice-Williams-Peterson (PWP-TT), Wei-Lin-Weissfeld (WLW), 
Lee-Wei-Amato (LWA), Lin-Wei-Yang-Ying (LWYY). *Hazard ratio (HR) for CoxPH, AG, PWP-TT, PWP-GT, Frailty and 
WLW; Rate Ratio (RR) for LWYY, NB, Poisson, and Quasi-Poisson. 
 

Figure 4. Overall estimate disease course effect on confirmed disability progression (CDP) and Annualized 

relapse rate (ARR) adjusting by covariates. 

3.3.3.2. Event-specific estimates of CDP and ARR 

Given that PWP, WLW and the PRBC models are stratified by event number, these models are 

adequate to obtain the event-specific estimates of the regression parameters. Only the effects for 

the first 3 events were reported (Table 5).  

Event-specific estimates of the first event are the same in the presented models, which are also 

the same estimates that are obtained with the CoxPH (Table S2). Similarly to the AG and LWYY 

in overall estimates, the PWP and PCRB models provide same point estimates with few 

differences in the 95% confidence intervals. 

The risk of second and third CDP was not significant different in both groups for all models. In 

contrast, the risk of the second and third relapse was 49% and 65% significantly lower in SPMS 

participants than in RRMS group for the WLW model. In the PWP and PRBC models, there was 

a significant decrease in the risk of relapse by 35% for the second event in the SPMS group. 

  



25 
 

Table 8. Overall and event-specific effect on confirmed disability progression (CDP) and Annualized 
relapse rate (ARR) adjusting by covariates. 

  
CDP ARR 

Model Event Estimate1 95% CI P value Estimate 95% CI P value 

PWP-TT 

Overall 1.03 0.84 - 1.25 0.7871 0.66 0.52 - 0.85 0.0013 

1 1.12 0.87 - 1.45 0.374 0.69 0.51 - 0.95 0.0206 

2 0.88 0.56 - 1.39 0.5945 0.65 0.40 - 1.04 0.0702 

3 0.62 0.21 - 1.84 0.3871 0.75 0.33 - 1.69 0.489 

WLW 

Overall 1.06 0.82 - 1.35 0.7056 0.57 0.39 - 0.78 0.0007 

1 1.14 0.90 - 1.46 0.2722 0.69 0.50 - 0.97 0.0316 

2 0.92 0.60 - 1.42 0.7054 0.51 0.29 - 0.90 0.0205 

3 0.64 0.26 - 1.57 0.3323 0.35 0.14 - 0.87 0.0246 

PRCB 

Overall 1.03 0.84 - 1.25 0.7871 0.66 0.52 - 0.85 0.0013 

1 1.12 0.88 - 1.44 0.3578 0.69 0.50 - 0.97 0.0316 

2 0.88 0.59 - 1.33 0.5577 0.65 0.41 - 1.00 0.0525 

3 0.62 0.23 - 1.65 0.3353 0.75 0.36 - 1.57 0.4439 

Abbreviations: Prentice-Williams-Peterson Total Time (PWP-TT), Wei-Lin-Weissfeld (WLW), Partially conditional rate-
based (PCRB). 1Hazard ratio (HR) for PWP-TT and WLW and Rate Ratio (RR) for PRCB 

4. DISCUSSION 

4.1. Literature review findings 

This study has identified and described the main statistical models in recurrent events through a 

comprehensive literature review. It has been seen that several publications that have addressed 

the application of various recurrent event methods, as well as highlighted the problems faced by 

researchers when applying the methods in epidemiological and clinical settings (4,6,8,18–20,24). 

It was also observed that some studies continues modelling with time-to-first event or other 

mentioned traditional methodologies not recommended for recurrent event data (61–63). In 

addition to the previous documented reasons, it can also be suggested that the relative lack of 

published guidelines or recommendations on appropriate methods for analyzing such events may 

be limiting the use of recurrent event methods. To date, only one guideline issued by EMA has 

recalled the general use of recurrent event methods in several chronic diseases (31). 

Although most reviewed articles followed the general classification of conditionals and marginal 

models, it was noticed a lack of agreement when classifying recurrent event methods in lower 
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hierarchical levels (8,19,22,26). For instance, some original research articles have not mentioned 

the specific name of the employed model (i.e., LWYY model), but instead only mention a higher 

hierarchy of the model (i.e. marginal rate model) (9,13,19,62). Moreover, it was found that several 

articles did not justify the use of the selected model (9,57). As this may affect the understanding 

and future application of this methods for health professional researchers, a simplified 

classification has been proposed in this study. 

Furthermore, the literature review enabled to identify several statistical models (8,23,24,59). As 

expected, the AG model was the most documented model. It is one of the earliest described in 

recurrent events methods as well as well-known for its flexibility and relatively easy applicability 

(4,6,8,22,23). Other conditional cox’s extensions, such as the PWP and Frailty models, have been 

found to be common in observational designs, in which the PWP also allows the estimation of the 

separate risk for each event while the frailty properly account for the dependency within subjects 

and unobserved heterogeneity among patients (6,8,18,26). Although the marginal WLW was one 

of the most cited models in the literature on recurrent events, it is of particular interest that most 

articles were focused on the problems of its application to successive events, rather than its 

advantages (6,8,18). Most marginal and count-based models were less mentioned. However, it 

was observed that the NB, LWYY and PCRB models are gaining popularity in experimental 

designs during the last decade especially given their ability to conserve randomizations benefits 

(21,24,34). The Poisson regression is less documented probably due to its strict assumptions and 

overdispersion problems, but its variance-corrected versions (Quasi-Poisson and GEE model) are 

often implemented in recurrent events (4,6,8,54).  

4.2. Model comparison 

Identified statistical models were applied to the MSOAC clinical database for comparing estimates, 

provide interpretation examples and present their respective advantages and disadvantages. Two 

main MS endpoints were employed to provide additional interpretation and a detailed explanation 

of data structuring was conducted before fitting reviewed models (6,8,42). 

As it was previously documented in other studies, the common and event-specific estimates for 

CDP and ARR endpoints have been shown to be relatively consistent across models and even 

when comparing time-to first event (CoxPH) with recurrent event methods (6,8,20,22,26,46,64). 

However, it was seen that recurrent event models presented smaller 95% CI, as these improve 

statistical precision of the estimates by considering all the available event data for effect estimation 

(4,8,65). It was also observed that event-specific estimates of the PWP, WLW and PCRB 
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produced identical estimates of the effect for the first event than the CoxPH model. This is 

explained by the fact that they use the same definition of risk set for the first event (6,8,42).  

Given its simplicity of application and interpretation, the Poisson regression is often used in 

recurrent events analyses. As it was found in this study, smaller confidence intervals in the effect 

measure can be obtained when it is compared with the CoxPH (4,6). However, estimates may be 

biased and overestimated due to the overdispersion of the data, as is the case with relapses 

(overdispersion ratio = 1.19) (6). For that reason, Poisson regression is not recommended in 

analyses in over dispersed recurrent event data or if the Poisson distribution assumption is not 

met (4,6). Quasi-Poisson and GEE Poisson has proven useful in MS and other recurrent event 

studies despite the fact that these models do not use event timing information (4,19,24,66). In the 

presented analyses, overdispersion correction in the Quasi-Poisson model can be observed in the 

different confidence intervals estimated in the relapse rates.  

Without overdispersion, the negative binomial model coincides with the Poisson model (8,46). 

However, the NB has less stronger assumptions and appears more plausible as assumes that 

each individual has their own event rate while accounting for within-subject correlation (46). These 

characteristics may explain the estimate differences obtained in this study between the NB with 

the other count-based models. Compared to classical conditional models in recurrent events (i.e. 

AG model), the NB regression with random effects requires a much simpler data structure, is 

easier to implement, and usually gives comparable performance for assessing the overall 

treatment effects (6). It has been claimed as an accurate model for recurrent event analyses in 

MS and its use in RTCs has increased in the last decade (6,21,67,68). 

The AG model is a flexible option which makes the full use of the data (6,19,45). The overall 

estimate provided by the AG model was considerable different to the CoxPH model even without 

considering the use of the robust variance for improving the estimate precision (6). Although this 

model is particularly criticized due to the assumption of common baseline hazards for all events, 

it was satisfactory fulfilled in this study for both outcomes. By considering relevant covariates, the 

AG model has shown a broader application in health research for the estimation of the overall 

effect, particularly when there is no clear biological mechanism underlying the relation between 

the first and subsequent events (6,19,30,49).  

In contrast to the AG model, the PWP accounts for potential strong dependence between events 

when adding the stratification term (8,18). In the context of MS, it is of interest when the research 

question is based on estimating the effect in patients with more than one CDP or relapses or when 
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the interest rely in estimating the separate risk of each event (6,18). Even though the PWP-TT 

and PWP-GT models presented similar estimates, the interpretation differs due to different time 

scales used to fit the model. The renewal approach of the PWP-GT makes its interpretation 

unreliable for MS and other chronic diseases (8). Moreover, the event-specific estimates for the 

PWP are more recommended when the risk of CDP and relapses varies between events and 

when there are few recurrent events per subject (19). The latter condition may not apply to the 

MSOAC database with individuals with more than three CDP or relapses. 

Frailty models are suitable when some participants are intrinsically more susceptible to 

experiencing recurrent events than others, as account for within-subject correlation between 

events and unobserved heterogeneity among patients by adding a random covariate 

(18,19,41,49). A frailty variance close to zero implies low correlation between the event times (18). 

In this study, the frailty variance for CDP and relapses was 0.00004 and 0.00003, respectively 

which means that the application of frailty models may be not justified.  Therefore, the differences 

observed between the frailty model estimates with other models can be explained by model’s 

assumptions and not by the presence of heterogeneity (6,49). 

As mentioned in previous studies, the WLW approach overestimated the measured effect both in 

common and event-specific estimate analyses (4,6,8,26). It can be explained by the strong 

assumption that all patients are included in the risk set for each CDP and relapse stratum, allowing 

the effect on earlier events to affect subsequent events (4,6,52). The same applies to the LWA 

model, which may also provide biased estimates effects (4,8,26). Although several authors argue 

that WLW and LWA are not suitable for recurrent event analyses in most health settings, these 

models should be considered for the analysis of unordered events and clustered data (4,26,53). 

The marginals LWYY and PCRB have provided the same estimates as the conditionals AG an 

PWP because no time-dependent covariates were considered in the conditional model (8,19,59). 

Moreover, even though the LWYY often yield similar effect estimates to the NB model, the results 

were not the same for both endpoints probably due to differences in the event rate function (21). 

Despite similarities with conditional methods, marginals mean/rate models tend to be preferred as 

the effect measure is more interpretable than the hazard and have less stronger assumptions with 

an arbitrary dependence structure between recurrent events (8). The PCRB can be considered a 

suitable complementary analysis to obtain a comprehensive overview of the overall effect and to 

study the effects of the exposure variable on time to subsequent events (8).  
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4.3. Factors influencing the model choice 

Comparison of models based on theory and estimates results does not allow to choose a model 

by itself. Several other factors should be considered before selecting a model for recurrent events 

data. As presented in this study, the application of mathematical criteria may allow to get extra 

information about the model fitness (20,41). However, it is already known that models with event-

specific baseline hazard usually present a better fit (20,42).  

Another key factor for model choice is the type of study design (22). RCTs are often interested in 

models based on total time scale (i.e. NB, LWYY and PCRB). Conversely, in prospective 

observational studies, the interest may lie in developing conditional models (i.e. AG and PWP) to 

better understand factors associated to the event and the correct specification of the recurrent 

event process (8). Frailty models can be recommended to mitigate the risk of selection bias when 

individuals with higher risks of recurrent events may contribute disproportionately to the analysis 

due to previous events (69). Moreover, it is important to consider the simulation or prediction 

purposes, as fully specified models with fixed and time-varying covariates are often preferred (22).  

Completeness and type of data should be also taken into consideration at the moment of applying 

recurrent event models due to data with missing components often require more assumptions for 

their analysis (22,30). In addition, it is essential to understand the dependence structure between 

recurrent events and the biological processes underlying the recurrent events (19,28,30,32). The 

set of covariates and the number of events available need to be also considered and particularly 

in conditional methods (18,30). Result interpretation and availability of commercially accessible 

statistical software may be also relevant because not all statistical tests were explicitly developed 

for recurrent event analyses (33,49). 

4.4. Strengths and limitations of the study 

As far it is known, this study is the first well-structured literature review that has been conducted 

for recurrent events with a subsequent application of main statistical models on real data. It has 

allowed not only to identify methods from a broad perspective of articles, including theses, 

conferences, and original research articles, but also to provide a detailed description and practical 

application of each recurrent event model, offering interpretation resources for epidemiologists 

and other health professionals. Its application to the MSOAC database allowed the generation of 

more accurate results because of its large number of participants and due to the high-quality 

outcomes measures in the context of regulated clinical trials. Additionally, unlike most reviewed 

studies focusing solely on relapses or disability progression, this research applies methods to both 

main endpoints of MS, closely mimicking general practices in MS research. 
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However, the study presents some limitations. The literature review process, may be subject to 

bias due to lack of independent revisors in data collection and extraction. Another limitation is the 

absence of a simulation study to further investigate the properties of each evaluated method. This 

would have provided more information about robustness and performance in various hypothetical 

scenarios, improving the applicability of the results. Although this study was not intended to 

generalize the results of the model but rather to perform the analyses under ideal conditions, 

several limitations related to the application phase can be mentioned, such as the use of placebo 

arms, non-informative censoring, unmeasured confounders, and selection bias due to the selected 

participants. 

5. CONCLUSION 

This study overviewed the main statistical models of recurrent events and provides classification, 

interpretation, and methodological guidance. By considering all CDP and relapses events, 

recurrent events methods can help to gain insights into the MS disease process compared with 

the traditional survival and count-based methods. No single model is indicated to address most of 

MS research questions as all models have their own assumptions and characteristics. Its choice 

may greatly vary depending on the research study and other factors. 

However, it is possible to suggest some models based on general advantages over other models. 

The NB model or the marginal LWYY can be recommended for its application in both CDP and 

relapses in experimental studies over the AG and Poisson models. The PWP-TT or PCRB models, 

can be more accurate than the marginals WLW or LWA if the interest relies in measuring the 

overall effect in patients with one or more events or even when event-specific estimates are 

required. In addition, the frailty model may be indicated particularly in observational studies when 

heterogeneity in patients may affect the effect estimation above other conditional models. 

To conclude, some recommendations can be done: i) researchers should give priority to recurrent 

event methods when developing the statistical plan to avoid the use of inefficient methods and 

make better use of data. Certain recurrent event methods can be also used to study the time until 

the first event; ii) the development of further official guidelines are required. This may promote 

better practices in the scientific community and consequently improve result interpretation and 

reproducibility research; iii) research articles with recurrent event methods should clearly specify 

and justify the selected model based on epidemiological aspects or the research question 

addressed and not only in its statistical benefits; iv) consider the data structure not only when 

fitting models that requires specific layouts, but also when comparing model fitness; v) use up-to 

date commands on available software such as R.
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Supplementary materials 

Source: Author creation with Lucid® 

Figure S5. Flowchart with main characteristics of recurrent events methods and main models. 
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Source: Author creation with Rstudio® 

*CDP: confirmed disability progression. 

Figure S6. Derivation of the disability progression counting for recurrent events since reference baseline.  
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Table S9. R commands for recurrent events implementation 

Model R command 

CoxPH 
coxph(Surv(TSTART, TSTOP, EVENT) ~ (DISEASE_COURSE + AGE + SEX + RACE + 
DISEASE_DURATION), data = subset(data_layout_2, SEVENT == 1)) 

Poisson 
glm(COUNT ~ offset(log(LENGHT.TIME)) + DISEASE_COURSE + AGE + SEX +  
RACE + DISEASE_DURATION, family = poisson(link = "log"), data = data_layout_1) 

Quasi-
Poisson 

glm(COUNT ~ offset(log(LENGHT.TIME)) + DISEASE_COURSE + AGE + SEX +  
RACE + DISEASE_DURATION, family = quasipoisson(link = "log"), data = 
data_layout_1) 

NB 
glm.nb(COUNT ~ offset(log(LENGHT.TIME)) + DISEASE_COURSE + AGE + SEX + 
RACE + DISEASE_DURATION, data = data_layout_1) 

AG 
coxph(Surv(TSTART, TSTOP, EVENT) ~ (DISEASE_COURSE + AGE + SEX + RACE + 
DISEASE_DURATION), data = data_layout_2) 

PWP-TT 
coxph(Surv(TSTART, TSTOP, EVENT) ~ (DISEASE_COURSE + AGE + SEX + RACE + 
DISEASE_DURATION) + strata(SEVENT), data = data_layout_2) 

PWP-GT 
coxph(Surv(TGAP, EVENT) ~ (DISEASE_COURSE + AGE + SEX + RACE + 
DISEASE_DURATION) + strata(SEVENT), data = data_layout_2) 

PWP-TT 
event 
specific 
estimates 

coxph(Surv(TSTART, TSTOP, EVENT) ~ strata(SEVENT) / (DISEASE_COURSE + 
AGE + SEX + RACE + DISEASE_DURATION), data = subset(data_layout_2, SEVENT 
<= 3)) 

Frailty 
coxph(Surv(TSTOP, EVENT) ~ (DISEASE_COURSE + AGE + SEX + RACE + 
DISEASE_DURATION) + frailty(USUBJID), data = data_layout_2) 

WLW 
coxph(Surv(TSTOP, EVENT) ~ (DISEASE_COURSE + AGE + SEX + RACE + 
DISEASE_DURATION) + cluster(USUBJID) + strata(SEVENT), data = data_layout_3) 

WLW event 
specific 
estimates 

coxph(Surv(TSTOP, EVENT) ~ strata(SEVENT)/(DISEASE_COURSE + AGE + SEX + 
RACE + DISEASE_DURATION) + cluster(USUBJID), data = subset(data_layout_3, 
SEVENT <= 3) 

LWA 
coxph(Surv(TSTOP, EVENT) ~ (DISEASE_COURSE + AGE + SEX + RACE + 
DISEASE_DURATION) + cluster(USUBJID), data = data_layout_3) 

LWYY 
coxph(Surv(TSTART, TSTOP, EVENT) ~ (DISEASE_COURSE + AGE + SEX + RACE + 
DISEASE_DURATION) + cluster(USUBJID), data = data_layout_2) 

PCRB 
event-
specific 
estimates 

coxph(Surv(TSTART, TSTOP, EVENT) ~ strata(SEVENT) / (DISEASE_COURSE + 
AGE + SEX + RACE + DISEASE_DURATION) + cluster(USUBJID), data = 
subset(data_layout_2, SEVENT <= 3)) 

Abbreviations: Cox Proportional Hazard (CoxPH), Negative Binomial model (NB), Andersen Gill (AG), Prentice-
Williams-Peterson (PWP-GT), Prentice-Williams-Peterson (PWP-TT), Wei-Lin-Weissfeld (WLW), Lee-Wei-Amato 
(LWA), Lin-Wei-Yang-Ying (LWYY), Partially conditional rate-based (PCRB)  
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Table S10. Overall effect on disability progression and relapse. 

 CDP ARR 

Model Estimate1 95% CI P value Estimate 95% CI P value 

CoxPH 1.12 0.87 - 1.46 0.3576 0.69 0.51 - 0.95 0.0206 

Poisson 1.10 0.89 - 1.37 0.3641 0.61 0.48 - 0.78 0.00008 

QPoisson 1.10 0.89 - 1.37 0.3740 0.61 0.45 - 0.83 0.0016 

NB 1.11 0.89 - 1.40 0.3539 0.64 0.48 - 0.86 0.0032 

AG 1.04 0.84 - 1.29 0.7153 0.62 0.48 - 0.79 0.0001 

PWP.TT 1.03 0.84 - 1.25 0.7871 0.66 0.52 - 0.85 0.0013 

PWP.GT 1.04 0.85 - 1.27 0.7030 0.66 0.52 - 0.85 0.0010 

Frailty 1.09 0.88 - 1.36 0.425       0.74 0.58 - 0.94 0.0147         

WLW 1.06 0.82 - 1.35 0.7056 0.57 0.39 - 0.78 0.0007 

LWA 1.05 0.84 - 1.29 0.6985 0.61 0.44 - 0.82 0.0002 

LWYY 1.04 0.84 - 1.31 0.675 0.62 0.45 - 0.84 0.0021 

Abbreviations: Cox Proportional Hazard (CoxPH), Quasi-Poisson (QPoisson), Negative Binomial model (NB), 
Andersen Gill (AG), Prentice-Williams-Peterson Gap Time (PWP-GT), Prentice-Williams-Peterson Total Time (PWP-
TT), Wei-Lin-Weissfeld (WLW), Lee-Wei-Amato (LWA), Lin-Wei-Yang-Ying (LWYY). 

1 Hazard ratio (HR) for CoxPH, AG, PWP-TT, PWP-GT, Frailty and WLW; Rate Ratio for LWYY and NB; IRR for poisson 
and QPoisson. 
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Table S11. Model comparison using mathematical indices. 

   CDP ARR 

Model Data layout Event LL AIC BIC LL AIC BIC 

Poisson 

Layout 1 

Overall -1174.3 2360.6 2391.6 -1223.3 2458.5 2489.5 

QPoisson Overall -1174.3 2270.7 - -1223.2  1581.5 - 

NB Overall -1170.3 2354.6 2390.7 -1172.4 2358.7 2394.8 

CoxPH 

Layout 2 

1st event -3106.4 6222.9 6243.6 -2665.6 5341.3 5361.2 

AG Overall -4520.8 9051.5 9074.1 -4316.2 8642.5 8664.8 

PWP.TT Overall -4040.8 8091.7 8114.2 -3687.6 7385.2 7407.6 

PWP.GT Overall -4089.3 8188.6 8211.1 -3766.4 7542.9 7565.2 

Frailty Overall -4719.8 9449.6 9472.2 -4505.2 9020.4 9042.8 

LWYY Overall -4520.8 9051.5 9074.1 -4316.2 8642.5 8664.8 

PRCB.SP Event-specific -4004.7 8023.3 8054.8 -3615.6 7245.3 7276.1 

PWP.SP Event-specific -4004.7 8023.3 8054.8 -3615.6 7245.3 7276.1 

WLW 

Layout 3 

Overall -4567.0 9144.1 9166.8 -4322.0 8654.0 8676.5 

LWA Overall -6039.8 12089.6 12112.4 -5921.1 11852.3 11874.7 

WLW.SP Event-specific -4454.9 8923.7 8955.4 -4101.2 8216.4 8247.4 

Abbreviations: Log-likelihood (LL), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) 

Due to the database’s layout differ in the total number of rows, the model comparison criteria can 

be only conducted between models that were fitted with the same type of database. Data layout 

for count based models have found the lowest AIC for Quasi-Poisson model for both endpoints. 

However, the NB model had the best fitted model when comparing by log-likelihood and BIC 

criteria. On the other hand, without considering the time to first event CoxPH model, recurrent 

event data layout has shown that the PWP-TT model was had the lowest value for all criteria for 

both endpoints in overall and event-specific types of models. Lastly, the WLW had the smallest 

values for the three indices when data layout 3 was used.  

  



vi 
 

References 

1. MS International Federation. MS International Federation. 2020 [cited 2024 Mar 8]. Atlas 

of MS 2020 - Epidemiology report. Available from: https://www.msif.org/resource/atlas-of-ms-

2020/ 

2. Wallin MT, Culpepper WJ, Nichols E, Bhutta ZA, Gebrehiwot TT, Hay SI, et al. Global, 

regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the 

Global Burden of Disease Study 2016. Lancet Neurol. 2019 Mar 1;18(3):269–85.  

3. Kamel FO. Factors Involved in Relapse of Multiple Sclerosis. J Microsc Ultrastruct. 2019 

Sep;7(3):103.  

4. Mieno MN, Yamaguchi T, Ohashi Y. Alternative statistical methods for estimating efficacy 

of interferon beta-1b for multiple sclerosis clinical trials. BMC Med Res Methodol. 2011 May 

26;11(1):80.  

5. Hernandez L, O’Donnell M, Postma M. Predictors of Health Utility in Relapsing–Remitting 

and Secondary-Progressive Multiple Sclerosis: Implications for Future Economic Models of 

Disease-Modifying Therapies. Pharmacoeconomics. 2021;39(2):243–56.  

6. Wang YC, Meyerson L, Tang YQ, Qian N. Statistical methods for the analysis of relapse 

data in MS clinical trials. J Neurol Sci. 2009 Oct 15;285(1):206–11.  

7. National Multiple Sclerosis Society. National Multiple Sclerosis Society. 2024 [cited 2024 

Mar 4]. Types of Multiple Sclerosis. Available from: https://www.nationalmssociety.org/What-is-

MS/Types-of-MS 

8. Būhler A. Comparison of Time-to-First-Event and Recurrent Event Methods in Multiple 

Sclerosis Trials [Internet]. arXiv; 2019 [cited 2024 Jan 17]. Available from: 

http://arxiv.org/abs/2111.01937 

9. Lorscheider J, Jokubaitis VG, Spelman T, Izquierdo G, Lugaresi A, Havrdova E, et al. Anti-

inflammatory disease-modifying treatment and short-term disability progression in SPMS. 

Neurology. 2017 Sep 5;89(10):1050–9.  

10. Reeve K, On BI, Havla J, Burns J, Gosteli-Peter MA, Alabsawi A, et al. Prognostic models 

for predicting clinical disease progression, worsening and activity in people with multiple sclerosis. 



vii 
 

Cochrane Database Syst Rev [Internet]. 2023 [cited 2024 Mar 18];(9). Available from: 

https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013606.pub2/full 

11. Kalincik T, Cutter G, Spelman T, Jokubaitis V, Havrdova E, Horakova D, et al. Defining 

reliable disability outcomes in multiple sclerosis. Brain. 2015 Nov 1;138(11):3287–98.  

12. Marrie RA, Sormani MP, Apap Mangion S, Bovis F, Cheung WY, Cutter GR, et al. 

Improving the efficiency of clinical trials in multiple sclerosis. Mult Scler J. 2023 Aug 1;29(9):1136–

48.  

13. Naegelin Y, Naegelin P, von Felten S, Lorscheider J, Sonder J, Uitdehaag BMJ, et al. 

Association of Rituximab Treatment With Disability Progression Among Patients With Secondary 

Progressive Multiple Sclerosis. JAMA Neurol. 2019 Mar 1;76(3):274–81.  

14. Healy BC, Glanz BI, Swallow E, Signorovitch J, Hagan K, Silva D, et al. Confirmed 

disability progression provides limited predictive information regarding future disease progression 

in multiple sclerosis. Mult Scler J - Exp Transl Clin. 2021 Apr 11;7(2):2055217321999070.  

15. Healy BC, Engler D, Glanz B, Musallam A, Chitnis T. Assessment of Definitions of 

Sustained Disease Progression in Relapsing-Remitting Multiple Sclerosis. Mult Scler Int. 

2013;2013:189624.  

16. Lavery AM, Verhey LH, Waldman AT. Outcome Measures in Relapsing-Remitting Multiple 

Sclerosis: Capturing Disability and Disease Progression in Clinical Trials. Mult Scler Int. 2014 May 

4;2014:e262350.  

17. Twisk J, Smidt N, de Vente W. Applied analysis of recurrent events: a practical overview. 

J Epidemiol Community Health. 2005 Aug;59(8):706–10.  

18. Thenmozhi M, Jeyaseelan V, Jeyaseelan L, Isaac R, Vedantam R. Survival analysis in 

longitudinal studies for recurrent events: Applications and challenges. Clin Epidemiol Glob Health. 

2019 Jun 1;7(2):253–60.  

19. Amorim LD, Cai J. Modelling recurrent events: a tutorial for analysis in epidemiology. Int 

J Epidemiol. 2015 Feb;44(1):324–33.  



viii 
 

20. Yadav CP, Lodha R, Kabra SK, Sreenivas V, Sinha A, Khan MA, et al. Comparison of 

statistical methods for recurrent event analysis using pediatrics asthma data. Pharm Stat. 2020 

Nov;19(6):803–13.  

21. Bühler A, Wolbers M, Model F, Wang Q, Belachew S, Manfrini M, et al. Recurrent disability 

progression endpoints in multiple sclerosis clinical trials. Mult Scler Houndmills Basingstoke Engl. 

2023 Jan;29(1):130–9.  

22. Cook RJ, Lawless J. The Statistical Analysis of Recurrent Events [Internet]. New York, 

NY: Springer; 2007 [cited 2024 Feb 13]. (Statistics for Biology and Health). Available from: 

http://link.springer.com/10.1007/978-0-387-69810-6 

23. Andersen PK, Gill RD. Cox’s Regression Model for Counting Processes: A Large Sample 

Study. Ann Stat. 1982;10(4):1100–20.  

24. Rogers JK, Pocock SJ, McMurray JJV, Granger CB, Michelson EL, Östergren J, et al. 

Analysing recurrent hospitalizations in heart failure: a review of statistical methodology, with 

application to CHARM-Preserved. Eur J Heart Fail. 2014 Jan;16(1):33–40.  

25. Ye Y, Kalbfleisch JD, Schaubel DE. Semiparametric analysis of correlated recurrent and 

terminal events. Biometrics. 2007 Mar;63(1):78–87.  

26. Kelly PJ, Lim LL. Survival analysis for recurrent event data: an application to childhood 

infectious diseases. Stat Med. 2000 Jan 15;19(1):13–33.  

27. Rogers DJ. The Analysis of Recurrent Events: A Summary of Methodology. 2016;  

28. Charles-Nelson A, Katsahian S, Schramm C. How to analyze and interpret recurrent 

events data in the presence of a terminal event: An application on readmission after colorectal 

cancer surgery - Charles‐Nelson - 2019 - Statistics in Medicine - Wiley Online Library. 2019 [cited 

2024 Feb 13]; Available from: https://onlinelibrary.wiley.com/doi/10.1002/sim.8168 

29. Kim S, Schaubel DE, McCullough KP. A C-index for recurrent event data: Application to 

hospitalizations among dialysis patients. Biometrics. 2018 Jun;74(2):734–43.  

30. Rauch G, Kieser M, Binder H, Bayes-Genis A, Jahn-Eimermacher A. Time-to-first-event 

versus recurrent-event analysis: points to consider for selecting a meaningful analysis strategy in 



ix 
 

clinical trials with composite endpoints. Clin Res Cardiol Off J Ger Card Soc. 2018 

May;107(5):437–43.  

31. Committee for Medicinal Products for Human Use (CHMP. Qualification opinion of 

clinically interpretable treatment  effect measures based on recurrent event endpoints that  allow 

for efficient statistical analyses. 2020;(European Medicines Agengy (EMA). Committee for 

Medicinal Products for Human Use (CHMP);).  

32. Claggett B, Pocock S, Wei LJ, Pfeffer MA, McMurray JJV, Solomon SD. Comparison of 

Time-to-First Event and Recurrent-Event Methods in Randomized Clinical Trials. Circulation. 

2018 Aug 7;138(6):570–7.  

33. Anker SD, McMurray JJV. Time to move on from ‘time-to-first’: should all events be 

included in the analysis of clinical trials? Eur Heart J. 2012 Nov 1;33(22):2764–5.  

34. Akacha M, Binkowitz B, Claggett B, Hung HMJ, Mueller-Velten G, Stockbridge N. 

Assessing Treatment Effects That Capture Disease Burden in Serious Chronic Diseases. Ther 

Innov Regul Sci. 2019 May;53(3):387–97.  

35. Seker BIO, Reeve K, Havla J, Burns J, Gosteli MA, Lutterotti A, et al. Prognostic models 

for predicting clinical disease progression, worsening and activity in people with multiple sclerosis. 

Cochrane Database Syst Rev [Internet]. 2020 [cited 2024 Mar 18];2020(5). Available from: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7389149/ 

36. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook 

for Systematic Reviews of Interventions version 6.4 (updated August 2023) [Internet]. 2023 [cited 

2024 Apr 25]. Available from: www.training.cochrane.org/handbook. 

37. Gani R, Nixon RM, Hughes S, Jackson CH. Estimating the rates of disability progression 

in people with active relapsing-remitting multiple sclerosis. J Med Econ. 2007 Jan 1;10(2):79–89.  

38. Critical Path Institute. Multiple Sclerosis Outcome Assessments Consortium (MSOAC) 

[Internet]. 2024 [cited 2024 Feb 21]. Available from: https://c-path.org/multiple-sclerosis-outcome-

assessments-consortium-msoac-placebo-database-faq/ 

39. Kalinowski A, Cutter G, Bozinov N, Hinman JA, Hittle M, Motl R, et al. The timed 25-foot 

walk in a large cohort of multiple sclerosis patients. Mult Scler J. 2022 Feb 1;28(2):289–99.  



x 
 

40. Ramagopalan SV, Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk factors, 

prodromes, and potential causal pathways. Lancet Neurol. 2010 Jul;9(7):727–39.  

41. Ullah S, Gabbett TJ, Finch CF. Statistical modelling for recurrent events: an application to 

sports injuries. Br J Sports Med. 2014 Sep;48(17):1287–93.  

42. Sousa-Ferreira I, Abreu AM. A review of Cox’ s model extensions for multiple events. In 

2019 [cited 2024 Apr 12]. Available from: https://www.semanticscholar.org/paper/A-review-of-

Cox%27-s-model-extensions-for-multiple-Sousa-Ferreira-

Abreu/2ab71f1438135a4a9fb3accfd3b3dab28cb74cf2 

43. Yang W, Jepson C, Xie D, Roy JA, Shou H, Hsu JY, et al. Statistical Methods for Recurrent 

Event Analysis in Cohort Studies of CKD. Clin J Am Soc Nephrol. 2017 Dec;12(12):2066.  

44. Rondeau V, Filleul L, Joly P. Nested frailty models using maximum penalized likelihood 

estimation. Stat Med. 2006 Dec 15;25(23):4036–52.  

45. Yang X, Lu X, Li W, Huang Y, Huang X, Lu M, et al. Endovascular treatment for 

symptomatic stent failures in long-segment chronic total occlusion of femoropopliteal arteries. J 

Vasc Surg. 2014 Aug;60(2):362–8.  

46. Keene. Statistical analysis of exacerbation rates in COPD: TRISTAN and ISOLDE 

revisited - PubMed. 2008 [cited 2024 Feb 9]; Available from: 

https://pubmed.ncbi.nlm.nih.gov/18591336/ 

47. Sormani MP, Bruzzi P, Miller DH, Gasperini C, Barkhof F, Filippi M. Modelling MRI 

enhancing lesion counts in multiple sclerosis using a negative binomial model: implications for 

clinical trials. J Neurol Sci. 1999 Feb 1;163(1):74–80.  

48. Tang Y, Fitzpatrick R. Sample size calculation for the Andersen-Gill model comparing 

rates of recurrent events. Stat Med. 2019 Oct 30;38(24):4819–27.  

49. Guo Z, Gill TM, Allore HG. Modeling repeated time-to-event health conditions with 

discontinuous risk intervals: an example of a longitudinal study of functional disability among older 

persons. Methods Inf Med. 2008;47(2):107–16.  

50. Lintu MK, Kamath A. Performance of recurrent event models on defect proneness data. 

Ann Oper Res. 2022 Aug 1;315(2):2209–18.  



xi 
 

51. Patson N, Mukaka M, Kazembe L, Eijkemans MJC, Mathanga D, Laufer MK, et al. 

Comparison of statistical methods for the analysis of recurrent adverse events in the presence of 

non-proportional hazards and unobserved heterogeneity: a simulation study. BMC Med Res 

Methodol. 2022 Jan 20;22(1):24.  

52. Metcalfe C, Thompson SG. Wei, Lin and Weissfeld’s marginal analysis of multivariate 

failure time data: should it be applied to a recurrent events outcome? Stat Methods Med Res. 

2007 Apr;16(2):103–22.  

53. Tikkanen MJ, Szarek M, Fayyad R, Holme I, Cater NB, Faergeman O, et al. Total 

Cardiovascular Disease Burden: Comparing Intensive With Moderate Statin Therapy: Insights 

From the IDEAL (Incremental Decrease in End Points Through Aggressive Lipid Lowering) Trial. 

J Am Coll Cardiol. 2009 Dec 15;54(25):2353–7.  

54. Newsome SD, Mokliatchouk O, Castrillo-Viguera C, Naylor ML. Matching-adjusted 

comparisons demonstrate better clinical outcomes in patients with relapsing multiple sclerosis 

treated with peginterferon beta-1a than with teriflunomide. Mult Scler Relat Disord. 2020 

May;40:101954.  

55. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab 

versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017 Jan 19;376(3):221–

34.  

56. Rassouli F, Baty F, Stolz D, Albrich WC, Tamm M, Widmer S, et al. Longitudinal change 

of COPD assessment test (CAT) in a telehealthcare cohort is associated with exacerbation risk. 

Int J Chron Obstruct Pulmon Dis. 2017;12:3103–9.  

57. Lizak N, Malpas CB, Sharmin S, Havrdova EK, Horakova D, Izquierdo G, et al. Association 

of Sustained Immunotherapy With Disability Outcomes in Patients With Active Secondary 

Progressive Multiple Sclerosis. JAMA Neurol. 2020 Nov 1;77(11):1398–407.  

58. Mogensen UM, Gong J, Jhund PS, Shen L, Køber L, Desai AS, et al. Effect of 

sacubitril/valsartan on recurrent events in the Prospective comparison of ARNI with ACEI to 

Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM‐HF). Eur J 

Heart Fail. 2018 Apr;20(4):760–8.  



xii 
 

59. Furberg JK, Rasmussen S, Andersen PK, Ravn H. Methodological challenges in the 

analysis of recurrent events for randomised controlled trials with application to cardiovascular 

events in LEADER. Pharm Stat. 2022;21(1):241–67.  

60. Bühler A, Wang Q, Wolbers M, Model F, Beyersmann J. Comparison of Time-To-First-

Event and   Recurrent Event Methods in   Multiple Sclerosis Trials. 2019;  

61. Purroy F, Jiménez Caballero PE, Gorospe A, Torres MJ, Alvarez-Sabin J, Santamarina E, 

et al. Prediction of early stroke recurrence in transient ischemic attack patients from the 

PROMAPA study: a comparison of prognostic risk scores. Cerebrovasc Dis Basel Switz. 

2012;33(2):182–9.  

62. O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. 

Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011 Oct 

6;365(14):1293–303.  

63. Freedman MS, Wolinsky JS, Comi G, Kappos L, Olsson TP, Miller AE, et al. The efficacy 

of teriflunomide in patients who received prior disease-modifying treatments: Subgroup analyses 

of the teriflunomide phase 3 TEMSO and TOWER studies. Mult Scler Houndmills Basingstoke 

Engl. 2018 Apr;24(4):535–9.  

64. Tesfaw LM, Muluneh EK. Exploring and modeling recurrent birth events in Ethiopia: 

EMDHS 2019. BMC Pregnancy Childbirth. 2022 Aug 5;22(1):617.  

65. Gabbett TJ, Ullah S, Finch CF. Identifying risk factors for contact injury in professional 

rugby league players--application of a frailty model for recurrent injury. J Sci Med Sport. 2012 

Nov;15(6):496–504.  

66. Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, et al. Oral 

teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, 

placebo-controlled, phase 3 trial. Lancet Neurol. 2014 Mar 1;13(3):247–56.  

67. Steinman L, Fox E, Hartung HP, Alvarez E, Qian P, Wray S, et al. Ublituximab versus 

Teriflunomide in Relapsing Multiple Sclerosis. N Engl J Med. 2022 Aug 25;387(8):704–14.  



xiii 
 

68. Hauser Stephen L., Bar-Or Amit, Cohen Jeffrey A., Comi Giancarlo, Correale Jorge, Coyle 

Patricia K., et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N Engl J Med. 2020 

Aug 6;383(6):546–57.  

69. Olesen AV, Parner ET. Correcting for selection using frailty models. Stat Med. 2006 May 

30;25(10):1672–84.  

 


