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Summary

The spread of pathogens and multi-drug resistance in healthcare networks is a major public
health issue. Evaluating the role of inter-facility patient transfers that form the structure of
these networks may provide insights on novel infection control measures. Identifying novel
infection control strategies is especially important for multi-drug resistant pathogens such as
Carbapenemase-producing Enterobacteriaceae (CPE) due to limited treatment options. The
increasing use of inter-individual contact and inter-facility transfer network data in
mathematical modelling of pathogen spread in healthcare settings has helped these models
become more realistic; however, they remain limited to a few settings and pathogens. The
main objectives of this thesis were two-fold: 1) to better understand the structure of the
healthcare networks of France and their impact on pathogen spread dynamics; and 2) to assess

the role of transfers on the spread of CPE in France during the 2012 to 2015 period.

The French healthcare networks are characterized by centralized patient flows towards hubs
hospitals and a two-tier community clustering structure. We also found that networks of
patients with HAIs form the same underlying structure as that of the general patient
population. The number of CPE episodes have increased over time in France and projections
estimate that the number of monthly episodes could continue to increase with seasonal peaks
in October. The general patient network was used to show that, since 2012, patient transfers
have played an increasingly important role over time in the spread of CPE in France. Multiple

spreading events of CPE linked to patient transfers were also observed.

Despite subtle differences in the flows of patients with a healthcare-associated infection (HAI)
and the general patient population, the general patient network may best inform novel
infection control measures for pathogen spread. The structure of healthcare networks may
help serve as a basis for novel infection control strategies to tackle HAIs in general but also
CPE in particular. Key healthcare hubs in large metropoles and key patient flows connecting
hospital communities at the local and regional level should be considered in the development

of coordinated regional strategies to control pathogen spread in healthcare systems.

Keywords: hospital-acquired infections; healthcare networks; Enterobacteriaceae; patient

transfers; infection risk; infection control
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Résumé

La propagation des pathogeénes, notamment liées aux bactéries multi-résistantes, au sein du
réseau des hopitaux, est un grand enjeu de santé publique. L’évaluation du réle joué par les
transferts inter-établissements des patients sur cette propagation pourrait permettre
1’¢laboration de nouvelles mesures de contrdle. L’identification de nouvelles mesures de
contrdle est particulierement importante pour les bactéries résistantes aux antibiotiques
comme les entérobactéries productrices de carbapenemase (EPC) pour lesquelles les
possibilités de traitement sont trés limitées. L’utilisation des données de réseaux de contact
inter-individus et de transferts inter-établissement dans la modélisation mathématique ont
rendu ces modeles plus proches de la réalité. Toutefois, ces derniers restent limités a quelques
milieux hospitaliers et quelques pathogénes. La thése a eu pour objectifs de 1) mieux
comprendre la structure des réseaux hospitaliers frangais et leur impact sur la propagation des

pathogenes ; et 2) évaluer le role des transferts sur la propagation des EPC.

Les réseaux hospitaliers frangais sont caractérisés par des flux de patients vers des hubs et par
deux niveaux de communautés des hopitaux. La structure du réseau de transfert des patients
présentant une infection nosocomiale (IN) n’est pas différente de celle du réseau général de
transfert des patients. Au cours des derniéres années, le nombre d’épisode d’EPC a augmenté
en France et les prédictions prévoient une poursuite de cette augmentation, avec des pics de
saisonnalité en octobre. Ce travail a également montré que, depuis 2012, les transferts de
patients jouent avec les années un role de plus en plus important sur la diffusion des EPC en
France. Des événements de propagation multiple liée aux transferts sont é¢galement de plus en

plus souvent observés.

En conséquence, la structure du réseau des hopitaux pourrait servir de base pour la proposition
des nouvelles stratégies de controles des IN en général, et des EPC en particulier. Les
hépitaux trés connectés des grandes métropoles et les flux des patients entre les communautés
locale et régionale doivent étre considérés pour le développement de mesures de contrdle

coordonnées entre établissements de santé.

Mots clés : infections nosocomiales ; réseaux hospitaliers ; entérobactéries; transferts des

patients ; risques infectieux ; mesures de controle



Résumé longue

Introduction

La propagation des infections nosocomiales (IN), notamment liées aux bactéries multi-
résistantes (BMR), au sein du réseau des hopitaux, est un grand enjeu de santé publique. Partout
dans le monde, les systemes de santé font face aux IN qui menacent la sécurité des patients
hospitalisés, encombrent les personnels de santé, et augmentent les coflits des soins. Les IN
défient les frontiéres internationales et se dispersent dans les établissements de santé malgré des
systemes de surveillance robustes et des recommandations de mesures de prévention et de
contrble. Pour combattre la propagation des IN et les BMR, il y a donc un besoin de nouvelles
stratégies de prévention et de contréle. Notamment, le transfert de patients d’un pays a un autre
et d’un établissement de santé a un autre est associés avec la propagation de bactéries trés
résistantes aux antibiotiques — notamment pour des entérobactéries productrices de
carbapenemase (EPC) : le transferts des patients peut étre I’'un des facteurs majeurs li¢ a la
propagation spatio-temporelle des pathogénes mais aussi des épidémies. 11 est ainsi primordial
de mieux comprendre I’impact des transferts inter-établissement sur la propagation des

pathogeénes.

Cette thése a eu pour objectifs de 1) mieux comprendre la structure des réseaux hospitaliers
francais et I’impact des transferts de patients sur la propagation des IN ; et 2) évaluer le réle des

transferts sur la propagation des EPC.

Pour répondre a ces objectifs, la premiére étape a été de faire une revue de la littérature sur
I’utilisation des données de contacts inter-individu et des transferts inter-établissements. Nous
avons évalué comment 1’intégration des données sur des réseaux réels dans la modélisation
mathématique a amélioré la compréhension et la capacité prédictive de la propagation des IN
dans des milieux hospitaliers. Nous avons également fait une revue de la littérature concernant
I’utilisation de la base de données Programme de Médicalisation des Systémes d’information

(PMSI) que nous avons exploitée pour la création des réseaux hospitaliers frangais.

Récemment, des publications de modéles mathématiques qui intégrent des réseaux inter-
¢tablissements ont approfondi la connaissance sur la maniére dont les IN se propagent et sur
I’optimisation des stratégies de controle. Néanmoins, les différences entre les structures de
réseaux construits avec des patients avec un IN et des patients en général n’ont jamais été

illustrées. La deuxieme étape de cette theése a donc été d’élaborer une premiére description des
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réseaux hospitaliers francais puis de comparer la structure des réseaux de transfert des patients
présentant une IN a celle du réseau général de transfert des patients. Cette étape a pour objectif
de nous permettre de mieux comprendre les différences entre ces réseaux et aussi I’impact de

ces structures sur la propagation des pathogenes dans le systéme de santé.

Un modéle mathématique a ensuite été développé pour mieux comprendre comment les
caractéristiques des hopitaux dans le réseau hospitalier frangais peuvent prédire les épidémies

des pathogeénes. Les résultats de ces simulations seront décrits.

Enfin, concernant 1’épidémie EPC en France, aucune étude n’a prédit le nombre d’épisodes
attendu dans un futur proche. Pour répondre au deuxiéme objectif, nous avons décrit et prédit
I’épidémie EPC avec des séries temporelles et des modeles SARIMA. Pour mieux comprendre
I’impact des transferts sur I’épidémie, nous avons aussi évalué si le réseau hospitalier peut
expliquer I’incidence observée et la propagation des épisodes d’EPC en France. Dans une
derniére étape, nous avons utilisé des méthodes bayésiennes pour reconstruire des chaines de
transmission des épisodes EPC afin de mieux comprendre les dynamiques de I’épidémie en

France.
L’épidémiologie des infections nosocomiales

Les IN sont des infections qui apparaissent chez les patients au moins 48 heures apres leur
admission a I’hdpital. Ces infections sont liées a I’exposition & un environnement contaminé
par des pathogenes infectieux, des patients infectés, ou des patients et professionnels de santé
colonisés — dits « porteurs » des pathogenes. L’Organisation Mondiale de la Santé¢ (OMS)
estime la prévalence mondiale des IN a 7,6% dans les hopitaux des pays a haut revenu et a
10,1% dans les pays a moyen et bas revenu en 2011.(1) Les Staphylocoques dorés et
Escherichia coli sont les pathogénes les plus souvent identifiés dans les établissements de santg.
Les IN se propagent avec une prévalence élevée dans les services de réanimation ou les patients
le plus vulnérables sont traités : dans les services de réanimation, il est estimé que 30% des
patients dans des hopitaux des pays a haut revenu ont eu au moins une IN. Ce chiffre est deux
a trois fois plus dans les pays a moyen et bas revenu.(1) En Europe, 5% des patients sont admis
dans les services de réanimation mais ils représentent 16,5% des IN.(2) Le taux de mortalité
dans les services de réanimation a été estimé entre 18,5% et 29,3% aux Etats-Unis.(1) En
Europe, 37 000 déces par an sont attribués directement aux IN.(1) De plus, chaque année en
Europe, les IN sont la cause 16 millions de jours de séjour hospitalier et coltent 7 milliard
d’euros.(1, 3)
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L’épidémiologie des infections nosocomiales en France

En France, le Réseau d’Alerte Investigation et de Surveillance des Infections Nosocomiales
(RAISIN) géré par I’'Institut de Veille Sanitaire (InVS)/Santé Publique France est le systéme
national de surveillance des IN sur le territoire francais. Il s’agit de cinq différents réseaux gérés

par 17 Centres d’appui pour la Prévention des infections associées aux soins (CPias).

En 2012, la prévalence globale des IN en France a été estimée a 4.9% avec une incidence de
2.7%.(2) Les IN touchent 324 000 patients par an en France et sont la cause d’entre 6% and
15% des déces dans les hopitaux.(2, 4) Les cofits annuels associés aux IN ont été estimé entre

750 millions d’euro et 1,8 milliard d’euro.(5)

En France, I’épidémiologie concernant les BMR a changé depuis 2002. Le taux d’incidence des
Staphylococcus aureus résistant a la méticilline (SARM) a diminué de 0.63 en 2002 a 0.26 en
2015.(6) En revanche, I’incidence des bactéries productrices de béta-lactamases a spectre ¢largi
(BLSE) a augmenté¢ de 0.13 en 2002 a 0.67 en 2015.(6) Les quatre BLSE le plus importantes
dans les établissement de santé francgais sont les E. coli, Klebsiella pneumoniae, Enterobacter
cloacae, et Enterobacter aerogenes.(6) Dans les services d’animation, 9% des cas ont eu un

SARM alors que 11% qui ont eu un BLSE en 2015.(6)
Les entérobactéries productrices de carbapenemase

Les entérobactéries, comme E. coli et K. pneumoniae, sont des pathogeénes responsables de
plusieurs infections dans la population. Ils sont souvent associés aux IN et sont souvent traités
par des antibiotiques. Malgré le succés de ces traitements, il y a eu 1’émergence de différents
mécanismes de résistances contres ces antibiotiques au fil du temps. Les béta-lactamases, par
exemples, sont des enzymes utilisés par les pathogeénes pour empécher I’action des beta-lactame
antibiotiques. Les carbapénémes sont eux-aussi des antibiotiques pour lesquels ces pathogénes
ont développés une résistance. Ces entérobactéries productrices de carbapenemase (EPC) sont

souvent résistantes aux autres traitements et sont donc difficiles a soigner.

La consommation des antibiotiques comme les carbapénémes, céphalosporines de troisieme
génération, céphalosporines de quatrieme génération, et les fluoroquinolones mais aussi le
transfert des patients a travers les frontiéres internationales ont été identifiés comme facteurs de
risque de colonisation et infection par le Centre Européen de Prévention et Contrdle des

Maladies (ECDC).(7) A cause des transferts internationaux des patients, les EPC se sont
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installés dans beaucoup de pays a travers le monde en conservant leurs différents mécanismes
de résistances. Notamment, deux épidémies mondiales ont été décrites par Nordmann et al. :
Une épidémie d’une souche de K. pneumoniae avec différents types de mécanismes de
résistances et une épidémie d’E. coli principalement avec le mécanisme de résistance OXA-

48.(8)

En France, les premiers cas sont apparus suite a une importation internationale en 2004. Depuis,
plusieurs épidémies ont été observées et le nombre d’épisodes augmente chaque année. En
France, la plupart des EPC sont productrices d’OXA-48, un mécanisme qui est apparu en
Turquie en 2001 et qui est devenu tres prévalent en Afrique du Nord — une région avec de forts
échanges de patients avec la France.(9) La mortalité associ¢ée aux EPC en France est estimée

entre 30% et 70% chez les patients infectés en 2017.(10)
La propagation des infections nosocomiales

Le poids des IN sur le systéme de santé est important et il y a un besoin de mieux comprendre
la transmission de ces pathogénes pour mieux les contréler. Les infections sont en général
transmises par trois voies : directement, indirectement, et dans 1’air. En prenant en compte ces
modes de transmission dans un milieu hospitalier, nous pouvons avoir trois échelles de
transmission des IN : 1) les contacts inter-individuels (patients et professionnels de sant¢) et les
contacts avec 1’environnement ; 2) les contacts et les mouvements des patients et personnels
inter- services au sein des établissements ; et 3) les transferts des patients entres des différents
¢tablissements de santé. Ces trois échelles créent des réseaux de contact ou de transfert. Ces
réseaux peuvent servir a expliquer les dynamiques de transmission des IN. La numérisation a
permis aux chercheurs de profiter des différentes sources de données, par exemple les capteurs
de mouvement ou les systémes é€lectroniques de dossiers médicaux, pour recréer ces réseaux
avec des données réelles. L’analyse de ces réseaux et leur intégration dans des modeles
mathématiques a permis aux chercheurs de mieux illustrer comment les hétérogénéités des

contacts peuvent aider a mieux comprendre la dynamique de transmission des IN.

Les réseaux des transferts des patients permettent de mieux comprendre la transmission des IN.
En 2001, le lien entre le transferts des patients et la transmission des IN a été démontré.(11)
Quelques années plus tard, un modéle mathématique a pris en compte plusieurs hopitaux pour
estimer la probabilité de portage des infection IN parmi les admissions des patients.(12) En
2010, le premier modéle individu-centré basé sur un réseau hospitalier nationale est publiée.(13)

Avec d’autres publications (14-16), les réseaux hospitaliers ont apporté de nouvelles
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connaissances sur la propagation et le contrdle des IN : les hopitaux universitaires jouent un
role trés important dans la transmission des IN, la coordination régionale entre les différents
¢tablissements est primordiale pour obtenir le meilleur contréle des pathogénes. Il y a en effet
des hétérogénéités des flux de patients et des communautés d’hdpitaux qui partagent des
patients. De plus, la modification du nombre de transferts, le changement de la direction
d’admission, le choix des hopitaux sentinelle, et les stratégies de contréle coordonnée et basé
sur la structure des communautés sont toutes des nouvelles propositions de stratégies de

contrdle qui sortent de ces études.
L’utilisation des données de réseau dans des modelés de la propagation des IN

Le développement des outils numériques a permis aux épidémiologistes d’utiliser différentes
sources de données pour mieux comprendre I’impact des activités humaines sur la santé. 1l était
alors nécessaire d’évaluer I'utilisation des données réelles des réseaux inter-individuels et inter-
¢tablissements dans les modéles mathématiques, et c’est ce qui a justifié notre premiére
publication scientifique.(17) Nous avons évalué les différentes sources de données et les
méthodes utilisées dans des modeles ainsi que la maniére dont ils ont amélioré les connaissances

sur la transmission des IN dans le milieu hospitalier.

Nous avons exploité trois bases de données pour recenser les publications sur des modéles
mathématiques ou mécanistiques de la diffusion de pathogénes dans les établissements de
soins : MEDLINE, Web of Science Core Collection et Institute of Electrical and Electronic
Engineers (IEEE) Xplore Digital Library. Deux cent seize publications ont ét¢ identifiées dont
28 intégrant des données de contacts, 26 des données de transferts, et 22 basées sur des données

des réseaux théorétiques.

L’utilisation de données de réseaux de contact inter-individuels et de transferts inter-
¢tablissements dans la modélisation mathématique a permis a ces modeles d’étre plus proches
de la réalité. Le nombre de publication sur des modeles dans un milieu hospitalier qui utilisent
des données réelles a tendance a augmenter au fil de temps. Ces modéles représentent 27% de
toutes les publications identifiées jusqu’au 26 janvier 2017. La diversité en termes de différents
types de source de donnes a aussi augmenté. Les données sur les transferts proviennent des
dossiers médicaux électroniques des hdpitaux, d’un systeme de santé national, ou des bases de
données d’assurance. Les données de contacts entre individus proviennent d’observations, de

questionnaires, des dossiers médicaux ou plus récemment des capteurs.



Cependant, les publications sur I’intégration des données de réseaux dans des modeles en milieu
hospitalier sont limitées aux pays a haut revenu, limitées aux unités de soins de courte durée et
de soins intensifs comme la réanimation, et limitées aux quelques pathogénes. Par exemple,
48% des modeles ont étudié les SARM. De plus, les méthodes d’estimation des paramétres et

la validation des mode¢les ont été trés peu utilisées dans ces articles.

Malgré ces limites, ces modeles ont proposés des stratégies de contrdle des IN plus efficaces et
plus précises grace aux données. Par exemple, les données ont permis aux chercheurs de mieux
comprendre comment les variations des contacts inter-individuels peuvent mieux expliquer la
propagation des pathogenes. Beaucoup de publications ont étudi¢ I’impact du respect des regles
d’hygiéne des mains et des différentes stratégies de dépistages des patients en prenant en compte
les contacts. Les modeéles de transferts des patients affirment 1’importance de la coordination
régionale des stratégies de controle entres les hopitaux pour mieux gérer les épidémies d’IN.
Ces publications ont aussi décrit la structure de ces réseaux en utilisant ’analyse de réseaux
sociaux pour identifier des « hubs » — des hopitaux trés connectés qui jouent un role trés
important dans la structure du réseau — et une structure de communauté des hopitaux qui

partagent la méme population des patients.

L’utilisation des données de réseau dans la modélisation est devenue plus fréquente. Les
modeles en milieux hospitaliers ont apporté beaucoup de connaissance sur la propagation des
pathogénes mais aussi leur controle. De nouvelles innovations sur le recueil des données et leur
utilisation dans la modélisation sont nécessaires pour mieux comprendre des dynamiques des

IN dans les établissements de santé.
La base de données PMSI

Pour construire les réseaux hospitaliers frangais, nous avons exploité la base de données
Programme de Médicalisation des Systémes d’information (PMSI). Cette base de données est
exhaustive sur les activités hospitaliéres et contient, pour chaque séjour d’un patient hospitalisé,
un résumé de sortie standardisé (RSS). Chaque établissement de santé est identifié avec un
Fichier National des Etablissements Sanitaires et Sociaux et chaque séjour est numéroté, ce qui

nous permet de reconstruire le flux des patients entres les établissements.

Nous avons fait une revue de la littérature pour évaluer 1’utilisation de la PMSI pour les études
épidémiologiques des IN. Sept publications ont été identifiées sur la base MEDLINE. Plusieurs
publications ont montré que I’utilisation du code Classification Internationale des Maladies

(CIM-10) pour les IN — Y95 —n’a été pas suffisant en termes de sensibilité et de spécificité pour
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identifier les patients avec des IN dans le PMSI. D’autres codes diagnostiques recommandés
par le systéme de surveillance ont été évalués et une étude a montré que ces codes ont amélioré
la détection des IN en termes de sensibilité et de spécificité.(18) Le PMSI est une base tres
exhaustive avec beaucoup d’information sur les trajectoires des patients ; cependant, pour

identifier les patients avec un IN, 1’utilisation des autres codes diagnostiques a été nécessaire.
Les réseaux hospitaliers francais

Les études identifiées dans notre revue de la littérature ont montré que la transmission des IN
¢tait dépendante de la structure des réseaux hospitaliers et des transferts de patients(15).
Cependant, ces réseaux sont basés sur les transferts de tous les patients, sans distinction des
pathologies. Notre objectif a été de mettre en comparaison le réseau de transferts de tous les
patients et celui des patients présentant une IN. En utilisant les données des transferts de 2,3
millions de patients en 2014 en France, trois réseaux hospitaliers francais ont été construits et
décrits : un réseau de transferts de tous les patients, un réseau de transferts des patients
présentant une IN codée avec le code Y95, et un réseau des transferts des patients suspects
d’avoir présenté une IN avec des codes additionnels tels que décrits par Gerbier et al.(16) Les
trois réseaux ont ét¢ comparés en termes de flux des patients, topologie du réseau, et

communauté des hopitaux.

Le réseau de tous les patients était composé de 2 063 hopitaux et 50 026 liens. Le réseau des
patients suspectés d’avoir présenté une IN était composé de 1 975 hopitaux et 18 812
connexions de 128 681 transferts. Le réseau des patients présentant une IN avec le code Y95
¢était composé de 1 266 hopitaux et 3 722 connexions de 13 627 transferts. Le nombre moyen
de connexions des hopitaux au sein de chaque réseau était de 48, 19 et 5,88. Le moyen nombre

de patients transférés dans chaque lien était de 14, 5 et 2,3 patients.

Les réseaux ont été caractérisés comme des réseaux invariants d’échelle (dont les degrés suivent
une loi de puissance) avec des flux hétérogénes mais trés centralisés. Les degrés représentent le
nombre de connexions d’un hopital a I’autre au sein du réseau. Des réseaux avec des invariants
d’échelle ont une distribution des degrés dont la plupart des hopitaux sont trés peu connecté
comparer aux autres qui sont trés connectés. Ces hdpitaux trés connectés sont des « hubs » —
des hopitaux privés, des centres hospitaliers, et des centres hospitaliers universitaires. Les
hdpitaux dans les trois réseaux ont été classés par leur degré et ont été comparés avec un test de
Wilcoxon. Il n’y avait pas une différence significative entres les « hubs » dans les trois réseaux

malgré la différence de taille des réseaux et la population des patients. Les réseaux ont eu aussi
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un effet du « petit monde » dont entre trois a cinq transferts ont été suffissent pour transférer

des patients a tous les hopitaux dans le réseau.

Etant donné que les réseaux sont de taille différentes, nous avons développé une analyse pour
mieux comprendre les différences entres les structures de ces trois réseaux. Nous avons comparé
des caractéristiques du réseau de tous les patients avec les valeurs moyennes de mille réseaux
construits du méme nombre de patients des réseaux des patients présentant des IN. Ces mille
réseaux ont été construits avec le méme nombre de patients sélectionnés aléatoirement dans la
population globale de tous les patients. Pour le diametre (la distance entre deux hopitaux étant
définie comme la distance la plus longue des plus courts chemins entre deux hopitaux), la
moyenne des courts chemins entres les hopitaux, et le coefficient de « clustering » (nombre de
triangles dans le réseau), ces caractéristiques ont été plus similaires aux réseaux des patient
présentant des IN que le réseau de tous les patients. Ca veut dire que les différences observées
entre ces trois réseaux ont été associées a la différence de taille et ne pas aux transferts. Ces
analyses ont montré que la structure du réseau de transfert des patients présentant une IN n’est

pas différente de celle du réseau général de transfert des patients.

Nous avons évalué la structure des communautés dans les réseaux hospitaliers francais. Une
« communauté » est définie comme un groupe d’hdpitaux qui partagent la méme population des
patients. En utilisant D’algorithme Greedy (19), nous avons identifié 18 communautés
d’hopitaux. L’analyse des distances géographiques (grace a la géolocalisation) entre les
hopitaux de la méme communauté a montré que ces réseaux correspondent aux régions
administratives de la France. Quatre-vingt-treize pour cent des patients ont été partagés entre
des hopitaux de la méme communauté. Nous avons aussi utilisé un autre algorithme pour
identifier des communautés prenant en compte la direction des mouvements des patients et aussi
le nombre de patients dans chaque lien (20). Nous avons observé 132 communautés au niveau
local qui correspondait aux départements de la France. Quatre-vingt pourcent des patients ont
¢été partagées entres des hopitaux de ces communautés. En France, nous avons montré qu’il y a
des communautés a deux niveaux : au niveau local des transferts entre des départements et au
niveau régional. Les tranferts suivent un mouvement centralisé en France : d’abord vers un ou
deux hopitaux dans le département, puis vers le centre hospitalier universitaire de la région,
puis entre les régions puis inter-régional avec une prédominance centrée sur I'lle-de-France vers

Ile-de-France.
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Une étude de simulation des épidémies sur les réseaux hospitaliers

Une étude préliminaire a été menée en début de thése pour mieux comprendre comment des
pathogénes peuvent se propager au sein des réseaux hospitaliers. En utilisant les réseaux
hospitaliers de 2012 (similaires aux trois réseaux de 2014), nous avons développé un modéle
mathématique SIS (les établissements de santé sont dans un état soit Susceptible soit Infecté
selon la probabilité des patients d’étre infectés ou d’étre porteur d’une infection dans
I’établissement). Les simulations ont montré que des établissements trés connectés en termes
de degrés (nombre de connexions), puissance (nombre de patients transférés), et
« betweenness » (réle intermédiaire) ont prédit de trés fortes probabilités d’épidémie. Ces
caractéristiques peuvent prédire si un établissement peut entretenir une épidémie dans le réseau.
Des établissements trés connectés doivent étre des cibles pour des mesures de contrdle des IN a
une grande échelle. Cependant, une recherche complémentaire est nécessaire pour mieux

évaluer I’impact des difféerent mesures de contréle sur ces réseaux.
Prédiction de nombres des épisodes d’EPC en France

Les IN couvrent un large spectre de pathogénes. Pour répondre a 1'un des problémes majeurs de
santé publique — la résistance aux antibiotiques — la thése a eu pour objectif de décrire
I’épidémie des EPC en France. Le nombre d’épisodes d’EPC n’a eu cesse d’augmenter depuis
leur introduction en 2004. Il y a eu 2 346 épisodes entre septembre 2011 et décembre 2015
collectés par le systeme de surveillance le Réseau d’ Alerte, Investigation et de Surveillance des

Infections Nosocomiales (RAISIN).

La majorité des épisodes d’EPC en France ont le mécanisme de résistance OXA-48. Un total
de 1 110 épisodes a été li¢ a des cas importés pendant toute la période. L’épisode avec le plus
grand nombre de cas (n = 194) est survenu en septembre 2012 d’une souche OXA-48 suivi
d’une épidémie de 149 cas en octobre 2012 d’OXA-48. Ces deux épidémies n’ont pas été lices
a ’importation internationale de souches OXA-48. La majorité des épisodes (n =469) a eu lieu
a Paris dans la région Ile-de-France avec la majorité (n = 324) étant liée a 1’importation
internationale. Les deuxiéme et troisiéme épisodes les plus fréquents se sont produits dans les
départements voisins du Val-de-Marne (n = 83) et des Hauts-de-Seine (n = 159). Ces épisodes
ont été dominés par OXA-48 (n =347 a Paris et n =208 en Val-de-Marne respectivement) suivi
d’un autre mécanisme de résistance — NDM (n = 95 a Paris et n = 39 dans les Hauts-de-Seine
respectivement). La plupart des cas de KPC (un mécanisme de résistance) se trouvent dans le

Val-de-Marne (n = 23) suivi de Paris (n = 20). Les cas OXA-48 étaient les plus fréquents et les
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plus dispersés couvrant 87 départements sur un total de 101 départements (95 départements

continentaux dont la Corse, Monaco et 5 départements d’outre-mer).

Nous avons utilisé des modelés SARIMA pour prédire le nombre d’épisodes attendu a la fin de
2019. Le modele a prédit un nombre croissant d’épisodes au cours du temps : une moyenne
estimée de 122 épisodes d’EPC par mois a la fin de 2016, 151 épisodes EPC par mois a la fin
de 2017, 177 épisodes EPC par mois a la fin de 2018, et 204 épisodes EPC par mois a la fin de
2019. Le pic de nombre d’épisodes a été attendu en octobre de chaque année. Nous prévoyons
une augmentation du nombre d’épisodes d’un seul cas (jusqu’a 200 épisodes par mois d’ici la
fin de 2019) et la stabilisation des épisodes avec plus d’un cas (moins de 25 épisodes par mois
a la fin de 2019). Le nombre d’épisodes non associés a un cas importé devrait augmenter a un
rythme plus élevé que celui des épisodes associés a un cas importé, ce qui suggere que la
propagation locale soutiendrait 1’épidémie. Les épisodes d’OXA-48 étaient prédits de continuer
a dominer a un taux plus élevé que celui des épisodes NDM, KPC et VIM. En 2014, le nombre
d’épisodes NDM était plus élevé que celui du KPC et du VIM. A la fin de 2016, 2017, 2018 et
2019, une moyenne de 86, 98, 111, et 124 OXA-48 épisodes par mois a été prédite. Les cas de
NDM devraient également augmenter avec une moyenne prévue de 26 épisodes (95% PI [17-

34], 80% PI [20-31]) par mois d’ici la fin de 2019.

En conclusion, le nombre d’épisodes d’EPC en France a augmenté au fil des ans. Le nombre
d’épisodes devrait augmenter jusqu’a atteindre le double du nombre d’épisodes d’ici la fin de
2019 par rapport a la fin de 2015. Les épisodes non liés a I’importation internationale devraient
prédominer et soutenir 1’épidémie. Des précautions doivent &tre prises pour contréler la

propagation locale des EPC dans les années a venir.
Le role du réseau des transferts dans la transmission et incidence d’EPC en France

La plupart des épisodes d’EPC en France observés au cours des années ont été associés aux
transferts transfrontaliers et locaux entre les établissements de santé (81). Par conséquent, afin
de mieux comprendre 1’épidémie d’EPC et comment le mieux controler, cette thése a également
impliqué 1’évaluation de 1’impact des mode¢les de transfert de patients sur la propagation des
EPC. En utilisant le réseau de tous les patients décrit précédemment en France en 2014 (188),
1’étude reposait sur la méthode statistique publiée précédemment pour tester empiriquement la

contribution de ce réseau sur la propagation d’EPC au cours de la période 2012 a 2015 (197).

Sur les 2 273 épisodes d’EPC signalés entre 2012 et 2015, nous avons identifié 1’épisode le plus

probable d’avoir infecté chaque cas d’incident non-importé (n = 1 251) en sélectionnant les
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¢pisodes candidats ayant la distance au sein du réseau la plus courte de chaque épisode incident.
La distribution des distances les plus courtes a été comparée a 500 simulations de permutations
des données. La distribution spatiale des contaminateurs potentiels et des épisodes d’incidents

ont été également décrits.

Quatre-vingt-dix pourcent des épisodes d’incidents avaient un épisode potentiellement
infectieux identifié pour toute la période d’étude ; toutefois, lorsque nous avons stratifi¢ les
données par année, seulement des épisodes en 2013, 2014 et 2015 avaient significativement des
distances plus courtes que les permutations. Ceci suggere que 1’épidémie d’EPC en France est
passée d’une épidémie soutenue par I’importation d’épisodes d’autres pays avant 2013 a une
épidémie soutenue par des événements de transmission locale soutenus par des transferts de
patients. De plus, le nombre d’événements reliant les « infecteurs » potentiels a des épisodes
multiples a augmenté au fil des ans, ce qui suggeére que des métropoles fortement connectées
peuvent avoir provoqué des épidémies par transfert de patients. Des événements de transmission
survenant plus localement a des distances géographiques rapprochées ont également été

observés.

En conclusion, les travaux réalisés au cours de la thése décrivent la structure du réseau
hospitalier francais et nous avons évalué que les transferts des patients peuvent avoir un role
important dans la transmission des IN. L’¢étude a révélé qu'une grande majorité des épisodes
d’EPC observés pouvaient étre liés aux transferts de patients. L’exemple particulier du role des
transferts de patients dans la transmission d’EPC sert a mettre en évidence I’importance de
considérer la structure du réseau dans le développement de nouvelles stratégies de prévention
et de contrdle. En conséquence, 1’étude suggere que les stratégies de prévention et de controle
des infections coordonnées devraient maintenant se concentrer sur les transferts de patients a

risque d’étre porteurs d’EPC pour réduire la transmission régionale et interrégionale.
Les chaines de transmission des EPC

Sur la base de notre analyse de la contribution des transferts de patients a la transmission d’EPC
en France, on peut conclure qu’en 2015 au moins, les EPC se sont diffusés sur le réseau
hospitalier frangais. Nous avons donc tenté de reconstruire les chaines de transmission des
¢épisodes d’EPC entre les hopitaux frangais. Cette analyse a été réalisée en adaptant une méthode
bayésienne initialement développée pour reconstruire des épidémies basées sur des données
épidémiologiques et génomiques (paquet Outbreaker 2 sur le logiciel R, développé par T.

Jombart, F. Campbell, R. Fitzjohn) (194, 195), mais sans données génomiques et pour une
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grande épidémie a I’échelle nationale. La méthode a été utilisée pour déterminer les chaines de
transmission possibles en fonction de la connaissance des dates des épisodes d’EPC, du poids
des liens dans le réseau hospitalier et du statut d’importation des épisodes. L’étude visait a
identifier les sources des EPC dans le réseau hospitalier et a déterminer la proportion des

épisodes EPC secondaires expliquées a partir des données de transferts.

Quelques observations peuvent étre faites sur certaines de ces analyses préliminaires : tous les
épisodes importés ne faisaient pas partie d’une chaine de transmission, beaucoup n’étaient li¢s
a aucun épisode, et nombre de cas secondaires ont eu de multiples sources potentielles, méme

si ’incertitude de la source était souvent haute.

Etant donné que les épisodes d’EPC peuvent donner lieu a de nombreux autres cas secondaires,
la deuxieme analyse a évalué I’ensemble de données complétes de chaque cas d’EPC individuel.
Puisque plusieurs épisodes partageaient la méme date de notification mais n’étaient pas produits

a la méme date, différentes méthodes ont été développées pour modifier les dates des cas.

Lorsque les dates de cas étaient transformées a I’aide d’une distribution de Poisson, la plus
grande composante connexe était obtenue pour un temps de génération de 37 jours. Ce résultat
¢tait similaire aux résultats de 1’étude précédente évaluant le role des transferts de patients sur
la propagation des EPC, ou I’analyse de sensibilité permettait de prévoir un intervalle de temps
entre les infections potentielles et les épisodes d’incidence entre 20 et 30 jours. Cependant, en
fonction de la transformation utilisée, d’autres fenétres temporelles telles que 10 a 20 jours ou
40 a 50 jours auraient aussi pu €tre pertinentes. La taille des composants connectés ou le nombre
de connexions peuvent ne pas €étre les criteéres les plus appropriés pour la sélection du temps de
génération; par conséquent, d’autres critéres épidémiologiques et pertinents doivent €tre pris en

compte.

Cette étude a montré la possibilité de reconstruire de grandes épidémies sans données
génomiques. Les réseaux hospitaliers mobilisés pour construire des chaines de transmission des
EPC ont été en mesure d’expliquer le pourcentage d’épisode EPC secondaires maximum
possible et d’identifier les « hotspots » hospitaliers de propagation des EPC; cependant,
poursuivre ce travail est nécessaire est nécessaire pour affiner la compréhension des liens entre

les épisodes.
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Discussion

L’amélioration des connaissances actuelles sur la dynamique et les mécanismes qui conduisent
a la propagation des IN dans les établissements de santé et la proposition de mesures innovantes
de prévention et de controle des pathogénes sont d’une importance majeure pour la santé
publique. Les IN se produisent dans les systémes de santé¢ dans le monde entier en raison de
plusieurs facteurs : I’augmentation de la charge de morbidité des patients qui risquent de rester
plus longtemps a I’hdpital et risquent de décéder, ce qui représente un poids conséquent pour le
personnel soignant ainsi qu’une charge financiére. Parmi tous les pathogénes présents dans les
¢tablissements de santé, les souches trés résistantes aux antibiotiques constituent une menace
majeure pour la sécurité des patients et dans certains cas, les mesures de prévention peuvent
gtre les seules méthodes pour lutter contre leur dissémination lorsque le traitement antibiotique
n’est plus envisageable. Cette thése cherchait a élucider de nouvelles pistes de recherche sur le
controle des pathogénes ciblant les entérobactéries multi-résistantes en modélisant leur
dynamique de propagation dans les milieux de soin. Pour atteindre ces objectifs, trois articles
dans des revues internationales a comité de lecture ont été publiées ou soumises: une revue
systématique de la modélisation mathématique de la propagation des pathogeénes en milieu de
soin, une analyse approfondie des réseaux hospitaliers frangais, et une évaluation du réle des
transferts de patients dans la transmission des EPC en France. La discussion qui suit vise a
éclairer les implications de ces découvertes pour la santé publique et comment elles peuvent
fournir un travail de soutien a de nouveaux moyens de prévention et de contrdle des pathogénes
dans les établissements de santé a 1’échelle nationale, en particulier pour la France, mais ainsi

que dans d’autres contextes.

Un domaine de recherche dans laquelle des mesures innovatrices de prévention et de contrdle
ont été proposées a ét¢ le domaine de la modélisation mathématique. Depuis 15 ans les modéles
mathématiques ont fourni un cadre théorique pour comprendre la dynamique complexe de la
transmission dans les établissements de soins (102-105). De plus, ils ont fourni une approche
quantitative pour estimer I’impact de diverses stratégies pour lutter contre les infections, la
colonisation et leurs effets combinés (103-105, 201). Le nombre de publications sur les modéles
mathématiques des pathogénes dans les établissements de santé est devenu plus fréquent au fil
des ans. Plusieurs facteurs peuvent avoir conduit a cette augmentation observée : y compris
I’utilité pergue des modeles comme outils pour analyser I’'impact de la prévention et du controle
des infections dans le domaine de la santé, pour comprendre les causes des récentes épidémies

importantes telles que 1’épidémie de SARS 2002-2003 (202-205) et 1’épidémie d’Ebola 2014-
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2015 (206-209) ou la prise de conscience des facteurs contribuant a I’impact global de la
résistance aux antibiotiques (210). En raison de 1’utilisation des données numériques dans le
domaine de I’épidémiologie au fil des ans, comme la disponibilité accrue des dossiers médicaux
numérisés et le développement de la technologie des capteurs pour surveiller les contacts
interindividuels, les chercheurs ont pu construire des modéles plus réalistes. D’autres
innovations dans le recueil des données sur la structure des réseaux et 1’incidence des IN, la
mise en ceuvre des données de modélisation et I’étalonnage et la validation des données dans
les mod¢les sont nécessaires pour renforcer les recommandations existantes et évaluer de

nouvelles stratégies de controle dans les établissements de santé.

L’analyse des réseaux hospitaliers frangais a fourni une premicre description des schémas de
transfert des patients au niveau national. L’étude a montré que les profils de transfert des
patients qui ont présenté¢ une IN pendant leur séjour et d’autres patients avec différentes
maladies et comorbidités étaient soumis a la méme dynamique de réseau. Comparés aux aux
autres réseaux hospitaliers en Angleterre (162, 170), aux Pays-Bas (147), en Ecosse (163) ou
aux Etats-Unis (172), les réseaux hospitaliers francais sont des systémes trés centralisés. Les
centres hospitaliers universitaires et les hopitaux privés des principales métropoles francaises
dominent le flux des patients. Des études menées en France ont montré que les hopitaux
fortement connectés peuvent héberger davantage de cas de bactériémie a SARM (147, 160, 170,
211) et que les IN étaient les plus répandues dans les centres anticancéreux, les hopitaux
universitaires et les hopitaux militaires (212). Par conséquent, ces établissements de santé
peuvent étre les plus susceptibles de transmettre des infections nosocomiales dans 1’ensemble
du réseau par le transfert des patients infectés ou colonisés. Les pathogeénes peuvent se propager
a un rythme plus élevé que prévu par hasard en raison de la centralisation du mouvement des
patients et du faible nombre moyen de transferts requis pour que les patients puissent se déplacer

dans le réseau.

Ces résultats concordaient avec les résultats préliminaires du modele SIS, qui montrent que la
probabilité la plus élevée d’une épidémie persistante survient lorsque les hopitaux « hub » sont
infectés au départ. Un modéele de simulation du réseau anglais a également identifié les hopitaux
universitaires comme centres d’incidence du SARM. L’étude a recommandé ces hopitaux
comme cibles idéales pour des mesures d’intervention comme le dépistage des patients sortis
de ces hopitaux comme moyen de controle plus efficace (170). Parallelement, 1’étude du réseau
francais indique également que les centres hospitalier sont des cibles pour la surveillance

sentinelle, en plus des cibles prioritaires des stratégies pour réduire au mieux la transmission
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des pathogenes dans le pays (154). Dans toutes les situations ou les patients sont transférés dans
centres de soins concentrés, une attention particuliere devrait &tre accordée a tous les risques

potentiels liés au portage des pathogénes potentiellement infectieux pendant I’admission.

Ces dernicres années, des études qui ont modélisé la propagation des pathogénes dans les
réseaux hospitaliers ont plaidé pour des stratégies régionales coordonnées comme 'un des
moyens les plus efficaces pour réduire leur dissémination au niveau régional et national. L’étude
du réseau francais a été similaire a celle du réseau anglais ou la majorité des transferts se faisait
par le partage intra-régional de patients et les flux de patients étaient centrés sur le centre
hospitalier universitaire ou régional au sein de la communauté (170). Nous avons également
démontré qu’il existait une structure de communauté hospitaliére a deux niveaux en France. Les
communautés hospitalieres ont été identifiées a la fois au niveau régional, en cohérence avec
les régions administratives frangaises, et au niveau subrégional ou départemental. Les
différences entre les communautés départementales du réseau des patients suspectent d’avoir
présenté des IN et les communautés départementales du réseau général peuvent étre importantes
pour distinguer les hopitaux ayant un potentiel plus ¢levé d’héberger des patients IN, avec des
conséquences possibles en termes de prédiction de propagation des pathogenes responsables
des IN; cependant, cela nécessite une étude plus approfondie. Des mesures de controle
coordonnées localement telles que le dépistage des transferts de patients a risque et des
précautions de contact basées sur la centralité d’un hopital de sortie avec des cas connus ou a
risque de portage peuvent étre la premicre ligne de défense contre la transmission des

pathogenes responsables des IN dans les régions.

Des trajectoires intermédiaires importantes peuvent jouer un role clé dans la propagation des
pathogenes entre les hopitaux « hub » et entre les communautés. Une étude a montré que la
modification du nombre de patients transférés entre les communautés peut, par exemple, réduire
la propagation du SARM (162). L’étude a également montré que méme si les connexions
directes d’un établissement étaient des facteurs de risque importants pour un voisin, des
connexions plus faibles offraient également des voies indirectes idéales pour que les pathogénes
circulent plus loin et plus vite dans le réseau. En outre, dans le cas des EPC, « Les chercheurs
de cette étude ont constaté qu’en termes de nombre absolu de patients colonisés admis a
I’hopital par des transferts de la méme région par rapport a les transferts provenant de I’extérieur
de leur région, les transferts survenant dans la méme région représentaient plus de menaces
(214). Par conséquent, ces ¢études sont paralléles aux observations d’une structure de réseau a

deux niveaux dans laquelle les risques d’infection et dépendent des deux niveaux. Des liens
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légeérement plus faibles au niveau subrégional peuvent jouer un rdle plus important dans la
dynamique de transmission en termes de nombre absolu de transferts et de risque de
transmission par rapport aux liens intercommunautaires fortement pondérés et interconnectés
entre les hubs. La simulation de la propagation d’un pathogene hypothétique dans les réseaux a
montré que méme si les hopitaux introduisaient le pathogéne de la grande métropole dans les
régions, le nombre le plus ¢élevé d’hopitaux infectés provenait des hopitaux universitaires qui

diffusaient ’infection aux clusters locaux.

La structure des transferts a deux niveaux peut éclairer des stratégies coordonnées a un niveau
plus local ou les établissements de santé identifient non seulement les patients a risque transférés
des centres hospitaliers universitaires, mais aussi les risques provenant des centres hospitaliers
locaux. Les stratégies de contrdle des infections - pour le contrdle a court terme - devraient
davantage s’appuyer sur la dynamique au niveau des départements pour minimiser les
épidémies au niveau hospitalier et la transmission aux hopitaux voisins. A long terme, la
dynamique des communautés régionales peut donner des indications sur la propagation
progressive de souches spécifiques des pathogenes IN. Des études sont nécessaires pour valider
ces recommandations et quantifier les mesures de contréle. En outre, d’autres études sont
¢galement nécessaires pour évaluer la dynamique temporelle de la propagation des pathogénes
dans les réseaux afin d’identifier les schémas des flux de saisonnalité potentiels et la maniere

d’empécher les bactéries multi-résistantes émergentes de devenir endémiques.

Des mesures de prévention a long terme sont également nécessaires pour empécher que les
nouveaux pathogenes ne deviennent endémiques. Réduire la connectivité hospitali¢re afin de
réduire le risque de propagation dans les réseaux est au coeur de nombreuses propositions de
contrdle des infections (129, 170). La décentralisation du systétme de santé et plus
spécifiquement celle des ressources humaines et des services de santé spécialisés vers les
régions et départements peut aider a réduire la forte connectivité des centres hospitaliers dans
les métropoles et a rediriger les transferts de patients. La France s’est orientée vers des stratégies
de régionalisation avec la création d’agences régionales de santé, mais peu efficaces (215, 216).
En outre, le nombre d’hdpitaux universitaires peut étre insuffisant en France, il est d’ailleurs
inférieur a celui du Royaume-Uni, un pays d’une population de méme taille. Par conséquent,
une solution structurelle pour alléger la propagation des pathogénes responsables des IN
pourrait étre d’augmenter le nombre d’établissements fournissant des services spécialisés et de
les distribuer au niveau local pour aider a réorienter le flux des patients et potentiellement éviter

la dispersion a grande échelle.
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Les épisodes d’EPC en France continuent d’augmenter chaque année. La région Ile-de-France,
qui comprend Paris, présente 1’incidence d’épisodes d’EPC la plus élevée, y compris le plus
grand nombre d’épisodes liés a des cas importés au niveau international. Paris est un centre de
santé et attire un grand nombre de patients qui recherchent des soins spécialisés, ce qui peut les
exposer a un risque plus élevé d’infection par les EPC. Les risques d’infection ou de
colonisation sont donc double : le patient a besoin de soins spécialisés ce qui peut augmenter
les facteurs de risque d’infection ou colonisation individuels, car les services spécialisés
peuvent nécessiter une intervention chirurgicale et d’autres interventions invasives ; mais aussi,
exposer le patient a un plus grand nombre de contacts potentiels avec les porteurs d’EPC en
raison de 1’incidence ¢élevée. Cependant, la forte concentration des hopitaux universitaires en
Tle-de-France peut biaiser la surveillance des EPC parce que ces hopitaux peuvent avoir plus de

ressources et sont davantage a-méme de détecter des cas d’EPC.

L’¢étude a prédit une stabilisation des épidémies EPC en France pour les prochaines années. Par
conséquent, on peut supposer que les mesures déja en place au cours de la période 2010-2015
pour controler les épidémies ont été efficaces et devraient se poursuivre afin de controler la
transmission afin d’éviter les épidémies récurrentes dans les hopitaux. Il convient de noter,
cependant, que plusieurs épisodes représentaient entre deux et 200 cas d’EPC chacun. Par
conséquent, un plus grand nombre d’événements de transmission de personne a personne
peuvent continuer a se produire; cependant, le nombre d’épidémie devrait se stabilisée. L’étude
a également prédit une augmentation du nombre d’épisodes uniques ; mais cela peut étre dii au
fait que le systéme de surveillance n’a pas réussi a relier les événements de transmission ou que

les données de surveillance sont incomplétes.

Les stratégies de prévention et de contrdle de la propagation des pathogénes sont
particulierement pertinentes dans 1’épidémie d’EPC. La dynamique de la transmission des EPC
en France a évoluée. Les plus fortes preuves de transmission d’EPC soutenues par le réseau de
transferts ont été observées en 2015. Ces résultats suggerent qu’entre 2013 et 2014, les transferts
régionaux et interrégionaux ont de plus en plus contribué a la propagation des EPC. En outre,
le délai de notification des épisodes d’EPC entre hopitaux di au transfert de patients est estimé
entre 20 et 30 jours aprés la notification initiale dans un hopital de référence. Par conséquent,
cette étude a non seulement lié les événements des EPC aux transferts de patients au cours des
derniéres années, mais a également estimé le délai de notification de ces événements. Ces deux
constatations renforcent les recommandations soulignant I’importance de considérer le transfert

des patients comme un facteur de risque critique pour l’introduction des EPC dans les
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¢tablissements de santé, ce qui pourrait aider le systéme de surveillance a estimer les périodes

a risque pour les épidémies liées aux transferts de patients hospitalisés avec des cas d’EPC.

La structure du réseau peut €galement expliquer les observations de ces événements au niveau
local. Dans notre étude, la majorité d’épisodes que nous avons identifiés comme reliés s’étaient
produits dans le méme département ou a une courte distance géographique. Comme nous
I’avons déja mentionné, nous nous attendions a ce que le partage des patients dans les
communautés locales au niveau du département joue un role important dans la dynamique de
la propagation des pathogeénes. Le nombre croissant de ces événements de transmission des
EPC possibles dans un méme département peut s’expliquer par le fait que la plupart des
transferts de patients dans le réseau hospitalier ont eu lieu au niveau local. Par conséquent, la
plus grande proportion de transmissions d’EPC peut avoir eu lieu entre des hopitaux voisins et
les autorités de santé publique I’importance de surveiller les transferts locaux de patients pour
les porteurs potentiels d’EPC a risque devrait étre prise en considération afin d’avoir 1’impact

le plus efficace sur I’EPC.

Bien que les transferts de patients ne soient certainement pas la seule explication de
I’augmentation des épisodes d’EPC observés entre 2013 et 2015, ces études suggerent qu’ils
ont jou¢ un réle de plus en plus important au fil du temps. Les épisodes d’importation
internationale pourraient également avoir contribué a prés de la moitié de la propagation des
EPC en France par exemple. Ces résultats sont en accord avec les descriptions des épidémies
observées dans la littérature scientifique dans lesquelles les cas importés et non importés ont
conduit a des cas secondaires d’EPC dans différents hopitaux. En outre, I’hétérogénéité des
politiques de contrdle des infections entre les différents types d’établissements de santé en
France, et la mise en ceuvre limitée de stratégies spécifiques de contréle des EPC ont pu
conduire a un mauvais contréle des EPC et par conséquent a une dissémination dans le temps

217).

Aucune association n’a été observée entre le nombre de cas par €pisode infectieux potentiel et
le nombre d’épisodes secondaires. D’une part, cela pourrait signifier que les mesures de
controle ont empéché les grandes épidémies hospitalieres au cours de la période 2014-2015 ;
d’autre part, comme mentionné précédemment dans 1’étude de prédiction, la plupart des
rapports étaient des épisodes d’un seul cas suggérant un échec potentiel des autorités de
surveillance a identifier les cas uniques dans la méme chaine de transmission d’autres épisodes

signalés.
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La dynamique du réseau peut également aider a expliquer les épidémies d’EPC. Le nombre
d’épisodes d’EPC impliquant plusieurs épisodes a augmenté avec le temps. Par exemple, un
¢épisode OXA-48 importé a Paris a été¢ 1i€ a neuf autres épisodes dans neuf départements
différents en France en 2015. Paris a été identifi¢ comme le plus grand centre, non seulement
pour les épisodes EPC liés a I’importation, mais aussi pour le transfert des patients. D’autres
exemples mettent davantage en évidence le role important des liens avec un grand nombre de
transferts de patients dans la connexion des hopitaux géographiquement éloignés en termes de
transmission des pathogénes. Ces observations soulignent I’importance pour les autorités
sanitaires d’améliorer les efforts de controle dans les métropoles et les établissements de soins
fortement connectés. Ces efforts vont également de pair avec la coordination entre les systémes
de surveillance régionaux, les laboratoires d’experts locaux et les autorités sanitaires régionales
afin de détecter rapidement les cas d’EPC. Les établissements de santé devraient également étre
invités a notifier rapidement tous les cas ou contacts potentiels. En outre, des mesures de
dépistage, des précautions de contact et une cohorte stricte de patients (qui se sont révélés
particulierement efficaces dans une éclosion d’EPC particuli¢re (81, 83)) devraient étre mises

en ceuvre une fois les cas identifiés.
Conclusion

Les réseaux hospitaliers ont joué un réle important dans 1’élucidation du réle des transferts des
patients dans la propagation des infections nosocomiales. Le principal facteur limitant de ce
travail a été 1’absence d’une étude de modélisation détaillée quantifiant ’impact de la
propagation des pathogénes dans les réseaux de soins de santé ; Cependant, cet ensemble de
travaux fournit une base pour les travaux futurs. En outre, les diverses conclusions des études
menées au cours de la thése peuvent aider a éclairer les implications des transferts de patients
sur la santé publique en matiére de propagation, afin de fournir un travail de soutien aux
nouvelles méthodes de prévention et de controle des pathogenes a ’échelle nationale. Ces
¢tudes soutiennent les efforts coordonnés au niveau local, régional et national entre les
¢tablissements de santé qui nécessitent I’aide du systéme de surveillance afin de coordonner ces
efforts et de mobiliser les hdpitaux pour mettre en ceuvre de nouvelles mesures en conséquence.
De plus, ces efforts nécessitent la collaboration des hopitaux universitaires qui jouent un role
important dans la structure du réseau de santé. L’identification de transfert de patient a risque
en utilisant des mesures de topologie de réseau peut s’avérer utile dans le cas de pathogénes
spécifiques telles que des bactéries multi-résistantes. Les infections a EPC ont été liées a

I’importation internationale et a la propagation locale ; par conséquent, il est primordial que la
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dynamique des réseaux de santé soit prise en compte dans le processus de prévention et de
contrble des cas. Cette thése sert a souligner I’importance de la structure du réseau hospitalier

dans le développement de mesures efficaces de prévention et de contréle des infections.
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Introduction

Worldwide, healthcare systems are confronted with the spread of pathogens that can lead to
healthcare-associated infections (HAIs) threatening the safety of patients, burdening healthcare
staff, and increasing healthcare costs. Efforts have been made to quantify the international
burden of HAIs in particular with the best estimate of 7.6% and 10.1% pooled prevalence
reported by the World Health Organisation (WHO) in 2011 in high-income and low- and
middle-income countries respectively.(1) Various pathogens including those responsible for
HAISs have also been shown to defy international borders. Even with robust surveillance systems
and up-to-date prevention and infection control recommendations like that of France, spread
within countries continues to occur. For example, in intensive-care units (ICUs) where the most
vulnerable patients are being treated and the highest precautions are taken when it comes to
preventing and controlling infection and colonisation, these pathogens can be highly prevalent.
Novel infection control strategies are needed to combat the ongoing spread of pathogens in
healthcare settings and multi-drug resistant organisms (MDROs) in particular. Patient transfers
both across international borders and within countries across different healthcare facilities have
been associated with the highly resistant Carbapenemase-producing Enterobacteriaceae (CPE).
Patient transfers may also be the main driver of both the spatial dissemination of pathogens and
may sustain these endemics. Therefore, it is essential to better understand the impact of intra-

and inter-facility transfer of patients on pathogen spread.

The main objectives of this thesis are two-fold: 1) to better understand the structure of patient
transfer networks, henceforth referred to as healthcare networks; in particular, the healthcare
networks of France, for which we aimed at giving a first description in order to study the
potential impact of the network structure on pathogen spread in terms of network topology; and
2) to examine the role of the French healthcare network on the dissemination of CPE over time,

an HAI which remains untreatable with most currently available antibiotics.

In order to address these two main objectives, the mechanisms in which pathogens spread in
the healthcare setting were explored. The first step of the thesis was to describe in general terms
how mathematical and mechanistic models have helped explain the propagation of pathogens
in different healthcare settings by conducting a systematic review. In addition, the review aimed
to explore how the integration of network data in the different modelling studies may improve

the understanding and predictive capacity of pathogen spread in healthcare settings.



In recent years, healthcare networks have provided insightful ways on improving the
understanding of how common HAIs spread and how control efforts can be optimised.
However, the differences between the structures of the healthcare networks based on different
patient populations had not been previously explored. The second step of the thesis was to give
a first description of the French healthcare networks and to compare the healthcare networks of
the general patient population and HAI-diagnosed patient population in order to better
understand the differences. This step also entailed understanding the heterogeneities present in
the healthcare network structure and the potential impact they could have on the risk of common

HAI pathogen spread.

Finally, we focused on CPE, which has become an important public health issue in France. The
epidemic has been described in detail; however, forecasting trends have not yet been explored.
In order to address the second aim of the thesis, we first described and attempted to predict the
temporal trends of CPE in France. In order to better understand the impact of patient transfers
on CPE spread, we assessed if the healthcare network could explain the observed incidence and
spread of CPE in France during the 2012 to 2015 period. Lastly, we also used Bayesian methods

to reconstruct CPE chains of transmission to further understand CPE spread dynamics.
This manuscript is organized into five parts:

= Part One covers the epidemiological context of common HAI pathogens and CPE in the
international and French context (Chapters 1 and 2);

=  Part Two (Chapters 3, 4, 5, and 6) introduces the major themes covered by the thesis
(pathogen spread dynamics, mathematical modelling, and healthcare networks), and
reviews work previously done in this field of research (first article);

» Part Three (Chapters 7 and 8) addresses the first thesis objective, by first describing the
database used to construct the French healthcare networks and then analysing these
networks (second article);

= Part Four (Chapters 9 and 10), addresses the second thesis objective, with the description
and prediction of CPE spreading trends, the assessment of the contribution of healthcare
networks to these trends (third article), and description of CPE chains of transmission; and
finally,

=  Part Five (Chapters 11, 12, and 13) covers the discussion of the main results and

perspectives.



Part One: The epidemiology of hospital-acquired
infections (HAIS)



Chapter 1. Epidemiological context of HAIs

Pathogens in the healthcare setting can often lead to hospital-acquired infections (HAI), also
referred to as healthcare-associated infections (HCAI) or nosocomial infections (NI), which are
defined as an infection acquired (usually by a patient, though HAIs are not exclusive to patients
and can be acquired by healthcare workers (HCW)) in a healthcare facility in which the
infection was not present before the time of admission and was developed after admission
(usually at least 48 hours after admission) due to exposure to the healthcare facility
environment.(1, 21) HAIs can be further classified into specific types of infections, for example
urinary tract infections (UTI), surgical site infections (SSI), lower respiratory tract infections
(LRI), and bloodstream infections (BSI).(22) Many types of microorganisms can be agents of
infection though bacteria from the Staphylococcus genus, Enterococcus genus, and

Enterobacteriaceae family are the most prevalent in the healthcare environment.(21)

Since the discovery of penicillin in 1928, antimicrobial agents or antibiotics have been the most
common way to treat many bacterial infections in the healthcare setting. The mid-century
development of several antimicrobials led to the cure of many once-serious infections and saved
countless lives. However, the misuse and overuse of these antimicrobials over time has put a
selective pressure on bacteria to develop resistance mechanisms to prevent antimicrobial action
in order to survive. The selection of these mechanisms is encoded in genes that can be passed
on vertically (through proliferation) or horizontally (across bacterial species usually through
plasmids transferring genetic material between them).(23) In consequence, antimicrobial agents
eventually led to a selection of bacteria that were resistant to one or more antimicrobials more
rapidly than the rate at which they were being developed. Today, MDROs such as
carbapenemase-producing  Enterobacteriaceae  (CPE),  Pseudomonas  aeruginosa,
Acinetobacter baumannii, vancomycin-resistant Enterococci (VRE), and methicillin-resistant
and vancomycin-resistant Staphylococcus aureus (MRSA, VRSA) are a few of a number of
HAIs that were declared critical and high priority for research and development for new

antimicrobials by the World Health Organisation (WHO).(24)

1.1 Public health importance
Despite significant progress in infection control, the last decades have seen a worldwide
(re)emergence and spread of virulent infectious agents within healthcare settings, including

viruses such as SARS, MERS-CoV and Ebola, as well as multi-drug resistant bacteria such as



MRSA or extended-spectrum [-lactamase producing Enterobacteriaceae (ESBL-E). Indeed,
the conditions of the healthcare environment makes healthcare facilities breeding grounds for
infection spread. Patients are susceptible to infections due to a number of risk factors. Being
immunocompromised thus more vulnerable to infection, having had an invasive procedure
resulting in an open wound, sharing a room with other potentially vulnerable or infectious
patients, or being in frequent contact with HCWs with potential hand carriage of infectious
agents, are examples of how the shared hospital environment can expose patients to pathogens.
In addition, certain pathogens can remain viable in the environment for long periods of time
and can be carried asymptomatically (without any clinical symptoms or immune response to an
infection). Therefore, many factors can make microorganisms difficult to control in the
healthcare setting. In consequence, it is essential to both improve the understanding of how
pathogen spread in these settings and how to best prevent and control them in order to improve

patient safety in the healthcare environment.

1.2 International context

1.2.1 Epidemiological burden

Pathogens leading to HAIs put patients at risk for complications which can lead to increased
morbidity and mortality, as well as longer hospital stays; thus, posing both an epidemiological
and financial burden on the healthcare system. Due to frequent asymptomatic carriage,
inaccessibility to laboratories, disorganisation and lack of detail in medical records, lack of
expertise, understaffing, and overcrowding, the prevalence of HAIs can be difficult to estimate

— one of the challenges of preventing and controlling HAIs and MDROs pathogens.

1.2.1.1 Incidence and prevalence

The epidemiological burden of HAIs in terms of pooled hospital-wide prevalence in mixed
patient populations was estimated at 7.6% in high-income countries and at 10.1% in low- and
middle-income countries by the WHO in 2011.(1, 2) In high-income countries, studies
estimated between 3.5% to 12% prevalence of hospitalised patient who acquired at least one
HAI (Figure la). In low- and middle-income countries, studies estimated between 5.4% to
19.1% prevalence of hospitalised patient who acquired at least one HAI (Figure 1b). The HAI
incidence density ranged from 13.0 to 20.3 episodes per 1000 patient-days in high-income
countries with a cumulative incidence of 17.0 episodes per 1000 patient-days among adult high-

risk patients.(1) The incidence density in low- and middle-income settings was estimated to be



higher, ranging from 4.1 to 91.7 episodes per 1000 patient-days with a pooled cumulative
incidence of 42.7 episodes per 1000 patient-days.(1)

The most recent national HAI estimates for the United States (US) (which was not included in
the WHO report) estimated the incidence rate of HAIs at 4.5% in 2002 affecting 1.7 million
patients and leading to 9.3 infections per 1000 patient-days.(1)

Figure 1. Prevalence of HAIs in high and low-and middle-income countries, 1995-2010
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High-income country-level hospital-level prevalence estimates (a) and low- and middle-level country hospital-
level prevalence estimates (b) from the most recent studies identified between 1995 and 2010 by the WHO. (1)
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Acute-care settings respond to immediate and life-threatening health conditions and play an
important role in prevention of death and disability.(25) These settings also have an important

HAI prevalence and incidence.

In the US, an estimated 4.0% of inpatients in acute-care hospitals had at least one HAI in 2011
which corresponded to 648 000 patients with 721 800 HAIs.(26) A median of 6 days was
reported between hospital admission and onset of symptoms in the same study.(26) A total of

25.6% of infections were associated with a medical device.(26)

At the European level, surveys conducted by the European Centre for Disease Control (ECDC)
gave a more detailed description of HAIs in acute care settings. In a 2011-2012 point prevalence
study conducted by the ECDC (2), the prevalence of patients with at least one HAI was
estimated at 5.7% in the acute-care setting in Europe. Acute-care HAIs were most common in
tertiary hospitals (7.4%), followed by specialised hospitals (6%), primary hospitals (5%), and
secondary hospitals (5%). The incidence rate of HAIs in terms of patients acquiring at least one
HALI per year was estimated at 3.5% in 2012 which represented an estimated 3.2 million patients
per year in Europe. The point prevalence estimate for the same time period and population was
estimated at 3.5 million HAIs per year. On any given day, the study estimated that over 87 000
patients had an HAL

The burden of HAIs affects especially high-risk patients such as those admitted to intensive
care units (ICU) in the acute-care setting, and new-borns.(1, 27) In high-income countries, an
estimated 30% of patients in ICUs had at least one HAI episode and in low- and middle-income

countries it was estimated to be 2 to 3 times higher.(1)

In Europe, ICUs account for 5% of the patient population but have 16.5% of the HAIs.(2)
Almost 20% of the ICU patient population had at least one HAI, almost a four-fold increase
compared to the average of other specialities or wards.(2) In a more recent survey by the ECDC
based on 2015 data (28), it was estimated that after at least two days in the ICU 8.3% of patients
contracted an ICU-HAL

1.2.1.2 HAI pathogens

S. aureus and Escherichia coli species are the most commonly isolated HAI pathogens.(1) In
Europe, E. coli was the most commonly isolated HAI pathogen (accounting for 15.9% of HAIs)
followed by S. aureus species (accounting for 12.3% of HAIs).(2) In the US, Clostridium
difficile was the most commonly reported pathogen in the acute-care setting accounting for

12.1% of HAIs followed by S. aureus, Klebsiella pneumoniae, and E. coli.(26) C. difficile
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infections are also important HAI pathogens in Europe, accounting for 48% of the five most
common HAIs: hospital-acquired (HA) pneumonia, SSI, UTI, BSI, and gastro-intestinal
infections (GI).

Antimicrobial resistance is common among HAI pathogens. The best estimates in developing
countries showed methicillin resistance in up to 54.5% of S. aureus isolated strains.(1) Among
ICU-HALI isolates assessed by the ECDC, 23.1% were resistant to oxacillin among S. aureus
species, 3.4% were resistant to vancomycin among Enterococcus species, 23.7% were resistant
to ceftazidime among P. aeruginosa, and 20.2% were resistant to third-generation
cephalosporins among three species (E. coli, Klebsiella, and Enterobacter). Resistance to

carbapenems among five species ranged from 0.5% to 42.9%.(28)

1.2.1.3 Mortality

HALI can cause considerable morbidity but can also lead to death in the most vulnerable patients.
The best world-wide estimates (excluding North America) have found a crude excess mortality
in adult ICU patients at 18.5% for catheter-related (CR)-UTIs, 23.6% for CR-BSI, and 29.3%
for ventilator-associated pneumonia (VAP).(1) In the United States, 99 000 deaths were
attributed to HAIs in 2002.(1) More than 2.6 million new cases, 2.5 million disability-adjusted
life years (DALYs), and 91 000 deaths were attributed to six types of HAIs (HA pneumonia,
BSI, UTL SSI, HA C. difficile, HA neonatal sepsis) each year in Europe.(29) Another Europe-
level estimate found 37 000 annual deaths due directly to HAIs that led to an addition 110 000
deaths due to the infections.(1)

In developing countries, HAIs have been estimated to be responsible for 4% to 56% of all causes
of deaths of hospital-born babies in the neonatal period.(1) The majority of these deaths

occurred in South-East Asia and sub-Saharan Africa.

1.2.2 Impact of HAIs: length of stay and associated-costs

HALISs can lead to increased length of stay (LOS) for patients which could have consequences in
terms of increased costs for hospitals. The estimate by the WHO for the increase in length of
stay due to HAI in developing countries was between 5 to 29.5 days.(1) The impact of HAIs on
patient LOS can vary depending the type of HAI infection. In Europe, the LOS was highest in
HA-pneumonia and lowest for BSI.(3) CR-BSI were estimated to add an additional 4 to 14 days
in LOS.(1) In 2008, HAIs were estimated to add 16 million extra days of hospital stay in
Europe.(1)



An important impact of HAIs are the significant associated costs to the healthcare system. The
financial costs associated with HAIs estimated by the ECDC in 2008 (3) found that HAIs were
estimated to have a direct cost of 7 billion euros (based on the assumption that the daily costs
to a hospital was 435 euros). Based on five major sites of HAIs, a study in 2009 estimated that
the direct medical costs to US hospitals ranged from 28.4 to 45 billion US dollars depending on

the adjustment to account for inflation.(30)

Costs have also been estimated for specific HAIs. VAP attributable costs have been estimated
at 10 000 to 25 000 US dollars per case. Of approximately 250 000 CR-BSI occurring every
year hospital-wide in the US, an annual cost was estimated up to 2.3 billion US dollars. A study
on the cost associated with HAIs published in 2009 for Europe (31) estimated the total costs
related to CR-BSIs for four European countries between 100 and 130 million euros in France,
between 60 and 78 million euros in Germany, around 82 million euros in Italy, and between 29

and 54 million euros in the United Kingdom.

1.3 French context

1.3.1 The French HAI surveillance system

In 1992, the national technical committee of nosocomial infections (Comité Technique National
des Infections Nosocomiales) pushed for the establishment of a national surveillance of HAIs
in French healthcare facilities. As a result, in 1993 France developed a national alert system
(Healthcare-Associated Infections Early Warning and Response System (HAI-EWRS) or in
French, the Réseau d’Alerte, Investigation et de Surveillance des Infections Nosocomiales
(RAISIN)) managed by the health surveillance institute (Institut de Veille Sanitaire (InVS)),
now a part of Public Health France (Santé Publique France). The system was composed of five
networks based on the following: surgical site infections (ISO-Raisin), MDROs (BMR-Raisin),
adult ICU infections (REA-Raisin), antibiotic consumption (ATB-Raisin), HCW blood
exposure accidents (AES-Raisin), and nosocomial bacteraemia (BN-Raisin). These networks
have been coordinated by 17 regional centres for prevention of HAIs (Centre d'appui pour la
Prévention des infections associées aux soins (CPias) previously known as Centre de
Coordination de la Lutte contre les infections nosocomiales et associées aux soins (CClin) and

Antennes régionales de lutte contre les infections nosocomiales et associées aux soins (Arlin)).



1.3.2 HAI burden in France

1.3.2.1 Incidence and prevalence

The ECDC point prevalence study of HAIs in acute-care settings estimated that in France 4.9%
[95% C14.3%-5.6%] of patients had an HAI on any given day, a figure consistent with an earlier
estimate of 4.4% made by WHO during the 1995-2010 period (1, 2). Out of 12 million
discharges in France, the total number of patients to get an HAI was estimated at over 324 000

with an estimated 2.7% HAI incidence.(2)

France, in comparison to other European countries, had the highest number of single rooms
(50% of beds are single room beds).(2) Single beds can be useful in isolating patients infected
with the most dangerous bacterial strains. On the other hand, an estimated 9.3% of French
patients had HAI diagnoses that were classified as rapidly fatal which was the highest estimate
among participating European member states.(2) France also had the highest rate of UTIs
(30.7% of infections of which 94.1% were microbiologically confirmed) and the highest
percentage of E. coli HAIs reported (26.6%).(2)

1.3.2.2 Excess mortality, length of stay, and associated costs

In a 2002 prospective study conducted by CPias (CClin at the time), researchers found that
between 26% and 30% of patients who died in the study had an HAI and, of these deaths,
between 6% to 15% were attributable to the infection.(4) When extrapolating to all healthcare
facilities in France, they estimated that between 7 000 to 20 0000 HAI attributable deaths occur
in France per year.(4) Other studies estimated a higher HAI attributable death fraction at 21.3%
overall, between 30% and 44% for ICU patients, a 6% death rate for CR-HAIs, and between
2.5% and 6% death rate among SSI.(4)

Overall, the total cost of avoidable HAIs in France has been estimated between 730 million and
1.8 billion euros per year.(5) Avoidable costs range between 500 euros for UTIs to 40 000 euros
for the most severe ICU-BSI which were found essentially to be due to prolonged LOS.(5)
Other estimates in the ICU setting found that HAIs cost over 36 000 euros and added four days
to the patients” LOS on average.(5) In addition, antimicrobial resistant strains were found to
cost more than sensitive strains (i.e. MRSA costing 30 000 euros versus methicillin-sensitive S.

aureus costing 19 000 euros) and had an estimated 71% increase in LOS.(4)
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1.3.2.3 Epidemiology of SSI

The SSI surveillance network, ISO-Raisin, established in 2001, has been surveying 11 types of
surgical units (listed in Table 1). In 2015, the surveillance system surveyed a total of 106 737
interventions and estimated the incidence rates for each of these units (Table 1).(32)
Orthopaedic surgery, the most surveyed intervention, had an estimated a 1.15% incidence rate
among the surveyed units in which half of these SSIs were deep incisional SSIs.(32) For general
surgery, the global SSI incidence rate was estimated at 1.74%. The highest rate of SSI in general
surgery was for colorectal surgery (incidence rate of 6.82%) that included 45% of the
interventions for colorectal cancer. SSIs for colorectal surgery were highest for general surgery
during the entire 2011 to 2015 period. Obesity and diabetes were identified as significant risk
factors for an SSI in general surgery. Among all surgical unit types, the highest SSI incidence
rate was estimated for coronary surgeries at 4.18%. The SSI incidence density per 1000 follow-
up days was estimated at 2.05 for this surgery type. The second highest SSI incidence rate was
estimated for reconstructive surgeries (Table 1). Death rates of SSI patients were under 1% in
all units in 2015 which was lower compared to a 2002 study that found the SSI associated
mortality between 2.5% and 6%.(4, 32)

Table 1. Surgical site infection incidence rates in France by surgical unit speciality

Surgical unit type SSI incidence rate Mortality | Units Interventions
[95% CI] surveyed
Orthopaedic 1.15 % [1.02-1.27] 0.4% 276 29293
General 1.74 % [1.59-1.90] 0.4% 254 29178
Gynaecology-obstetrics | 1.63 % [1.46 — 1.79] <0.1% 229 23102
Trauma 0.73 % [0.52-0.93] <1% 77 6 607
Vascular 0.38 % [0.22-0.54] <1% 79 5558
Urology 2.76 % [2.32 - 3.19] <1% 89 5548
Neurosurgery 1.07 % [0.73-1.42] <0.1% 43 3454
Bariatric 1.47 % [0.95-1.99] <0.1% 42 2 106
Coronary 4.18 % [3.00-5.36] <1% 10 1 149
Thoracic 1.30 % [0.03-2.57] <1% 10 540
Reconstructive 3.47 % [0.90-6.03] 0 5 202
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1.3.2.4 Epidemiology of ICU-HAI

For adult ICU infections, the REA-Raisin also conducted a survey in 2015 of 188 ICUs of 63
240 patients.(33) In these ICUs, 15.8% of patients were immunocompromised, 55.9% of
patients received an antibiotic at admission, and the ICU-mortality was 17.8%. The average
LOS of patients in the ICU was 11 days. Invasive medical devices were very common among
patients: 86.6% had a urinary catheter, 65.1% had a central venous catheter, and 63% had
intubation. An infection was present in 10.62% of patients. The REA-Raisin report estimated
that out of the isolated strains, 16% of the strains were MRSA and 17.8% were ESBL-E.
Pseudomonas aeruginosa (15.1%), S. aureus (10.6%), Staphylococcus epidermidis (9.6%)
were also commonly isolated strains. An estimated 15.05 VAP infections occurred per 1 000
intubation days, 3.52 BSI per 1 000 ICU-days, 0.66 CRSI per 1 000 catheter-days, and 0.55
CRBSI per 1 000 catheter-days.

1.3.2.5 Epidemiology of MDROs

The French national surveillance network of MDROs in healthcare facilities (BMR-Raisin) was
established in 2001 and conducted annual surveys of MRSA and ESBL-E and the effectiveness
of prevention measures on the spread of pathogens.(6) The latest report in 2015 surveyed over
1 400 facilities that covered 77% of the complete hospital stays for that year.(6) The majority
of MRSA and ESBL-E were identified in the acute medical care setting, followed by surgical
units, and long-term care settings (accounting for 39%, 23%, and 18% of MRSA isolates and
36%, 23% and 19% of ESBLE-E isolates respectively).

Since the first annual survey in 2002, the number of participating healthcare facilities increased
significantly and has allowed for comparison of HAI rates over time in France.(6) The incidence
rate of MRSA has decreased more than two-fold since 2002 (from 0.63 in 2002 to 0.26 in 2015)
and especially in acute-care, long-term care and ICU settings (reduced by -60%, -63%, and -
63% respectively) (Figure 2). On the other hand, the incidence rate for ESBL-E has increased
over time from 0.13 in 2002 to 0.67 in 2015 (Figure 2). Four main species of ESBL-E (E. coli,
K. pneumoniae, Enterobacter cloacae, and Enterobacter aerogenes), became more present over
time. E. coli represented 56.5% of isolates and K. pneumoniae 26% of isolates in 2015. Among
the same healthcare facilities surveyed regularly between 2011 and 2015, there was significant
increase in the number of ESBL-E isolates over time; most notably, ESBL-producing K.

pneumoniae increased by 76%.
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Figure 2. MRSA and ESBL-E incidence rate per 1 000 hospital-days, France 2002-2015
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Taking into account the incidence rates, number of hospital stays, and hospital beds, the report
estimated that between 23 000 to 39 000 cases of MRSA occurred annually in which 3 800 to
5 700 were of bacteraemia cases.(6) Concerning ESBL-E, between 49 000 to 103 000 cases
were estimated to occur annually. The overall trends and rates were consistent with other

reports.(34)

In the ICU, 9% of incident cases had MRSA and 11% had ESBL-E. The average percentage of
methicillin resistance among isolated S. aureus was 16.4%. There were far more ESBL-E UTI
isolates than MRSA UTIs (77% versus 21%). The incidence rate of ESBL-E was higher in the
ICU than MRSA (0.93 incidence of MRSA per 1000 hospital-days versus 2.72 incidence of
ESBL-E per 1 000 hospital days) (Figure 3).
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Figure 3. MRSA and ESBL-E incidence rate per 1 000 hospital-days by setting, France
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Chapter 2. Carbapenemase-producing Enterobacteriaceae (CPE)

2.1 Enterobacteriaceae

Enterobacteriaceae are a family of Gram-negative bacteria that are among the most important
human pathogens and are responsible for a broad range of infections in humans. Although
they are frequent asymptomatic colonizers of the gastrointestinal and oropharyngeal tract of
humans and animals, they also are one of the leading causes of HAIs. E. coli, K. pneumoniae,
Enterobacter species, and K. oxytoca are some of the most common HAIs and accounted for
20% of HAl isolated in 2006 to 2007 in the US.(35) They have been implicated in HAI-UTIs,
SSIs, BSIs, and VAP infections. Although there has been a report that the overall proportion
of HAI due to Enterobacteriaceae declining over time in the US (35, 36); the prevalence of
antimicrobial resistance has increased among bacteria of this family, causing major concern in

the healthcare settings all over the world.

2.2 Beta-lactam antimicrobials and resistance

Beta-lactam antimicrobials are chemicals characterized by a beta-lactam ring within their
structure. These antimicrobials are considered to be broad-spectrum antimicrobials, meaning
that they can be used against a large variety of bacterial species. Beta-lactams, used to treat
patients with various infections (i.e. skin infections, dental infections, lower respiratory tract
infections, and urinary infections), can be classified into five main antimicrobial groups:
penicillins, cephalosporins, monobactams, carbapenems, and beta-lactamase inhibitors.(37, 38)

The first use of penicillin to treat patients was in 1941, 13 years after its initial discovery.

Beta-lactamases, which are enzymes produced by resistant bacteria that inhibit beta-lactam
activity, are the most important mechanism of resistance to beta-lactam antimicrobials. Beta-
lactamases can be grouped into four Ambler classes which share structural similarities: class A,
B, C, and D.(39) Their main mechanism of action is to inhibit the peptidase domain of
penicillin-binding proteins (PBPs) required for cell wall synthesis which leads to autolysis and

cell bursting.(40)

2.2.1 Carbapenem antimicrobials and the emergence of CPE

Carbapenems are a class of beta-lactam antimicrobials that are effective against both gram
positive and gram negative bacteria.(41) Thienamycin, or thienpenem, was the first naturally
occurring carbapenem antimicrobial to be discovered in 1976 and to be described in detail in

1979.(40, 42, 43) Thienpenem is both potent and has broad-spectrum activity; however, it is
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chemically unstable.(40) In addition to other carbapenems, imipenem, a derivative of
thienpenem, was found to be both more stable and effective against gram positive and gram
negative bacteria such as the Enterobacteriaceae.(40, 41) Imipenem was released in 1985 as
the first carbapenem to be used to treat infections.(40) Over 80 compounds of carbapenems
have been developed.(40) Combining carbapenems with other antimicrobials has become a

common method to treat multi-drug resistant bacteria.(40)

Resistance to carbapenems is an important public health issue because carbapenems were often
considered to be the treatment of “last-resort” for infections when other antimicrobials were not
successful.(3, 44) Carbapenemases have the ability to hydrolyse carbapenem antimicrobials and
some are referred to as a specific type of beta-lactamase — the metallo-beta-lactamases.(40) In
order for carbapenem development to be successful against these emerging resistant strains,
new antimicrobials must be able to overcome both beta-lactamases and metallo-beta-
lactamases.(40) Combination therapy, colistin, and tigecycline are some of the few remaining
options for treating patients with CPE. Unfortunately, the development of antimicrobials active

against CPE has not yet been achieved.(45-47)

With the exception of one enzyme, all carbapenemases are of class A, B, and D beta-
lactamases.(8) The mechanism of resistance to carbapenems (carbapenemase enzymes), the
year of their identification, encoding gene location, country of first isolation, and class are

shown in Table 2.(48, 49)

Table 2. Isolation of some of the first described carbapenemase enzymes

Enzyme Class Encoding Country Year Ref
OXA-1 D Plasmid Japan 1967/1981* (50)
SME-1 A Chromosome UK 1982 (51, 52)
IMP-1 B Plasmid Japan 1983 (53, 54)
IMI-1 A Chromosome USA 1984 (55)
ARI-1/0XA-23 D Plasmid Scotland 1985 (56, 57)
NMC-A A Chromosome France 1990 (58)
SME-2 A Chromosome USA 1992 (59)
VIM-2 B Plasmid France 1996 (60)
VIM-1 B Plasmid Italy 1997 (61)
KPC-1 A Plasmid USA 1997 (62)
IMP-2 B Plasmid Italy 1997 (63)
GES-1 A Plasmid French Guiana 1998 (64)
KPC-2 A Plasmid USA 1998 (65)
SPM-1 B Plasmid Brazil 1999 (66)
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GES/IBC-1 A Plasmid Greece 1999 (67)
VIM-3 B Plasmid Taiwan 1999 (68)
GES-2 A Plasmid South Africa 2000 (69)
KPC-3 A Plasmid USA 2000 (70)
OXA-48 D Plasmid Turkey 2001 71)
GIM-1 B Plasmid Germany 2002 (72)
SIM-1 B Plasmid South Korea 2003 (73)
KPC-+4 A Plasmid Scotland 2003 (74)
SME-3 A Chromosome USA 2004 (75)
NDM-1 B Plasmid India/Sweden** 2008 (76)
OXA-181 D Plasmid India 2010 77)

* Yamamoto et al. described the oxa gene in a paper published in 1981 using bacteria strains originally isolated
from Egowa et al. published in 1967 (78)

** bacteria strain isolated and examined in Sweden, patient most likely acquired infection in India
GES: Guiana extended spectrum

GIM: German imipenemase

IBC: integron-borne cephalosporinase; now revised to GES type (49, 79)

IMI: imipenem-hydrolyzing beta-lactamase

IMP: active on imipenem

KPC: Klebsiella pneumoniae carbapenemase

NDM: New Delhi metallo-beta-lactamase

NMC-A: not metallo-enzyme carbapenemase

OXA: oxacillin-hydrolyzing

SIM: Seoul imipenemase

SME: Serratia marcescens enzyme

SPM: Sao Paulo metallo-beta-lactamase

VIM: Verona integron-encoded metallo-beta-lactamase

Carbapenemase enzymes were first detected in gram positive bacilli and then gram negative
bacilli such as P. aeruginosa and A. baumannii.(40, 49) Carbapenemase activity in
Enterobacteriaceae was reported in the 1980s and became a concern in the 1990s when it was
identified in K. pneumoniae.(80) Initially carbapenemases were considered an issue of clonal
spread until transmission of carbapenemase genes were identified between different
species.(49, 81) A combination of the production of beta-lactamases, efflux pumps, and
mutations that alter porins and PBP have led to high levels of resistance in species such as K.

pneumoniae and A. baumannii.(40)

2.3 Risk factors for spread

In 2010, the ECDC conducted a risk assessment on the spread of CPE through patient transfer
in healthcare facilities. There was strong evidence to support that transferred patients colonised
or infected with CPE across international borders increased the risk of introduction of CPE in
the healthcare facilities in another country.(82) Consumption of carbapenems, third and fourth

generation cephalosporins, and fluoroquinolones were identified as risk factors for CPE
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colonisation or infection. The ECDC urged for more prudent use of antimicrobials. Although
the assessment found that there was little evidence on the effectiveness of control measures,
they argued that measures targeting CPE, if implemented, should have similar effectiveness as
other measures for MDROs. European-level data on CPE in long-term care settings have been

limited compared to the many studies conducted in acute-care settings.(82)

2.4 International context of the CPE epidemic

CPE prevalence has increased rapidly in the last two decades worldwide.(82) Horizontal gene
transfer through mobile genetic elements such as plasmids and transposons, moving populations
and patient transfers within and across borders have contributed to the spread of many classes
of carbapenemase-producing genes, if not all classes, in the United States, Greece, the

Mediterranean and European regions, and India.(82)

2.4.1 Worldwide reports of CPE

The first description of a carbapenemase-producing bacteria isolated from the
Enterobacteriaceae family was reported in 1993 in France.(8, 58) Isolation of the first
carbapenemase-producing K. pneumoniae (KPC) was reported in the United States soon after
in 1997. KPC was reported across the United States, in South America, in Europe, and several
provinces in China among other countries (Figure 4).(8) These KPC-producers have been
isolated from patients in hospital settings in most cases; though rare, they have also been
identified in the community. One clone of K. pneumoniae, sequence type-258, was identified

worldwide.(8)

Figure 4. Worldwide geographic distribution of KPC
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For Ambler class A producing enzymes, VIM and IMP producers have also been described
worldwide (Figure 5). There has been high prevalence of IMP producers in Japan and Taiwan
while Greece had one of the highest prevalence of VIM in 2011. Outbreaks have been reported
for both CPE types in many countries.

Figure 5. Worldwide geographic distribution of VIM and IMP
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Within four years of its’ first identification, NDM-1 producing Enterobacteriaceae have been
observed in high numbers in India, Bangladesh and Pakistan where it originated and also in the
Middle East and Europe (Figure 6). The main challenges that are faced with controlling NDM-
1 pertain to the beta-lactamase gene blanpm-1 being expressed in many unrelated species, its
spread in the environment, its acquisition in two commonly transmitted pathogens K.
pneumoniae and FE.coli, and the presence of a potentially large human population reservoir in

India.(8)
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Figure 6. Worldwide geographic distribution of NDM
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The true prevalence of OXA-48, one of the most commonly identified OXA producers, may
actually be underestimated due to the difficulty of identifying this type of carbapenemase
producer.(8) This Ambler class D enzyme was first identified in Turkey in 2001 and spread
throughout the Middle East, North Africa, in particular Morocco, and Europe (Figure 7).(71,
86, 87) A study has shown that spread may not have been due to one single K. pneumoniae clone
but many.(71) Nordmann et al. argue that two types of CPE epidemics may be occurring
worldwide: a nosocomial CPE epidemic mainly through K. pneumoniae bacteria for all
mechanism types and one of community spread via E. coli bacteria encoding OXA-48 and

NDM genes.(8)

Figure 7. Worldwide geographic distribution of OXA-48
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In 2016 the ECDC published a rapid risk assessment based on CPE 2014 data from the European
Antimicrobials Surveillance Network (EARS-Net) to describe collected isolates in Europe.(89)
Less than one percent of E. coli isolates were CPE in all participating European countries while
in Greece more than half of K. pneumoniae isolates were KPC. For the 2014-2015 period, four
countries were identified as having an endemic CPE situation (stage 5): Greece (since 2010),
Italy (since 2013), Malta (since 2013), and Turkey. Nine countries were classified at stage 4
with inter-regional spread of CPE.

2.4.2 Incidence and prevalence

The prevalence of CPE varies depending on the region and country. In New York where KPC
emerged and became highly prevalent, carbapenemase-resistance among K. pneumonia was
reported as high as 36% in 2006 but then decreased to 13% in 2013-2014. Although data in
the US regarding KPC is rare, there have been estimates of 2.94 annual incident KPC-
producing CRE cases per 100 000 population.(83) In a study conducted in seven Central and
South American countries, out of 21% of patients with CPE, 38% were identified with a KPC-
producing gene. The attributable death rate of a KPC infection have been reported as high as
50%.(8)

In 2016, EARS-Net reported on antimicrobial resistance in Europe.(90) All countries had less
than 0.1% resistance to carbapenems among E. coli isolates with the exception of Romania
with 1% resistance. The prevalence of CPE resistance among K. pneumoniae isolates was
estimated at 6.1% with the highest prevalence in Greece at 67% followed by Italy at 34% and
Romania at 31%. Among P. aeruginosa isolates, 15% were carbapenem resistant and among
Acinetobacter species, 35% of isolates were carbapenem resistant. In European ICUs,
carbapenem resistance was reported in 11% of Klebsiella species isolates, 24% of P.
aeruginosa isolates and 69% of A. baumannii isolates. Another European-level study found
that based on population-weighted averages, 1.3 patients per 10 000 hospital admissions and
2.5 patients per 100 000 hospital patient-days had a carbapenemase-producing K. pneumoniae
or E. coli. The highest incidence was found in Greece, Italy, Montenegro, Spain, and
Serbia.(91) In a French study, the incidence density rate of CPE was estimated at 0.0041 per
1000 hospital-days and 0.0027 per 100 admissions.(92)

2.5 French context of the CPE epidemic

Mandatory notifications of all suspected isolates of CPE, both infections and colonisations, are

reported to regional health agencies (Agence National de Santé (ARS) and CPias) in France.(93)
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The mechanisms of resistance are verified in local or expert laboratories or transferred to the
national reference centres (Centre National de Référence (CNR)) for confirmation.(9) Public

Health France publishes reports on the epidemiological situation of CPE every semester.(93)

The first identified case of CPE in France was in 2004 concerning a patient admitted in
December 2003 to a French hospital ICU who had been transferred from Greece (Figure 8).(94)
The patient was colonized with K. pneumoniae producing VIM-1 and SHV-5 and transmitted
the strains to seven other patients in the surgical ward and ICU from February to August of
2004.(9, 94) Despite transmission to other patients, the outbreak was controlled quickly
according to the authors who first described the study.(95) Another seven episodes (defined as
grouped signals of one or more cases within the same chain of transmission determined by an
epidemiological investigation by surveillance authorities) were identified between 2004 and

2008.(96, 97)

Figure 8. CPE epidemic in France, 2004-2015
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An important outbreak occurred in 2009 which was the first reported KPC-producing K.

pneumoniae outbreak due to a contaminated endoscope (Figure 8).(9, 98) Over 340 contacts
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were screened in five different healthcare facilities.(9) Two large OXA-48-producing K.
pneumoniae outbreaks were reported in 2010 in which one did not have a link to any cross-
border transfer and the other was linked to importation from Morocco.(99, 100) The first
outbreak led to the screening of contacts in 15 healthcare facilities and the second outbreak

implicated 32 cases in which contacts were screened in 10 facilities.(9)

Among the first 29 episodes reported between 2004 and 2010 in France, 18 of them implicated
either colonisation or infection of K. pneumoniae, followed by four E. cloacae strains, three E.
coli strains, two E. aerogenes strain, one Citrobacter freundii strain, and one Proteus mirabilis
strain.(97) The KPC mechanism of resistance was most common (n=12), followed by OXA-48
(n=7), VIM (n=5, one of two mechanisms identified in one strain), NDM-1 (n=4), IMP (n=1,
one of two mechanisms identified in one strain), and one was not identified.(97) Out of the 29
episodes, 24 were linked to a transferred patient who had been previously discharged from a
foreign country. Eleven of the episodes had an index case who was transferred from Greece
followed by India (n=4) and Morocco (n=3).(97) Twenty episodes occurred in the Ile-de-France

and the northern regions and six occurred in the south eastern regions of France.

Due to the rising occurrence of cross-border transfer of various carbapenemase-producing
strains in France, including the first report of intercontinental spread of KPC from the United
States to France in 2005 (101), a KPC-2 and SHV-12-producing K. pneumoniae strain from
Greece (102), OXA-48 transferred from Turkey (87), and the consequent growing number of
secondary cases, France voiced its concerns of CPE spread in 2010 at the European Centre for
Disease Prevention and Control (ECDC) Advisory Forum.(82) The growing concern lead to a
European-wide risk assessment of CPE by the ECDC in 2011 and again more recently in
2016.(89)

In 2011, France observed another sharp rise in the number of CPE episodes totalling to 113
episodes.(96) In the following years, the number of episodes continued to rise: 233 in 2012, 400
in 2013, 650 in 2014, and 942 in 2015 (Figure 8). Seasonality trends were observed starting in
2013 where the number of episodes peaked during August, September, and October.

The CPE epidemic from 2004 to 2014 affected almost 4 000 patients during which 48% of
episodes occurred in the Ile-de-France region, 12% in the Provence-Alpes-Cote d’ Azur region
and less than 10% in each remaining region.(96) Eighty percent of patients were colonised and
20% were infected with a CPE strain. The number of cases per reported episode reduced over

time; however, four episodes affecting over 100 cases were followed over the years and were
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still active in 2015. Since 2013, most infection sites of CPE have been UTI (46%), BSI (24%),
or pneumonia (14%). Most colonisations were identified in the gastrointestinal tract (77%) or
urinary tract (26%). From the 2004-2010 to 2011-2015 period, K. pneumoniae were the most
commonly isolated strain of CPE representing 58% of all isolated strains in both periods. E.
coli were the second most commonly isolated bacteria representing 36% of isolated strains. In
addition, OXA-48 and OXA-48-like CPE represented 71% of the identified mechanisms of
carbapenem resistance. Concerning episodes not linked to international importation, 82% have
been reported with OXA-48-like mechanism of resistance.(96) There was also an important
diminution of the number of episodes linked to foreign importation over time: from 80% in
2009, 71% in 2010, 51% in 2012, 50% in 2013, 47% in 2014, to 42% in 2015.(96) Morocco,
Algeria, Tunisia, India and Egypt have been the top five countries were cross-border

importation of CPE has been linked in France.

The European-wide risk assessment of CPE by the ECDC in 2016 showed that like other
European countries France has updated their national guidelines (103) and strategies concerning
CPE; however from 2013 to the 2014-2015 period France advanced from an epidemiological
stage 3 of regional spread to a stage 4 inter-regional spread of CPE and may risk reaching a

CPE endemic situation (stage 5).(89)

2.5.1 Prevalence and mortality

In the 2016 EARS-Net French data, less than 0.1% of E. coli isolates were resistant to
carbapenemases and less than 0.4% of K. pneumoniae were resistant to carbapenems. Among
1 968 isolates of P. aeruginosa 15.6% were carbapenem resistant and among 450 isolates of
Acinetobacter species 7.1% were resistant.(90) The percentage of carbapenemase resistance
among Enterobacteriaceae with decreased susceptibility to carbapenems increased from 23.1%

in 2012 to 28.6% in 2013 and 36.2% in 2014.(104)

In the 2004 to 2010 period, the 29 CPE episodes in France resulted in a 30% mortality rate.(97)
Reports of rates of mortality between 30% to 70% were found for CPE bacteraemia.(10) Out of
the CPE episodes occurring in La Reunion (a French overseas island) between 2010 and 2015,

a study found an 89% mortality rate among those colonised and an 11% mortality rate among

those infected.(105)
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Part Two: Spread of pathogens in healthcare settings
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Chapter 3. Understanding pathogen spread dynamics

3.1 Mechanisms of spread in healthcare settings

There are several ways in which pathogens can spread within healthcare settings, through
various routes of contact with colonised or infected individuals or with the hospital
environment.(106) Reservoirs of potential HAI pathogens in the healthcare setting include the
patients and HCWs (usually in the nasal cavity, skin, or gastrointestinal tract) and contaminated
objects (fomites such as a sink, bed, ventilator machines, intravenous devices, etc.).(35) In
particular, bacteria (which are responsible for a large part of HAIs) may colonize individuals in
their gut or skin without any clinical symptoms, and survive on the surfaces of objects, such as
hospital beds or surgical equipment, going undetected for long periods of time. Humans are
natural hosts to many bacteria that may lead to infection; however, this depends on various host

factors that can lead to the development and the severity of the infection.(35)

The three main modes of pathogen transmission in the healthcare environment are direct,
indirect, and airborne transmission. Mayhall and colleagues (35) described them as follows:
direct transmission follows direct skin contact that can quickly become infectious if a wound
becomes contaminated; most often, in acute care hospitals, direct transmission occurs during
patient contacts with the contaminated hands and clothing of HCWs. Airborne transmission is
a type of indirect transmission route when infected droplet nuclei are released into the air and
breathed in by other individuals. Finally, indirect transmission occurs when a patient’s body is
in contact with contaminated objects such as contaminated surfaces, food, biological fluids, or

medical devices.

Considering the healthcare system as a whole, pathogen spread may occur at several levels:
within hospital wards, at the scale of an entire hospital, or even between different healthcare

institutions. Figure 9 illustrates three possible pathways that can lead to pathogen spread:
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Figure 9. Examples of how pathogens may spread in the healthcare system
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In Figure 9, a) is an example of individual-to-individual contact structure with interactions with
the environment, b) represents an individual-to-individual contact structure where the contact
depend on the ward (i.e. contact rates can be homogenised within each ward among individuals
in models), and c) shows a healthcare facility-level structure where we are no longer concerned
with individual or ward-level contacts but rather patient transfers that can link the various
connected facilities. All three structures, however, form networks in which the components
represent individuals, wards, or healthcare facilities, and their links are defined by contact,

admission/discharge, or transfer rates.

For intra-hospital movement, the term “contact” can have many different definitions and some
of the specificities can include direct physical touch or indirect touch, sharing of a hospital room
or nurse, the physical distance between individuals, and duration of said contact. Some studies
have gone beyond estimating an average contact rate among individuals to the use of wearable
devices to measure interactions between individuals that can allow for identification of “super-
spreaders” which are individuals who have a higher number of contacts than average and
connect many individuals.(107) Another example is a large-scale study conducted to better
understand the social contacts and mixing patterns of individuals on the potential spread of
respiratory infections within different groups and social settings using diaries to assess the direct
contact rates.(108) A recent study described in detail the contact patterns of patients and HCWs
in terms of frequency and duration and their potential implications on infection risk in a long-
term care setting.(109) Generally, the definition of a contact varies due to the complexity
encompassing the variety of ways bacteria can spread within the hospital environment;
however, experts in the field have attempted to collect rich data to better understand the

heterogeneities.
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Finally, the mobility of patients and HCWs plays an important role in the dynamics of spread
of pathogens. These movements can be divided into two main channels: intra- and inter-hospital
movement. HCWs move around treating different patients, in different rooms, and also in
different hospital wards. In addition, patients can move between rooms, hospitals, and between
the healthcare facility and the community. Despite geographic distance, hospitals with shared
patients moving between them can play an important role in the sharing of bacterial strains and
thus could lead to HAI pathogen spread.(110) For example, a study showed that patient sharing
was significantly associated with the genetic similarity between MRSA isolates.(111)
Therefore, both contact and transfer network structure can help better understand pathogen

spread dynamics in healthcare settings.

3.2 Role of patient transfers in pathogen spread

Understanding pathogen spread at the health facility-level based on the patient transfer network
structure — hereinafter referred to as a “healthcare” network — relies on transmission dynamics
occurring in the other two network structures (Figure 9a and Figure 9b) and vice-versa. As a
result, the healthcare network structure can connect geographically distant healthcare, patient
populations, and can potentially lead to the sharing of common HAI pathogens. Authors
Eveillard and colleagues published one of the first papers in 2001 (11) showing evidence for an
association between transferred patients from hospitals and HAI prevalence. The authors found
that transferred patients were five times more likely to be infected compared to those not
transferred. This is due to the fact that patients can have a certain probability of acquiring a
bacterial strain in one hospital facility that they can potentially carry (commonly referred to as
“carriage”) to another facility, leading to contamination of the environment of other individuals

at a given probability.

As medical records became more commonly stored in electronic form, patient transfers became
easier to document and follow. In consequence, researchers have been able to exploit these data
sources by using algorithms to more easily and quickly retrace patient transfers and construct
transfer networks. How patient transfer patterns and healthcare network structure have been
used to explain the transmission of pathogens in healthcare systems is discussed in more detail

in the next chapters (Chapter 4 and 5).

3.3 The role of the surveillance system and infection control

Once the impact of the healthcare network structure on infection spread is better understood,

novel recommendations concerning infection prevention and control practices at all three levels
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(Figure 9) can be developed. In order for these levels to work harmoniously together,
cooperation and communication are vital since the levels are both inter and intra-connected. In
this respect, managers of the surveillance system play a critical role in monitoring and
implementing infection prevention and control measures at the various levels. In particular,
communication among different healthcare facilities is required, though not the most feasible
of tasks, in order to tackle any pathogen transmission risk concerning patient transfers. For
instance, a working group recently updated the French guidelines on infection control regarding
extensively-drug resistant bacteria (¢eXDR), including CPE.(103) They proposed to target for
screening patients who were direct hospital transfers from a foreign hospital, patients with a
history of hospitalisation in a foreign country, patients with a history of eXDR carriage and
patients who had contact with eXDR patients. The definition of contacts, the difficulty of
screening and microbiological diagnostics to identify all CPE types, prevention measures, and
detection of risk of eXDR transmission were also elaborated by the working group. Although
the French recommendations are comprehensive, there is little cooperation between countries
to manage eXDR.(103) One major challenge faced by France and other nations concerns the
feasibility of implementing prevention and infection control recommendations. Isolation
measures may vary in practice between different healthcare facilities. Unavailability of single
rooms, insufficient staff-to-patient ratios, and financial and managerial constraints may pose a

challenge for many facilities leading to poor infection control.(103)

In conjunction with understanding the impact of the healthcare network on pathogen spread
dynamics, the thesis aims to propose changes to how the surveillance system functions when
responding to infection risk in order to take into account novel information that may not have

been previously considered in the system’s protocol.
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Chapter 4. Mathematical modelling of pathogen spread

4.1 An emerging discipline

In recent years, mathematical modelling has become an important tool to analyse the structure
of intra- and inter-healthcare facility movement of patients and HCWs leading to new ideas on
how this structure can impact the transmission of infections. Mathematical modelling has
played an important role in improving the understanding of the propagation of pathogens in

healthcare settings over time and how control efforts could be optimized.(112-115)

Modelling the complexity of interactions between an infectious agent and its’ host, the
interactions between patients and HCWs, and the dynamic structure of the healthcare system
has been essential in better understanding the epidemiology of common HAI pathogens. A
compartmental model of an SIR (Susceptible-Infected-Recovered) framework is shown in
Figure 10 to explain the structure of a basic model. The total population, &, is composed of S
number of susceptibles, / number of infected, and R number of recovered individuals. The
parameters that determine the flows between the compartments include the transmission rate 3,
the birth rate b, the death rate p, the disease-induced death rate a, and the recovery rate 6. The

differential equations describing these transitions can also be described (Figure 10).

Figure 10. SIR model framework
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In 1999, Austin and Anderson summarized some of the earliest work of mathematical modelling
of the spread of pathogens in healthcare settings.(116) The risks and costs of antibiotic

resistance spread motivated researchers to develop simple models to better understand the
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mechanisms driving resistance (i.e. antimicrobial consumption) and dissemination. Austin and
Anderson detailed some of the first descriptions of models addressing the evolution of
resistance within the host and antimicrobial therapy, the intra-hospital indirect transmission and
colonisation, inter-hospital outbreaks, and the evolution of resistance in the community.(116)
Soon after, other experts proposed that mathematical modelling may be useful in both the
quantification of the transmission process and the impact of infection control practices in the
hospital.(113) In order to address the potential reluctance of healthcare professionals in
applying the recommendations resulting from these models, modellers aimed to elucidate
theoretical framework to health practitioners in order to defend the usefulness of modelling in

helping improve control interventions. (113, 114)

Mathematical modelling of pathogens in healthcare settings has made headway over the years.
By 2013, close to 100 papers were published on dynamic mathematical models in the healthcare
setting.(115) The majority of models of common HAI pathogens were set in high-income
countries, with the majority evaluating infection control effectiveness, and usually of
antimicrobial resistance organisms such as MRSA and VRE. The methods also evolved over
time: from compartmental models (where the model contains compartments that separate the
population in to different groups, groups that individuals can transition from) to agent-based
models (in which each individuals is characterized independently); and from deterministic
models (where the output is determined by the initial conditions and parameter values) to
stochastic models (in which randomness in infection processes is taken into account, allowing
to provide prediction intervals). Applying more advanced methods such as fitting models to
data and applying sensitivity analyses also gained ground over time.(115) Although limited to
a few settings and pathogens, mathematical modelling of common HAIs helped increase the

understanding of the complexity of the healthcare system and transmission dynamics.

4.2 A digital revolution in epidemiology

The use of digital data in the field of epidemiology has grown over the years as both the public
health system has digitalized many of the ways it operates and as other non-public health
sources of digital data have become available.(117, 118) Early models were parameterized
using literature reviews (119) or observed prevalence of carriage.(120) Later, model parameters
were estimated using more detailed data such as daily or weekly carriage prevalence.(121, 122)
More recently, data on the connections that exist between individuals and institutions have been
used for the reconstruction of the underlying existing social network structures.(123) Data on

inter-individual connections and social network analysis have been more commonly used to
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better understand infectious disease transmission, notably for sexually transmitted infections
(124, 125), Mycoplasma pneumoniae (126), and SARS.(127) Regarding pathogen spread in
healthcare settings, two types of network structure data are becoming more available: contact
network data between patients and HCWs and patient referral or transfer data to construct
healthcare networks. Some argue that the growing body of work concerning healthcare
networks has demonstrated a “next-generation” network-approach to hospital infection
prevention and control.(110) Concerning contact networks, models can integrate digital trace
data that can measure face-to-face proximity (107, 128) or movement of individuals in a

hospital system (129) as these data sources become more widely available.
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Chapter 5. Healthcare networks

5.1 A brief introduction

In 2013, Ciccolini and colleagues coined the term “healthcare networks” in response to a
growing number of theoretical works linking HAIs spread and patient movement in the

healthcare system.(110) They defined healthcare networks as:

“Regional and national inter-institutional patient referral[s] connect[ing] hospitals,
LTCFs [long-term care centres], and general practitioners. This cooperative system
[...] can be described using different mathematical approaches. The simplest approach
involves counting. For all pairs of hospitals in a cooperative system, the number of
patients who, after being discharged from one hospital, were subsequently admitted to

the other is counted over a defined time interval.”

In other words, healthcare networks are cooperative healthcare systems where hospitals and
other healthcare centres are linked by shared patients through secondary (inter-facility) transfers
or referral. Therefore, the structure of the network is composed of healthcare facilities
(“vertices”) connected by the flow of shared patient between them (“edges’). Patient movement
patterns are the basis of the structure of the healthcare network. It should be noted that these

networks do not include patient referrals from general practitioners offices.

Patient movement relies on the definition of patient transfer. The term “transfer” like that of
“contact” can vary among researchers and should be clearly defined. Patient transfers can be
direct or indirect transfers. Direct transfers can be either patients discharged from a sending
healthcare facility and admitted to a receiving facility in another jurisdiction moved directly
through the facility transportation service (ambulance or helicopter for example) or patients
discharged from one medical unit and moved to another in the same healthcare facility
jurisdiction. Indirect transfers are cases in which patients are discharged from a healthcare
facility, may return home or take a private transportation service, and are admitted to another
facility later on. Indirect transfers rely heavily on the definition of the time interval between
discharge and admission. Depending on the duration of the carriage of particular pathogens, the
inclusion of indirect patient transfers may be useful in improving the sensitivity of the network
in including potential carriers; however, the specificity of selecting carriers of potential HAI

pathogens may decrease due to the inclusion of potential community-acquired (CA) infections.

Patients are transferred in the healthcare system so that they can receive ongoing medical care.
Patients may need specialised care that is unavailable in the first healthcare facility and can
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include either specialised healthcare professionals, services, or equipment.(130-132) Transfers
may reflect organisational conventions and may not necessarily be motivated by optimum
patient outcomes.(133) A study in France evaluated the trajectories of lung cancer patients
throughout the healthcare system and identified five pathways: patients who utilise local care
in private clinics, patients who are treated in their local region or travelled beyond their region
(with a preference for surgeries at teaching hospitals), and patients treated outside of their region

accounting for 44% of regional movement.(134)

The number of patients shared between two healthcare facilities depends on the defined time
interval. Since transfer counts are cumulative, they can be counted daily, weekly, monthly,
annually or include multiple years, depending on objectives of the reconstruction of the network
and the refinement of the data available. Although it is not in the scope of the thesis, temporal
networks can be formed depending on the time intervals used to cut or construct the networks.
They result in a dynamic network in which links may turn “on” and “off” depending on the time
interval. Temporal networks may be advantageous in term of network controllability and can

provide insights on infection spread dynamics as well.(135)

5.2 Graph theory

In order to better understand healthcare networks, it is essential to cover the basic topology (the
layout of the connections) to better understand their structure. In mathematics, networks are
commonly referred to as graph, represented as an adjacency matrix — a square symmetric
matrix.(136, 137), A network is a graph of V vertices or nodes and E edges that can be described
by its’ V' X V adjacency matrix A defined as:

= 1ifi andj are connected

A=
Y { = 0 otherwise

In a healthcare network, vertices (V) are defined as healthcare facilities and edges (E) as the
patient trajectories that connect them. For each patient trajectory there is an origin i and target
j facility. The number of patients moving between facility i and j, is defined as w;;. Also referred
to as edge weights, in other words this measure represents the number of patients transferred
within the trajectories between two healthcare facilities over a defined period. The sum of the

edge weights of the adjacent edges, also called the strength, is given by:
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in which I'(7) is the set of neighbour facilities of i.(136)

It is often important to identify the shortest path among all that are possible between two vertices
in a network. The shortest path length € is given by the following distance:

£(i,)) = patr;gsl(rigj)lpathl

The diameter of a network corresponds to the maximum value of £(i, j) and the average shortest

path length’s behaviour depends on the type of network structure.(136)

In unweighted directed networks, the network distance between any two vertices i and j is
considered as the sum of the number of jumps or edges between the vertices where the unit
weights of each edge are equal. The shortest path between any two vertices in a network is the
minimum distance or sum of edges between them. In a weighted network, the edges can have
an unequal weight, where the weight is considered as a “length” of the distance between vertices
i andj. As a result, dubbed as “the shortest path problem” in a weighted network, the shortest
path between any two vertices is the path with the lowest sum of the edge weights of all edges
between them. One way to find the shortest path between any two vertices is to use a classic

algorithm proposed by Dijkstra.(138)

To identify the most important vertices or facilities of a network, a series of centrality measures
can be calculated. The degree of a facility, k, is the number of facilities one facility is connected

to through its patient trajectories (136) defined as:
ki = Z AU
J

The average degree of a network (136) is given by:

(k>_1zk _2E
2T
2

In addition, Aj is often a directed graph in which the directionality of patient transfers from one
facility to another is taken into account. Consequently, the indegree (deg’) and outdegree (deg")

of any given vertices can be measured in which the degree sum formula is given by:

> degt(v) = ) deg™(v) = IE|

vEV VeV
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The network clustering coefficient measures the number of formed triangles in the network. It
serves to give an idea of the density of links between vertices in the network and the probability

of neighbours of nodes to be connected.

Another measure, betweenness centrality, measures the importance of hospital acting as an

intermediary between other facilities defined as:

b= 310

S*+t

where betweenness centrality g(i) is equal to the sum of the oy the number of shortest paths
going from s to ¢ through facility i measuring the importance of facility i to the organization of

flows in the network.(136) The same measure can be calculated for edges:

g(e) = Za“—(e)

g,
eEeE st

where the edge betweenness centrality g(e) is equal to the sum of the oy the number of shortest
paths going from s to ¢ through edge e measuring the importance of edge e to the organization

of flow in the network.(136)

These basic network topology measures are a few of many measures that can help describe the
structure of healthcare networks and the patient transfer patterns forming them and their

potential implications on pathogen spread.

5.3 A theoretical basis of pathogen spread in networks

Network topology has been shown to have an effect on the rate and pattern of disease
spread.(139-141) Many models predicting spread of infections assume that infected individuals
have the same probability to infect all susceptible individuals of a population.(142) Although
this assumption allowed early modellers to produce differential equations to facilitate the
description of the infection, this did not reflect the true contact patterns.(139, 142) Individuals
have heterogeneous contacts in populations and interact with only a small subset of the
population. Since contact is required for transmission of pathogens, contact network structures
are essential in the understanding of pathogen spread dynamics.(141) Many of the first models
were developed in the 1980s and 1990s and assessed the spread of infections in networks.(143-
145) Mark Newman was one of the first researchers to describe and solve epidemiological
models of infection spread on networks.(139) His work described the variation of disease-

causing contacts, the disproportionate effect of highly connected individuals on dissemination,
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epidemic and non-epidemic outbreak size, and the effect of structured populations on spread in

networks.(139)

One of the first publications applying network theory to spread of pathogens in the healthcare
settings was published by Meyers et al. in 2003.(126) Basing their model on a real epidemic of
Mycoplasma pneumoniae in a physiatrist healthcare facility, the authors recreated a theoretical
representation of the HCW and patient contact network to estimate the epidemic threshold. They
determined that the extent and duration of the outbreak relied on the degree (number of
connections) of the HCWs. Soon after the SARS epidemic in 2002-2003, hospital transmission
and super-spreading events were identified to have substantially contributed to the
epidemic.(146) Meyers et al. explored the potential epidemiological outcomes of the SARS
epidemic and public health interventions using another theoretical contact network framework

to inform SARS spread dynamics.(127)

Before the SARS epidemic, at the end of the 20" century, regional and inter-facility HAI
outbreaks were being reported: Staph. aureus in New York in 1984 (147), MRSA in Canada in
1999 (148), VRE in the USA in 1999 (149, 150), and CPE in New York in 2000 (151). In
2001, Eveillard et al. found an association between HAIs in a 400-bed Parisian hospital and
patient transfers.(11) A few years later in 2004, Smith et al. published one of the first theoretical
models of HAI pathogen spread and infection control that took into account multiple healthcare
institutions linked by patient movement.(152) Along with another work describing the impact
of infection control strategies on neighbouring healthcare facilities, Smith et al.’s theoretical
work support regional coordination efforts to reduce HAIs, efforts that had been implemented

and evaluated in some previously aforementioned outbreak situations.(150, 153, 154)

Both theoretical network types (HCW and patient contact networks and healthcare networks
based on patient transfers) pointed to the importance of incorporating network structure to better
understand transmission dynamics, the predicted size of epidemics, and to support regional
coordination among healthcare facilities. Of note, heterogeneities of acquisition and
dissemination among health care facilities in the network were still yet to be explored. However,
the digital evolution in epidemiology opened new avenues for these types of models.
Incorporating real network data in their predictions had the potential to describe the
heterogeneities in networks such as the variations in connectivity of individual facilities and the

number of patients being exchanged.
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5.4 Models of pathogen spread on real healthcare networks

As support for the importance of considering healthcare networks in the dynamics of
pathogen spread gained ground, electronic medical records provided an opportunity for
researchers to use real data on admissions, discharges, and transfers to create real healthcare
networks that better reflected the heterogeneities of transfers.(17) Observed movement in
healthcare networks and the catchment area were first integrated into a model in 2007 by
Robotham et al. using 1.4 million admissions and discharges from three hospitals in the UK
over a seven-year period.(12) The authors found that there was a 44.2% chance of MRSA-

positive patients to be readmitted to these hospitals while still being colonised.

The first individual-based model on a nation-wide healthcare network of general, university,
and clinical hospitals was reconstructed in 2010 for the Netherlands.(13) This marked also the
first time network topology measures such as degree, in-degree, and out-degree were used to
explain the prevalence of MRSA in different types of facilities. The individual-based
healthcare network model can be generalised in Figure 11. The model considers both the
patient-level parameters and transition states but also the network structure of healthcare
facilities to inform the infection rate between them through their patient transfers (Figure 11).
In order to simulate spread, one can choose a random proportion of patients to infect in an
index hospital and the spread of the infection can be followed over time. The authors of the
first individual-based healthcare network found that infection spreads quickly from the index
hospitals and that due to the high degree or high connectedness and centralisation of patient
movement towards teaching hospitals, these hospitals were likely to have a higher HAI

prevalence.(13)
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Figure 11. Individual-based healthcare network model
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An individual based healthcare network model considers the transition states of individual or patients (i.e. SI
model given here in b) where a patient transitions from susceptible to infected and back to susceptible when the
infection or colonisation is lost) and we also consider the hospital-level dynamics that rely on the healthcare
network structure that determine the infection rates between healthcare facilities shown in a). A simulation could
give rise to ¢) where at the initial starting time to only one random patient is infected in Hy; at t; this patient
infects two contacts (one who stays in H; and one who is transferred to H»); at t, the H, contact infects an H,
contact at and then gets transferred to H; where they infect another contact; and at t; this H3 contact remains
infected while the other patients lose their infection. It should be considered that the rate of patient transfers
leading to infection in another hospital relies on a probability that takes into account the number of patient
transfers occurring between them. Therefore, a higher number of patient transfers leads to a higher rate of
infection between hospitals.

In 2011 Lee and colleagues published the first paper focused on the social network
characteristics of healthcare networks.(155) The authors found heterogeneous patient sharing
that led to hospitals being either highly connected or poorly connected (in terms of degree,

betweenness, density, and network ego measures).

The number of mathematical models integrating electronic discharge summaries of observed
patient transfers increased significantly during the 2007 to 2016 period.(17) In particular, a
computational software tool called the Regional Healthcare Ecosystem Analyst (RHEA) was
developed in 2013 to facilitate individual-based modelling of pathogen spread in healthcare
networks.(156) The tool considered admissions to general wards or the ICU both from the
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community and from hospital transfers. RHEA was used in particular to model healthcare
facilities in Orange County, California, that included acute-care and long-term care settings
such as nursing homes and modelled various pathogens such as MRSA, norovirus, VRE and

CPE.(157-160)

Overall, a series of publications assessed the role of hospital system-wide spread and control
through patient movement.(12, 156-167) In addition, data on transfers within a healthcare
network gave insights into sentinel selection for development of more effective sentinel
surveillance systems (14, 15, 161, 168) and supported improved coordinated regional
control.(158, 162, 166, 169) Finally, some models explicitly assessed the underlying network
structure of interactions through social network analyses of patient flows within hospitals (169-
174) and between hospitals.(13-15, 156, 160, 168, 175, 176) Finally, many studies show that
healthcare networks display a community structure in which communities reflected a shared

patient transfer population among healthcare facilities.(13, 16, 110, 175)

In summary, mathematical models of healthcare networks showed their value to inform
decision-makers on enhanced coordinated regional and national approaches to infection control
strategies, in a context where increasingly centralized healthcare systems favour the spread of

HAIs.(110, 112, 161)
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Chapter 6. First article - Use of network data in HAI spread models

6.1 Summary

As new and real data (meaning data produced by human activity) on networks have become
more widely available for research purposes (117, 177), an evaluation of their use in
mathematical models in the healthcare setting was deemed necessary to assess their contribution
to the understanding of infection risks. We conducted a systematic review of mathematical
models in the healthcare setting using real data on network structure in order to give a review
of the sources of network data and the methods (i.e. parameter estimation) used to integrate the
data in modelling studies in the healthcare setting over time.(17) The review also evaluated how
they may have improved the understanding of HAI transmission dynamics. The review covered
the temporal evolution of the scientific publication of these models, the country and type of
healthcare facilities modelled, the pathogens studied, the data sources, the objectives of the
research (in terms of infection control assessment or understanding HAI spread dynamics),

parameter estimation, and model cross-validation.

Network data has allowed mathematical models to have more realistic predictions of infection
dynamics in healthcare settings and systems. The review found that the number of publications
of models in healthcare settings has increased over the years; however, they remain limited to
high-income settings, the ICU and hospital settings, and to a limited number of pathogens. The
use of network data has also grown over the years with a wider diversity of data sources being
implemented into models such as shadowing or sensor data of HCW and patient contacts and
electronic medical records of patient transfers. These models have given rise to new insights
into more effective HAI prevention and infection control strategies such as hand-hygiene
practices and cohorting. However, settings such as long-term care facilities, data on infection,
model parameter estimation, and model cross-validation were found lacking and future research

should consider further expanding work in these fields
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Purpose of review

Mathematical modeling approaches have brought important contributions to the study of pathogen spread
in healthcare seftings over the last 20 years. Here, we conduct a comprehensive systematic review of
mathematical models of disease transmission in healthcare settings and assess the application of contact
and patient transfer network data over time and their impact on our understanding of transmission

dynamics of infections.

Recent findings

Recently, with the increasing availability of data on the structure of interindividual and interinstitution
networks, models incorporating this type of information have been proposed, with the aim of providing
more realistic predictions of disease transmission in healthcare seftings. Models incorporating realistic data
on individual or facility networks often remain limited to a few settings and a few pathogens (mostly

methicillin-resistant Staphylococcus aureus).

Summary

To respond to the objectives of creating improved infection prevention and control measures and better
understanding of healthcare-associated infections transmission dynamics, further innovations in data
collection and parameter estimation in modeling is required.

Keywords

hospital-acquired infections, mathematical modeling, networks, systematic review, transmission

INTRODUCTION

Despite advances in biology and medicine, the bur-
den of healthcare-associated infections (HAIs) has
increased over the last decades [1]. Indeed, HAIs are
the most frequent adverse event in health-delivery
settings affecting up to one in three patients in ICU
in developed countries [1]. The associated costs are
estimated to be seven billion euros in Europe, and
approximately six and a half billion dollars in the US
[2-4], where 722 000 HAIs occur yearly in acute-care
hospitals, resulting in 75000 deaths [5].

The HAI burden stems notably from the emer-
gence and spread of virulent infectious agents.
Multidrug-resistant bacteria such as methicillinre-
sistant Staphylococcus aureus (MRSA) and carbape-
nemase-producing Enterobacteriaceae (CPE), and
viruses such as influenza, severe acute respiratory
syndrome (SARS), Middle East respiratory syndrome
coronavirus (MERS-CoV) and Ebola have become of
concern for public health authorities in most
countries [1]. Prevention measures such as hand

www.co-infectiousdiseases.com

hygiene, isolation, antibiotic restrictions, staff
cohorting, and surveillance may significantly
impact HAI rates, decreasing in particular MRSA
and Clostridium difficile incidence by more than
70% [5].
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KEY POINTS

e Mathematical models of infections in healthcare settings
have become more frequent over the years.

e Increasing trends of models based on real data on
networks of individuals or facilities are due to perceived
usefulness as tools for infection prevention and control,
increased availability of digitalized medical records or
surveys, and development of sensor technology

e The range of pathogens, settings, and situations
explored by these models remains to this day highly
restrictive which may reflect limited data availability,
historical importance of certain infections (i.e., MRSA),
and high-risk HAI settings that require more infensive
HCW training and precautions (i.e., ICUs).

o The main contributions of models in terms of using real
data on networks are to develop more innovative and
realistic HAI control strategies and to better understanding
the impact of social networks on HAI spread.

DEFINITIONS

e Compartmental model: a model where a population is
subdivided into groups corresponding fo a status. For
example, the susceptible-infected-recovered model is a
basic compartmental model composed of three groups of
people with the following status: susceptible, infected, and
recovered. Each compartment contains a certain number
of people from the population presenting the status.

e Agentbased model: rather than grouping people in a
compartment in terms of their status, the agent-based
model studies each individual separately. These models
commonly study the connections between individuals
(patients and/or HCWs) with each other in terms of a
shared environment (ward, room) or through their
contacts (direct, indirect).

e Detferministic model: @ model in which the output is fully
determined by the initial conditions and parameter
values (usually a compartmental model formulated
using differential equations).

e Stochastic model: a model including inherent
randomness, in which, for a given set of initial
conditions and parameter values, an output distribution
is provided to account for uncertainty in predictions
(often used for small populations in which random
fluctuations are important).

e Social network: a network with components and links,
and within the scope of our review, they are either
contact networks of healthcare workers (nurses,
physicians and so on) and patients or of hospitals that
are linked by their patient transfers.

e Social network analysis: in the case of our review, it is
the assessment of the contacts or healthcare system
structures which can help identify ‘super-spreaders’ that
are highly linked and have the most potential to spread
disease in the network.

0951-7375 Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

Mathematical models have provided a theoreti-
cal framework for understanding complex trans-
mission dynamics within healthcare settings for
over 15 years [6-9]. Furthermore, they provide a
quantitative approach to estimating the impact
of various infection control strategies and their
combined effects [6,7,9,10].

Over recent years, detailed data informing on
the interactions between patients and healthcare
workers (HCWs) or patient transfers within and
between healthcare settings have been integrated
in such models. Patients transfers between hospitals
have been increasingly studied [11], as well as data
on contacts between patients and HCWs, in particu-
lar, digital trace measuring face-to-face proximity
[12,13] or individual movements [14].

Here, we conduct a systematic review of math-
ematical models in healthcare settings using such
real data on networks within institutions and
between institutions. We present an overview of
the methodological specificities related to the integ-
ration of network data in the different modeling
studies and we study how they may improve our
understanding and predictive capacity of HAI
spread in healthcare settings.

METHODS
We conducted a systematic search in three different
databases: MEDLINE (1946 to present), Web of
Science Core Collection (1956 to present), and Insti-
tute of Electrical and Electronic Engineers (IEEE)
Xplore Digital Library (1893 to present). Results
included all articles published until 26 January
2017, the final day of the search. All results from
the search query were independently screened by two
reviewers for inclusion criteria eligibility and selec-
tion after review of titles, abstracts, and then full
texts. Query structure, inclusion and exclusion
criteria can be found in Appendix 1 and 2, http://
links.lww.com/COID/A20.

We defined four lists to classify our selection
results:

(1) L: all studies meeting our first two inclusion
criteria comprising of all mechanistic models
of pathogen transmission within healthcare
settings. We use the term ‘HAI' in a generic
and inclusive way to encompass multidrugresist-
ant organisms such as MRSA, ESBL (extended-
spectrum beta-lactamases) producers, influenza,
and VRE (vacomycin-resistant enterococci)
among other pathogens.

(2) Ly: all studies from list L incorporating real
contact data (within institutions).

(3) Ly:all studies from list L incorporating real trans-
fer data (between institutions and/or wards).
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(4) Ls: all studies from list L that incorporate
explicit contact or transfer network structure
in healthcare settings without real data.

All studies using real data (L; and L) were
analyzed regarding various characteristics such as
pathogen studied, data sources, and model
parameters. We also compared L; and L, models
characteristics with L models characteristics using
Fisher exact and y? statistical tests.

RESULTS

Our search retrieved a total of 5653 distinct records
from the three databases (Fig. 1). After screening
titles and abstracts, a total of 216 studies were
selected for list L, including eight papers added
through reference searching. From this list, we
identified a total of 28 models using intra-hospital
contact data (L;) [15-40,41%,42"], 26 models using
inter or intrahospital transfer data (Lp) [43,44",
45-58,59%,60-66,67"",68], and 22 contact or trans-
fer network healthcare models without real data (L3)
[69-90].

Publication trends

Publication of mathematical models of pathogen
spread in healthcare settings has greatly increased
in recent years (Fig. 2; P<10~'!, Spearman’s rank
correlation). The first models including real network
data were published in 2002 and used directly
observed within-hospital data on inter-individuals
contacts [31,34]; the first model including data on
interfacility transfers was published in 2007 [47].

6320 records identified through database searching
2998 records from MEDLINE
2506 records from Web Of Science Core Collection
816 records from Xplore Digital Library

|

5653 distinct records identified after duplicates removed
(n=664)

8 additional articles
[e——————— identified through
references

16 '“‘;’:" “'“?dm an: 5438 records excluded after
::i:sse oruseofnetwork =¥ 45, hle review by RA & NN

| | |

28 data-drivenintra- 26 data-driven inter or 22 theoretical contact or
hospital contact intra-hospital transfer transfer network
models (L,) models (L,) hospital models (L;)

FIGURE 1. PRISMA diagram reviewing literature sources for
mathematical models that examined the transmission
dynamics in healthcare settings.
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FIGURE 2. Number of mathematical models of healthcare-
associated infections spread in healthcare settings published
over time. The total of all models published (L, in red), those
using real contact data (Ly, in green), those using real transfer
data (Lp, in purple), and those focusing on the impact of social
networks without real data (Ls, in blue) are depicted.

From these first publications on, the number of
yearly published L; (P=0.03, Spearman’s rank
correlation) and L, (P=0.02, Spearman’s rank
correlation) models have been increasing. Overall,
since 2002, L; and L, models represent 27% of L
models, with an increasing portion of L, models
(Suppl Figure 1, http://links.lww.com/COID/A20).

Pathogens studied and epidemic situations

MRSA was the most studied pathogen in L; and L,
models (44.1%) followed by: influenza (13.6%),
vancomycin-resistant Enterococci spp. (8.5%), HAIs
in general (8.5%), C. difficile (5.1%) and carbapene-
mase-producing Enterobacteriaceae (5.1%; Fig. 3).

FIGURE 3. Pathogens modeled in models using real contact
(L1) or transfer data (Ly).
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The distribution of pathogens studied in L; and L,
models did not differ significantly from that
observed in all models (P=0.09, Fisher exact test).

In general, L; and L, models either simulated
outbreaks of these pathogens in a susceptible popu-
lation or assessed the impact of long-term infection
prevention and control on the ongoing epidemic of
prevalent HAIs.

Healthcare settings

Out of 54 L, and L, models, 49 (91%) took place in
acute-care settings (Table 1a). The mean number of
healthcare settings in general included in the
models was 122 [range: 1-3306], with a median at
one of L; and at 98 of L, models. Ward-level descrip-
tion of HAI spread was present in 35% of publi-
cations (19/54), of which most modeled one ICU
(Table 1b). Only Karkada et al. [58] study was an
outlier, analyzing a total of 3306 ICUs in the US. L;
models had a median study size of 100 patients
[range: 2-3329] and 34 HCWs [range: 1-19508].
L, models incorporated a median of seven million
transfers [range: 130000-13 million].

Data sources

All transfer data were collected using electronic
patient records such as national medical and sur-
veillance registers [43,53,54], hospital discharge
summaries [45,47-49,51,60,62,65], or insurance
databases [58]. Data used to collect the contact

patterns between patients and HCWs came from
four main sources: shadowing — direct observation
of interactions between patients and HCWs, sur-
veys, medical records, and individual wireless prox-
imity sensors recording the identity of other sensors
located in a close area. Historically, between 2002
and 2006, shadowing was the first source of data on
contact networks in healthcare settings (Fig. 4)
[20,31,32,34,37]. During the period 2007-2011,
new methods of contact data collection appeared
such as medical records [19,25,28] and surveys
[17,18,38,40,41%]. Finally, following technology
innovations, proximity sensors were introduced in
four studies published over the period 2012-2016
[24,35,36,427].

Types of models

L; and L, models were mostly agent based, rather
than compartmental (43 vs. 12 models), and sto-
chastic, rather than deterministic (53 vs. 4 models)
[39]. These were significant differences with L
models (P < 107>, x* test).

Model objectives

L, and L, models all aimed at either assessing con-
trol interventions or better understanding HAI
spread and the impact of social networks. Inclusion
of data on social networks allowed simulating
more innovative and realistic infection prevention
and control strategies, including heterogeneous

Table 1. Type of (a) healthcare settings and (b) wards modelled in L;/L, models: total number of published models and
corresponding references. Five articles model studied both nursing homes and hospital settings (a)

(a)

Healthcare setting Number References
Hospitals 49 [15-23,26-37,39,41" 42" 43,44 45-50,52-58,59",60-66,67"",68]
Long-term care Nursing homes 9 [25,38,40,44"",45,60,63,66,68]
Tertiary care 4 [24,51,67%",68]
Total 62 (54 distinct articles)
(b)
Ward Number References
Emergency 1 [39]
General ward 4 [17,22,42"%,52]
Geriatric 1 [18]
Hemodialysis 1 [31]
ICU 10 [16,20,26,34,35,39,41%,52,58,67""
Pediatric 1 [36]
Surgical 1 [21]
Total 19
0951-7375 Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved. www.co-infectiousdiseases.com 413
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Number of publications

FIGURE 4. Contact data collection sources in models using
real contact data (L;): changes over time.

hand-hygiene compliance or cohorting levels
[16,19,22,27,31,32,34,35]. Hand-hygiene compli-
ance was the most common intervention studied
[20,22,27,29,31,34,35,37,39,40,41%,46,56], along
with antibiotic exposure [32,33], targeted or screen-
ing of patient groups or universal screening of all
patients atadmission [48,51,57], isolation [26,46,57],
and HCW vaccination [17-19]. Other models
explored the role of patient-HCW interactions
through variations in cohorting by modifying
patient: HCW ratios [16,31,34], social interactions
in hospitals [24,28,36], and hospital system-wide
spread and control through patient movement
[45,47-50,59%,60-66]. In addition, data on transfers
within a healthcare network gave insights into senti-
nel selection for development of more effective
sentinel surveillance systems [43,50,55,58] and
supported improved coordinated regional control
[23,45,59% 61,68]. Finally, some models explicitly
assessed the underlying network structure of inter-
actions through social network analyses of patient
flows in hospitals [19,23,30,35,87,89] and between
hospitals [50,53-55,58,64,65].

Parameter estimations and model
cross-validation

Around 17% of L; or L, studies included model
parameter estimation using observed infection or
colonization data, rather than simple calibration or
using values from the literature. Model predictions
were rarely cross validated with independent data-
sets (eight publications overall). In these aspects,
L; and L, models did not differ from L models
in general.

DISCUSSION

Mathematical models of infections in healthcare
settings have become more frequent over the years.
This increase may be because of multiple factors
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including perceived usefulness of models as tools
for understanding the impact of infection preven-
tion and control in the health field, for understand-
ing drivers of recent major epidemics such as the
2002-2003 SARS outbreak [15,78,91,92] and the
2014-2015 Ebola epidemic [42%,93-935], or growing
awareness of factors contributing to the global
impact of antibiotic resistance [96]. In parallel,
increased availability of digitalized medical records
or surveys, and development of sensor technology to
monitor interindividual contacts provide researchers
with the means to build more realistic models.

Review scope and limitations

In this systematic review, we conducted an exhaus-
tive search of articles studying pathogen spread in
healthcare settings through mathematical model-
ing. Using complementary databases (PubMed, Web
of Science, and IEEE Xplore Digital Library) was
important and necessary to find the articles ana-
lyzed in this review.

However, this review was subject to some limita-
tions. Given that the scope of this review involves
both health sciences and computational biology, we
could have included more databases in the com-
puter science field. In addition, we only considered
publications in English and French, which may have
limited the variety of country settings. Statistical
models were excluded because they did not meet
the objective of the review; however, these models
may also improve the understanding of transmission
dynamics of pathogen spread in healthcare settings.

Main results of the review and implications
for future work

Several points which have been raised by our review
may lead to recommendations for future modeling
work. The range of pathogens, settings, and situ-
ations explored by models based on real data on
networks of individuals or facilities remains to this
day highly restrictive. Hence, the increased realism
in the description of social networks is counterbal-
anced by the current limitations in the range of
investigated questions.

First, 80% of L;/L, models were set in a four
developed countries (the US, UK, the Netherlands,
and France), while L models considered a wider
variety of countries (Suppl Figure 2, http://links.
Ilww.com/COID/A20). This can be explained by
their use of more advanced data management
technologies, resulting in a better availability of
relevant data, as well as by the presence of a very
active community of modelers. However, HAIs also
represent a major issue in developing countries,
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mainly due to high antimicrobial resistance levels
and difficulties to afford second-line treatments
[97]. Future work should take these settings into
account.

Second, the most studied pathogen was MRSA,
followed distantly by influenza, HAIs in general and
vancomycin-resistant enterococci. Although this
was true of all models of HAI spread, the domination
of MRSA was even stronger in models incorporating
data on observed networks. This may be explained
by the large amount of available epidemiological
data on MRSA in healthcare settings, reflecting the
historical importance of MRSA in HAIs. In addition,
data on MRSA carriage are easily collected from
nasal or other surveillance swabs, while other patho-
gens such as Enterobacteriaceae require rectal swabs,
which can be more difficult to obtain. Although
MRSA has indeed represented a major threat over
the last decades, the incidence of MRSA infections
currently seems to be declining in most developed
countries, [97] yet other multiresistant bacteria such
as ESBL-producing Enterobacteriaceae become more
prevalent [98,99]. Future models should definitely
consider a wider range of pathogens.

Third, the vast majority of L; and L, models were
set in acute-care settings, with most ward-level
descriptions taking place in ICUs. ICUs are fre-
quently modeled because of their high risk of HAIs,
raised by a high number of invasive procedures in
critical-state patients, and require well informed
recommendations regarding control interventions.
Consequently, research funding in ICUs is more
prevalent and both data collection and implementa-
tion of control interventions are facilitated by better
informed ICU HCWs compared with other wards.
However, HAIs are also an issue in other types of
hospital wards, in which lower HCW-to-patient
ratios and decreased risk awareness may lead to
HAI outbreaks. On the health systems-level, the
majority of L, models described networks of hospi-
tals linked by their shared patients; only a few
recreated transfer networks between the wards of
a given hospital to study how the impact of infec-
tion prevention and control interventions may vary
depending on hospital ward specialties [46,51].
Intrahospital spread has been shown to be one of
the major reasons for transmission of SARS in Tor-
onto, Canada, and Taiwan and MERS-CoV in Alhasa,
Saudi Arabia, and Korea [100-102]. Future research
should attempt to include ward-level modeling as it
provides more specific and realistic patients and
HCW interactions that are overlooked when mod-
eling at the hospital level, and take into account
wards other than ICUs.

Additionally, models of HAI spread in settings
outside acute-care should be developed. For instance,

0951-7375 Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

the importance of nursing homes in the overall
spread of HAIs has been underlined. Factors such
as long length-of-stay of nursing home residents
have been shown to play an important role in
both driving sustained endemics of infections and
increasing the risk of epidemics in entire healthcare
networks [44™,60,63]. Similarly, the impact of trans-
mission in [28] or readmission from [47] community
settings on HAI transmission in healthcare settings
is rarely assessed among models using real data.
Research should focus on modeling nursing home
and community settings with collected data to better
understand the complexity of interactions within
healthcare networks and their impact on trans-
mission dynamics in healthcare settings.

Another important issue is the inclusion of
observed colonization or infection data in modeling
works to calibrate or validate model predictions.
Although models incorporating data on interindi-
vidual contacts or patient transfers are more likely to
have access to patient medical records or disease
status from HCWs, parameter estimation and model
validation using colonization or infection data
remains rare overall. A major objective of future
research should be to include observed infection
or carriage data collected simultaneously with the
network data, among the same individuals. Another
benefit of simultaneously collecting contact or
transfer data and infection data would be the possib-
ility of assessing the pertinence of network data to
help predict HAI spread. Indeed, although most
published models using network data implicitly
assume that interindividual contact and/or inter-
facility patient transfer networks drive HAI spread,
other factors may impact pathogen diffusion in
healthcare settings. Depending on the involved
pathogen, environmental contamination for
instance may play a major part. It is therefore of
the utmost importance to further investigate what
portion of the pathogen-specific diffusion risk may
be explained by network data [24].

CONCLUSION

Our review assessed the use of contact and transfer
network data in models over time and its impact on
understanding infection transmission dynamics in
healthcare settings. Models incorporating such data
were limited to a small number of countries, set-
tings, and pathogens, while there is a steady emer-
gence of network graphs to study the contact and
structure of patient movement and interactions
with HCWs. These models give new insights into
more effective HAI prevention and control strategies
in both endemic and epidemic situations. Further
innovations in data collection and use in modeling
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are required to improve understanding of trans-
mission dynamics to reinforce existing recommen-
dations and evaluate new control strategies.
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Chapter 7. The French medico-administrative database (PMSI)

Here we present the exhaustive database of patient discharge summaries that was exploited for
construction of the French healthcare networks of patient transfers. In addition, a literature
review assessing the use of this database for epidemiological research on HAIs was conducted

and the results are described.

7.1 Description of the database

The Programme de Médicalisation des Systémes d’information (PMSI) database or Program
for the Medicalization of Information Systems database in English (also known as the French
hospital discharge database) is a comprehensive French medico-administrative database of
hospital activity and patient discharge information.(178-180) Originally the PMSI was created
for calculating hospital activity for budget regulation and attribution; however, it has also been
used for epidemiological and medical research not related to cost analysis.(181) The database
is composed of patient discharge summaries in the form of the French equivalent of diagnosis-
related groups (DRGs): one primary diagnosis, one related diagnosis and up to 30 associated
diagnoses coded according to the International Classification of Diseases (ICD) tenth revision
(ICD-10).(180, 182) Each patient discharge summary contains information on the age, gender,
place of residence in the form of municipality zip code, the month and year of admission and
discharge, and the healthcare facility of stay in addition to the diagnoses. Each healthcare
facility is identified by a unique FINESS number (Fichier National des Etablissements
Sanitaires et Sociaux). Each patient stay is also numbered by order of stay across different
healthcare facilities. The PMSI is the largest French database on medical information in terms

of healthcare facility coverage.(179)

Since 2003, the PMSI has been part of a larger warehouse of data along with French health
insurance databases that together compose the National Health Insurance Information System
(Systéme national d’information inter-régime de 1’assurance maladie (SNIIR-AM)).(180) The
SNIIR-AM includes inter-scheme consumption data (données de consommation inter-régimes
(DCIR)) that include all outpatient reimbursed health expenditures. These data are managed by
the National Health Insurance Fund for Salaried Workers (Caisse nationale de 1’assurance

Maladie des travailleurs salariés (CNAMTS)).(180)

In 2004, the financing of health facilities was drastically changed to an activity-based pricing
system (T2A) where hospital budgets depended on the number of treated patients based on their
disease.(182) This applied only to activities under the medical, surgical, and obstetric (MCO)
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departments while the psychology and postoperative care and rehabilitation (SSR) were still
financed by an annual grant. As a result, the PMSI database is split into three parts: MCO, SSR
patient discharge summaries, and home hospitalisation (hospitalisation a domicile (HAD)).
Hospitals send their discharge summaries to the regional health agencies which in turn send the
data to the French Technical Agency on Hospitalisation Information (Agence Technique de
I'Information sur 1'Hospitalisation (ATIH)) which owns the data and makes it accessible for

research purposes.(180)

7.2 HAI detection in the database: a literature review

Because the PMSI database includes ICD-10 codes for the discharge diagnosis of patients, it
could be expected that identifying patients who were diagnosed with an HAI will be possible
from this database; however, the specific Y95 code for nosocomial infections is not
systematically used and other ICD-10 codes may be either not sensible or not specific enough.
Hence, a literature review was conducted to evaluate the validity of the PMSI database for
epidemiology research on HAIs and to assess appropriate inclusion criteria for HAI-related
diagnoses. The inclusion criteria for the review required studies to have evaluated the PMSI
database for general HAIs or specific HAIs in terms of sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), or used a test statistic comparing the
database to another source of HAI data. The review identified a total of 34 publications (as of
April 1% 2018) in the PubMed search engine of the MEDLINE database using the following

search terms:

(PMSI[Title/Abstract] OR  “Programme de Médicalisation des Systemes
d’information ”[Title/Abstract] OR HDD/Title/Abstract] OR “hospital discharge
database”[Title/Abstract] OR “hospital information system”[Title/Abstract] OR

“medico-administrative database " [Title/Abstract])
AND

(nosocomial*[Title/Abstract] OR infect*[Title/Abstract] OR pathogen|Title/Abstract]
OR pathogens|Title/Abstract] OR “hospital-acquired”[Title/Abstract] OR “hospital
acquired”[Title/Abstract] OR “hospital-associated ”[Title/Abstract])

AND

(“French”[Title/Abstract] OR “France”[Title/Abstract])
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A total of seven publications met the inclusion criteria.(18, 182-187) The results of these

studies are summarized in Table 3.

Table 3. Summary of publications assessing HAI detection in the PMSI database.

Reference

Objective

Study
population

Validity of PMSI
database

Evaluation
measure

Legras et al.

Cross-sectional

8821 patients,

Lab data and PMSI not

Urology unit: Se 65%,

seven strategies for
detection of HAIs in
ICU

Hospices Civils
de Lyon between
2000-2006

specificity for all HAIs
among strategies;
additional use of PMSI
did not improve
sensitivity overall but
had highest specificity
for UTI

1993(183) study comparing 13692 strains in sufficient for extensive | Sp 99 %

biological lab results | CHU Nancy understanding of HAITs;

of ICU to PMSI from 1989-1991 PMSI not specific and

database of HAIs only 50% coverage
Bouzbid et al. | Cross-sectional 1499 patients in PMSI had lowest PMSI only: Se 49%
2011(182) study evaluating 9 adults ICUs in | sensitivity and and Sp of 78%

Combined with other
strategies: Se 99%, Sp
54%

Gerbier et al.

Cross-sectional

General surgery

PMSI not sufficiently

SSIs: Se 26%, Sp

Colomban et
al. 2012(184)

study assessing
different strategies
for detecting

SSI using a
combination of
different sources

2007 in Hospices
Civils de Lyon
surgical unit

diagnosis codes was a
complement to detect
SSI when the patient
was already discharged

2011(18) study evaluating (446 patients, efficient method in 99.5%
PMSI to detect 2007), terms of sensitivity and | Expanded SSI codes:
HAIs ICU (1499 specificity of Se 79%, Sp 66%
patients, 2000- surveillance of HAIs ICU: Se 48%, Sp 78%
2006), obstetrics PPI: Se 43%, Sp 87%
(1081 patients,
2006) in
Hospices Civils
de Lyon
Gerbier- Cross-sectional 446 patients in Addition of discharge PMSI only: Se 26.3%,

Sp 99.5%
Combined: Se 87%,
Sp 86%

surveillance system
for detecting hip or
knee arthroplasty—
related infections

controls) from
2008-2010 in 23
French hospitals

conditions

of appropriate
algorithm for selecting
infections

Nuemi et al. Cross-sectional Average of 22.7 | Recommend use of the | Incidence density
2013(185) study evaluating million hospital PMSI data as an measured by InVS
PMSI data on stays and 11.6 additional source of higher than MRSA
MRSA incidence million patients information in the density using PMSI,
compared to in France 2006- hospital MRSA difference appeared to
national surveillance | 2009; 1417 surveillance process decrease over time;
data (InVS) MRSA infections year of study
significantly
associated with
incidence density in
PMSI (P =0.01)
Grammatico- | Case-control study 1010 hospital Potential of PMSI as Definition A: Se 97%,
Guillon et al. assessing the stays of 989 tool for routine SSI Sp 95%, PPV 87%,
2016(186) efficacy of PMSI as | patients (530 surveillance after low- | NPV 98%
a routine cases, 480 risk surgery, under Definition A, B: Se

98%, Sp 83%, PPV
72%, NPV 99%
Definition A, B, C: Se
98%, Sp 71%, PPV
63%, NPV 99%
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Sahli et al. Cross-sectional 4545 hospital Positive predictive Primary diagnosis:

2016(187) study evaluating the | stays in CHU values of overall PPV 97%
positive predictive Toulouse in 2014 | infections leading to Related diagnosis:
values of infection hospitalization in PPV 70%

codes as reason for
hospitalization as
coded in the PMSI

general population very
high in PMSI; details of
the codes were closely
consistent with type of
infection that occurred
Publications were identified using the MEDLINE database (up to April 1% 2018)

Se: sensitivity

Sp: specificity

PPV: positive predictive value

NPV: negative predictive value

InVS: Institut de Veille Sanitaire (French Institute for Public Health Surveillance)
PPI: postpartum infections

In 1993, Legras et al. found that the PMSI was not specific enough in identifying HAIs.(183)
Bouzbid et al. confirmed these observations arguing that the use of PMSI in HAI studies did
not improve sensitivity but they highlighted the advantage of using multiple existing data

systems to improve detection and monitoring of HAIs.(182)

In 2001, Gerbier et al. conducted an extensive sensitivity and specificity analysis using various
diagnostic codes for SSI and ICU-HALIs in the database and comparing them to lab confirmed
surveillance data.(18) Gerbier et al. used patient discharge summaries from the PMSI to detect
nosocomial infections in the University Hospital of Lyon in 2006 and 2007 for the identification
in surgery, intensive care and obstetric units. The authors compared the PMSI data to a gold
standard by doing a systematic review of patient files for those classified under surgery, the
Cpias/CClin Southwest surveillance network for ICU patients, and a combination of
surveillance data from Cpias /CClin and patient information data for obstetrics. The ICD-10
codes that were evaluated were those recommended by the surveillance network. For SSIs, the
authors also tested the impact of expanding the codes of potential SSIs in the database to assess
the performance of these codes on the sensitivity and specificity. Additional codes to those
recommended by the surveillance system for the ICU and obstetric units were not evaluated. A

summary of the results from the Gerbier et al. study (18) are shown in Table 4.

Table 4. Performance of HAI case detection in PMSI database by Gerbier et al.

Unit type and HAI sites

Sensitivity (95% CI)

Specificity (95% CI)

Surgical unit with limited ICD-10
codes for SSIs

26.3% (13.2-42.1)

99.5% (98.8-100)

Surgical unit with additional ICD-
10 codes for SSIs

78.9% (65.8-92.1)

78.4% (76.1-80.1)

ICU, all sites

48.8% (42.6-55.0)

78.4% (76.1-80.1)

Obstetrics, all sites

42.9% (25.0-60.7)

87.3% (85.2-89.3)

46




The additional codes for SSI detection were able to improve the sensitivity from 26.3% to
78.9%; however, the specificity reduced from 99.5% to 78.4%. The authors found in another
study that the sensitivity and specificity of SSIs improved to a sensitivity of 87% and specificity
of 86% when the PMSI was used in combination with other strategies.(184)

Other authors evaluated the ability of the PMSI to detect MRSA in comparison to data from
national surveillance network and found that the incidence density measured by the national
surveillance network was higher than the MRSA density calculated using the PMSI
databases.(185) A case-control study assessed the efficacy of PMSI as a routine surveillance
system for detecting hip or knee arthroplasty—related infections and found that the PMSI was
useful for low-risk surgery and under certain conditions when an appropriate algorithm for
selecting infections was used.(186) A cross-sectional study evaluating the positive predictive
values of infection codes as reason for hospitalization in 2016 found a 97% PPV for primary
diagnoses and PPV of 70% for related diagnosis for all infections, including some of those

classified as sensitive and specific to HAIs in the Gerbier et al. study.(18, 187)

Although they did not meet the criteria for the review, Fourquet et al. conducted a feasibility
study of the PMSI on HAI detection in 2003.(179) Fourquet et al. argued that the PMSI was not
suitable for epidemiological studies on HAIs due to the fact that the two criteria for HAIs (an
infection absent during admission that appears at least 48 hours after admission) and date of the
medical procedures were absent in the database. In addition, the ICD-10 Y95 code was hardly
used at the time and did not have any impact on the DRGs. However, they found that it was a
useful tool in that it has existed for many years, was readily available, and provided exhaustive
data. The authors also compiled a list of HAI-related codes in addition to the ICD-10 Y95 code
recommended for better detection of HAIs in the database that was complemented by the
Gerbier et al. study.(18, 179) Other studies also evaluated the PMSI for its diagnostic accuracy
included studies on tuberculosis (188) and encephalitis (189) but were not included in the

review.

Several conclusions can be made about the ability of the PMSI to detect HAIs from this review:
although the PMSI lacks precise medical information on HAIs such as the recorded date of HAI
events and source of infection, it does have the advantage of providing immediately available
data from the course of many years of reporting and provides a detailed account of hospital
stays; the performance of the PMSI (in terms of sensitivity, specificity, PPV, and NPV) to detect
either all infections or hip or knee arthroplasty—related infections has been shown to be robust

when using the studies’ algorithms (186, 187, 190); however, the performance of the PMSI to
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detect HAIs was sufficient only when investigators compiled a more comprehensive list of
diagnoses since the Y95 code did not have robust sensitivity and specificity alone.(18, 179) In
addition, in some studies the added value of the PMSI was only observed when it was combined
with other strategies of HAI detection such as the national surveillance system data.(182, 184)
It should be noted that the PMSI does not necessarily cover asymptomatic carriage of common
HAI pathogens. In addition, discharged patients initially diagnosed with an HAI may have been
cleared of their infection before being transferred. Therefore, the PMSI was found to provide a
large set of data that could contribute to the better understanding of the epidemiology of certain
HAIs; however, for the most robust assessment of HAIs in the database, a more comprehensive
algorithm of HAI-sensitive and specific diagnoses should be applied and limitations concerning

undetected pathogen carriage should be considered.
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Chapter 8. Second article — Analysis of the French healthcare networks

8.1 Summary

In recent years, the utility of reconstructing national healthcare networks in order to better
inform healthcare pathogens and MDRO spread dynamics and infection control practices has
been demonstrated.(17, 110) These studies have pointed to the advantages using healthcare
networks to identify healthcare facilities in order to develop more effective infection control
policy. Some examples include developing more effective sentinel surveillance systems,
improving coordinated regional control efforts, and identifying hospital communities and
hospitals that connect patients and MDROs that are geographically distant from one another.
However, studies of national healthcare networks have relied on the general patient population
in order to inform their mathematical models of pathogen spread. These models may have
overlooked the specificities of patients who may be at higher risk of acquiring healthcare setting
pathogens and whose transfer patterns may differ from that of the general patient population.
Therefore, our objective was to assess the potential differences between a general patient
healthcare network and a healthcare network of HAI-diagnosed patients in France. Thus, to
better understand how to reduce the potential scale of HAI epidemic spread, we explored patient
transfer patterns using the PMSI database of all hospital discharge summaries in France for the
year 2014.(191) We constructed and analysed three patient transfer networks: transfers of

patients with a HAI; of patients with a suspected HAI; and of all patients.

We found that all three networks had heterogeneous patient flow and demonstrate small-world
and scale-free characteristics, meaning that a small number of university hospitals had very high
connectivity to other healthcare facilities in France and that theoretically patients required on
two to three transfers in order to be admitted to any hospital in France. Patient populations that
comprised these networks were also heterogeneous in their movement patterns. Ranking of
hospitals by centrality measures, comparing community clustering using community detection
algorithms, and comparing the networks to a “null model” of random healthcare networks
showed that despite the differences in patient population, the HAI-specific and suspected-HAI
networks relied on the same underlying structure as that of the general network. We were able
to identify transfer patterns at both the French regional and sub-regional levels that could be
important in the identification of key healthcare facility clusters that may serve as a basis for
novel wide-scale infection control strategies. In conclusion, our study found that the general
network was potentially more reliable in studying potential spread of pathogens since the

structure of the network did not differ significantly from the HAI networks.
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Abstract

Hospital-acquired infections (HAIs), including emerging multi-drug resistant organisms,
threaten healthcare systems worldwide. Efficient containment measures of HAlIs must mobi-
lize the entire healthcare network. Thus, to best understand how to reduce the potential
scale of HAIl epidemic spread, we explore patient transfer patterns in the French healthcare
system. Using an exhaustive database of all hospital discharge summaries in France in
2014, we construct and analyze three patient networks based on the following: transfers of
patients with HAI (HAI-specific network); patients with suspected HAI (suspected-HAI net-
work); and all patients (general network). All three networks have heterogeneous patient
flow and demonstrate small-world and scale-free characteristics. Patient populations that
comprise these networks are also heterogeneous in their movement patterns. Ranking of
hospitals by centrality measures and comparing community clustering using community
detection algorithms shows that despite the differences in patient population, the HAI-spe-
cific and suspected-HAI networks rely on the same underlying structure as that of the gen-
eral network. As a result, the general network may be more reliable in studying potential
spread of HAIs. Finally, we identify transfer patterns at both the French regional and de-
partmental (county) levels that are important in the identification of key hospital centers,
patient flow trajectories, and regional clusters that may serve as a basis for novel wide-scale
infection control strategies.

Author summary

Hospital-acquired infections (HAIs), including emerging multi-drug resistant organisms,
threaten healthcare systems worldwide. Efficient containment measures of HAIs must
mobilize the entire healthcare network. Thus, to best understand how to reduce the scale
of potential HAI epidemic spread, we explore patient transfer patterns in the French
healthcare system. We construct and compare the characteristics of three different patient
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transfer networks based on data on transfers of patients with diagnosed HATIs, suspected
HAISs, or of all patients. Our analyses show that these healthcare networks, the patient
populations that comprise them and the patient movement patterns are heterogeneous
and centralized. Despite the differences in patient populations, the HAI-specific and sus-
pected-HATI healthcare networks have the same underlying structure as that of the general
healthcare network. We identify key hospital centers, patient flow trajectories, at both the
regional and department (county) level that may serve as a basis for proposing novel
wide-scale infection control strategies.

Introduction

The emergence and spread of multi-drug resistant organisms threatens healthcare systems
worldwide.[1] This is particularly true concerning methicillin-resistant Staphylococcus aureus,
vancomycin-resistant enterococci, and multi-resistant gram-negative bacteria such as carbape-
nemase-producing Enterobacteriaceae (CPE). Spread of CPE is now a global public health
problem associated with patient transfers between healthcare facilities within the same country
as well as across national borders, as shown in many recent studies.[2-7]

In recent years, patient transfer or referral data has been used to construct “healthcare net-
works” to propose innovative approaches for hospital infection prevention and control.
Healthcare networks are cooperative healthcare systems where hospitals and other healthcare
centers are linked by shared patients through secondary transfers or referral.[8, 9] Rather than
being exclusive to one sole hospital, as Ciccolini et al. argue, the extent of hospital-acquired
infection (HAI) spread is dependent on the healthcare network connected by inter-institu-
tional patient transfers.[8] Heterogeneous hospital patient populations and the interactions
that occur between them and with the community are important in the understanding of the
spatial spread of HAI between hospitals across geographic regions.[9]

As early as 2007, studies applied more complex social network analysis approaches to
reconstructed healthcare networks in order to demonstrate that infection control measures
that take into account network properties can decrease the risk for outbreaks.[8, 10] Lee et al.
consider network properties to assess the individual influence of different hospitals and the
impact of hospital proximities on HAI spread on a regional scale.[11] Many studies show that
healthcare networks display a community structure.[8, 12-14] Network analysis is especially
effective in the identification of sensor hospitals for surveillance of HAIs.[15, 16] In addition,
mathematical models of healthcare networks may serve to inform decision-makers on
enhanced coordinated regional and national approaches to infection control strategies, in a
context where increasingly centralized healthcare systems favor the spread of HAIs.[8, 15, 17]

Although national healthcare networks are informative regarding novel HAI control strate-
gies, the impact of reconstructing these networks based on a general patient population rather
than a HAI-diagnosed patient population has rarely been addressed. In this study, we assess and
compare French healthcare networks based on either patients diagnosed with HAIs or the gen-
eral patient population, in order to better understand the potential implications in terms of HAI
spread predictions. To that aim, we perform social network analyses to describe the different
patient flow patterns, network topology characteristics, and community clustering structure.

Results

We analyzed and compared three different networks built using transfer data from an exhaus-
tive database of all hospital discharge summaries in France in 2014: (1) a network based on
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Table 1. Networks characteristics of the French healthcare networks.

Network Characteristics
Patients

Patient Transfers

Hospitals

Patient Trajectories*
Average Edge Weight**
Average Degree***
Average In-Degree

Average Out-Degree
Average Betweenness***
Average Edge Betweenness
Average Closeness***
Diameter

Average Path Length

Global Clustering Coefficient
Density

transfers of patients with diagnosed HAI (HAI-specific network); (2) a network based on
transfers of patients with suspected HAI (suspected-HAI network); and (3) the network of all
patient transfers (general network).

Characteristics of healthcare networks

More than 10 million hospital transfers were recorded in France in 2014, for a total of 2.3 mil-
lion transferred patients, creating a hospital network of 2063 hospitals (nodes) and 50026
patient trajectories (edges) linking them (Table 1). Patients with a HAI-specific diagnosis cre-
ated a healthcare network of 1266 hospitals and 3722 connections for 13627 patient transfers.
A larger population of patients suspected to have an HAI infection formed a healthcare net-
work of 1975 hospitals and 18812 connections for a total of 128681 patient transfers. With the
increasing number of patient transfers, the networks increased from an average 5.88, 19.05,

and 48.05 average connections per hospital (average degree k) and an average 2.31, 4.92 to
14.02 transfers per connection (average strength s) for the HAI-specific, suspected-HAI, and

general healthcare networks respectively (Table 1).

Opverall, the three networks displayed “scale-free” and “small-world” characteristics that
indicated the presence of a small number of very highly connected hospitals with high degrees,
referred to as “hubs.” Analyses of the degree, strength, and shortest path length distributions
in addition to the small-world characteristics of the healthcare networks are discussed in S1-
S3 Texts and S1-S7 Figs. Compared to random networks, we also showed the general network
was more clustered and efficient in transferring patients (54 Text, S1 Table). We identified sev-
eral high degree hospitals in all three networks with a consistent outlier—the Assistance Publi-
que—Hopitaux de Paris (AP-HP)-a conglomerate of 39 hospitals predominately in Paris and
the Ile-de-France region represented as one hospital code in our database.[18] AP-HP also
acted as the most important intermediary hospital system in the networks due to having the
highest betweenness centrality measure.

General Network
2300728
1033239
2063
50026
14.02
48.50
24.25
24.25
5292.32
301.27
0.00016
30

2.99
0.23
0.012

Suspected-HAI Network
394859
128681
1975
18812
4.92
19.05
9.53
9.53
6338.81
852.23
0.000074
64

3.63

0.16
0.005

* Also referred to as edges, they represent the sum number of connections between the hospitals
** The average number of patients per trajectory
*** Measures of node (or hospital) centrality

https://doi.org/10.1371/journal.pchi.1005666.t001

HAI-Specific Network
21279
13627
1266
3722
2.31

5.88
2.94
2.94
3824.91
1556.94
0.000032
47

5.23
0.08
0.002
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Table 2. Healthcare facility types among the general, suspected-HAI, and HAIl-specific networks and their hub hospitals.

Health Facility Type General Suspected-HAI HAI-Specific
All facilities  Among All facilities | Among All facilities  Among
hubs* hubs* hubs*
(N=103) (N=99) (N=63)
Type SSR*** 38.00% 0.97% 37.22% 2.02% 35.31% 1.69%
1** MCO**** & SSR 36.74% 66.99% 38.13% 64.65% 44.63% 88.14%
MCO 25.25% 32.04% 24.66% 33.33% 20.06% 10.17%
Type 2T | Private hospitals authorized to provide SSR 30.63% 0 29.90% 1.03% 30.76% 1.72%
services
Acute-care hospitals or clinics 28.72% 30.69% 28.83% 31.96% 25.04% 5.17%
Hospital centers 23.50% 32.67% 24.44% 27.84% 30.29% 31.03%
Local hospitals 10.75% 0 10.77% 0 6.76% 0
University hospital centers'™ 1.47% 27.72% 1.53% 29.90% 2.38% 48.28%
Nursing home 1.27% 0.99% 1.22% 0 1.35% 0
Cancer centers 0.93% 3.96% 0.97% 4.12% 1.27% 3.45%
Other health facilities practicing under the 0.59% 0 0.56% 2.06% 0.48% 1.72%
healthcare law
Armed forces hospitals 0.44% 2.97% 0.46% 3.09% 0.72% 8.62%
Long-term care hospitals 0.39% 0.99% 0.41% 0 0.24% 0
Other facilities for mental health 0.39% 0 0.26% 0 0.08% 0
Medical homes for handicapped adults 0.34% 0 0.26% 0 0.32% 0
Hospital centers specialized in mental health 0.24% 0 0.10% 0 0.08% 0
Home care facilities 0.20% 0 0.15% 0 0.16% 0
Outpatient dialysis centers 0.10% 0 0.10% 0 0 0
Home care or outpatient care for the handicapped | 0.05% 0 0.05% 0 0.08% 0

The percent of different health facilities in the networks by Type 1 and Type 2 classification are given.
* Hubs are defined as facilities that comprise the top 5% of facilities by degree

** Type 1 refers to categorization of the general activities performed in the facility

*** SSR = postoperative and rehabilitation care (soins de suite et de réadaptation)

*#*** MCO = medical, surgery, and/or obstetrics care (médecine—chirurgie—obstétrique)

T Type 2 refers to the categorization of the facilities by hospital type or specialized services

Tt Often referred to as regional hospital centers (centre hospitalier régionale)

https://doi.org/10.1371/journal.pcbi.1005666.t002

The hospitals involved in the patient transfers recorded in the three networks were of vari-
ous types, including private rehabilitation and postoperative care facilities, acute-care hospitals
or clinics, and hospital centers (Table 2). However, the majority of hubs, defined as the top 5%
of hospitals by their degree, were large hospitals providing both acute and postoperative or
rehabilitation care (67%, 65%, and 88% in the general, suspected-HAI, and HAI-specific net-
works respectively). In addition, in the general and suspected-HAI networks, hubs were mostly
acute-care hospitals or clinics, hospital centers, or university hospitals centers, with many con-
centrated in the Ile-de-France, Marseille, and Lyon metropoles (31%, 33%, 28%, and 32%,
28%, 30% respectively). In contrast, university hospital centers rather than acute-care facilities
dominated the hub hospitals of the HAI-specific network, representing 48% of hubs (Table 2).
The hub university healthcare centers, which provided highly specialized services, included the
AP-HP, Hospices Civils de Lyon, and the Assistance Publique—Ho6pitaux de Marseille
(AP-HM); among them there were also university hospitals of other major cities in France.

To better understand the role of hub hospitals across the networks, the shared hospitals
between the networks were ranked based on their degree, closeness, and betweenness (Fig 1).
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Degree Betweenness Closeness
0
500 )
Hospital Rank
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1000
1000 - 1500
Wilcoxon Test
1500 p-ValueS <0.05
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HAISN GN SHAIN HAISN GN SHAIN HAISN GN SHAIN
Betweenness Closeness
0
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Random Rank
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1000
1000 . 1500
Wilcoxon Test
1500 p-values < 0.05
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Fig 1. Hospital rankings by degree, betweenness, and closeness across the networks. Hospitals in the HAI-specific network (HAISN)
(n=1266), suspected-HAI network (SHAIN) (n = 1975), and general network (GN) (n = 2063) are displayed vertically and plotted against their
ranking by degree, betweenness, and closeness centrality measures (top row). Only the hospitals shared between the HAISN and GN or the SHAIN
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and GN were linked. The color gradient refers to the hospital ranking for each centrality measure and the line colors correspond to the rankings of the
hospitals in the GN. We tested the differences in rankings by Wilcoxon rank sum test of an increasing subset of hospital degrees starting from the
highest rank and adding each consecutive rank and retesting. The grey area represents the range where the HAISN or SHAIN differed from the
general network hospital rankings. We chose rankings at random for the hospital degrees, betweenness, and closeness centrality measures for
comparison (bottom row). All random rankings were statistically different across the centrality measures between the HAISN and GN and the SHAIN
and GN shared hospitals.

https://doi.org/10.1371/journal.pchi.1005666.9001

Opverall, when comparing the degree, betweenness, and closeness, the hospital rankings did
not differ between the complete set of 1266 HAI-specific network hospitals and these same
hospitals in the general network (p = 0.81, p = 1, p = 0.99 respectively, Wilcoxon rank sum
test), or between the 1975 suspected-HAI network hospitals and the same hospitals in the gen-
eral network (p = 0.99, p = 1, p = 0.99, Wilcoxon rank sum test). For comparison and illustra-
tion purposes, we showed that random rankings for degree, betweenness, and closeness of all
hospitals differed significantly between patient specific networks and the general network

(p < 0.05 respectively, Wilcoxon rank sum test) (Fig 1).

Suspecting that the differences between rankings might exist between subsets of hospitals,
we tested the differences between rankings on an increasing subset of shared hospitals, starting
with the highest rank, adding the next ranked hospital, and testing for significant differences.
As a result, we determined the range of hospital rankings across the networks where the rank-
ings significantly differed. We defined significant differences as Wilcoxon rank sum test p-val-
ues under the 5% alpha risk which we represent as a grey area in Fig 1. Distributions of these
p-values are provided in S8 and S9 Figs. For the HAI-specific network, the range of statistically
significant degree ranking differences were observed between the 24 ranked hospital to the
1159 ranking hospital. For the suspected-HAI network, statistically significant degree rank-
ing differences were observed between the 405™ ranked hospital to the 1078 ranked hospital.

For hospital rankings based on betweenness and closeness centrality measures, the hospitals
ranked with highest and lowest centralities in the general network were also the hospitals
ranked with highest and lowest centralities ranking in the HAI-specific and suspected-HAI
networks. Even though hospital rankings of all hospitals did not differ, the majority did differ
for betweenness ranks between the 33" highest ranking to the 1183 ranking in the HAI-spe-
cific network and the 71*" highest ranking to the 1757 ranking in the suspected-HAI network
(p < 0.05, Wilcoxon rank sum test). Closeness rankings differences were observed for almost
all rankings after the first 3 rankings in the HAI-specific network and after the first 6 in the
suspected-HAI network. The lack of statistically significant differences for the highest rankings
may have been only due to insufficient power and for lowest hospital rankings due to a series
of repeating small closeness values. With this method, we highlight that differences do exist for
subsets of hospitals, but we also observe that the most highly connected hub hospitals were
consistently highly connected across the networks, irrespective of the different patient popula-
tion that connected them.

What community structures in patient sharing are observed?

To further assess patient movement patterns in the networks, we investigated how our health-
care networks displayed “community” or hospital clustering structure. We compared hospital
communities detected with two different community clustering algorithms: 1) the Greedy
algorithm [19] that selected members of the communities to maximize the density of links
between vertices as it reconstructed the network one vertex at a time and 2) the Map Equation
algorithm [20], based on network structure-induced movement using a flow-based and infor-
mation-theoretic method, detecting communities by measuring probability flows by taking
into consideration the directionality and weight of the edges. In general, we detected fewer
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Table 3. Community clustering distance.

Map Equation algorithm
Modularity
Number of communities
Average community size

Average community clustering distance (km)

Greedy algorithm
Modularity
Number of communities
Average community size

Average community clustering distance (km)

General Network Suspected-HAI Network HAI-Specific Network
0.764 0.716 0.698

132 160 193

15.63 12.34 6.56

30.51 23.63 22.86

0.863 0.847 0.830

18 21 36

114.61 94.05 35.17

39.01 41.60 31.40

Two community detection algorithms were used to assess community clustering for each network, both of which take into account weighted graphs. The
Greedy algorithm, developed by Clauset et al.[19] optimized modularity; however, it applied only to non-directed graphs. The Map Equation[20] algorithm
applied to directed graphs and detects communities based network structure-induced movement using a flow-based and information-theoretic method.
Average community size refers to the average number of hospitals within a detected community. For each community, the clustering distance in kilometers
was calculated as the average geographic distance between pairs of hospitals of the same community.

https://doi.org/10.1371/journal.pchi.1005666.t003

communities with the Greedy algorithm given that it seeks to maximize modularity-a value
that measures the density of links inside communities by comparing the fraction of edges
within the communities to the fraction in a random network; a maximum value of 1 corre-
sponds to a network structure with the highest strength possible-as a result, the algorithm
searched for the repartitions that maximized the density of the edges.[21-23] The Greedy algo-
rithm considered pairwise interactions and the formation of the network whereas the Map
Equation considered the interdependence of links and the dynamics of an already formed
network.

For each network, we calculated the modularity, the number of communities, community
size, and average community clustering distance using the Greedy and Map Equation commu-
nity detection algorithms (Table 3). For each community, the pairwise clustering distance was
calculated as the average geographic distance between all pairs of hospitals of the same com-
munity in kilometers. Compared to the general healthcare network, the patient-specific net-
works had more communities. In the HAI-specific network, there were on average 35.17
hospitals per community (SD = 44.31) and 31.40 kilometers between pairs of hospitals in the
same community (SD = 25.60 km). In the larger networks, the larger community sizes resulted
in a higher average distance between community hospitals (41.60 km (SD = 34.71) and 39.01
km (SD = 45.63) for the suspected-HAI and general healthcare network respectively). For the
Map Equation-based communities, as the number of communities decreased from the HAI-
specific to suspected-HAI to the general healthcare network, the average community size and
average community distance between hospitals of the same community increased (Table 3).
Overall, the suspected-HAI network was more similar to the general network than the HAI-
specific network in terms of community structure (S5 Text).

The regional community clustering using the Greedy algorithm in the three networks are
represented in Fig 2. The hospitals in communities were geo-localized, color-coded, and
labelled across the networks according to the administrative region(s) they encompassed. We
observed that the Greedy-based communities accurately reflected the French regional admin-
istrative structure (Fig 2). The identified community clusters formed hospitals communities in
which most of the patients were shared between hospitals of the same region frequently cen-
tralized towards the hub acute-care centers, university hospital centers, and general hospital
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Fig 2. Regional clustering of communities detected with greedy algorithm. Network hospitals and patient trajectories of the
healthcare network in France of (a) the general healthcare network, (b) the suspected-HAI healthcare network, and (c) the HAI-specific
healthcare network. In the general healthcare network, 18 communities were detected by the community clustering algorithm. Four of
the 18 communities identified by the algorithm combine hospitals from two regions each, such that the 22 geographical regions are
mapped into 18 communities. The original 22 French metropolitan regions before they were reformed to 13 regions implemented in 2016
are shown to correspond to the 2014 data. For the HAl-specific and suspected-HAI networks, the algorithm detected a higher number of
communities (36 and 21 communities respectively). The communities, which overlapped the same regional communities in the general
network, were given the same color and the newly detected communities were given different colors.

https://doi.org/10.1371/journal.pchi.1005666.g002

centers. On the other hand, the Map Equation-based communities displayed geographic com-
munity clustering at the French “departmental” or county level-the administrative division
between the administrative region and the municipalities, similar to “counties” or “districts”;
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Fig 3. The intercommunity networks of patient transfers. (a) The intercommunity network from the 18 detected general patient
network Greedy-based communities named based on the French metropolitan regions they encompass. Edge size and color indicate the
source community and number of patients discharged. (b) The intercommunity network from 113 Map Equation communities detected in
the general network. The nodes of the networks represent the geographical center of hospitals within the shared community.

https://doi.org/10.1371/journal.pchi.1005666.g003

of which 96 departmental divisions are present in continental France. The vast majority of
these departmental-level community clusters were acute-care centers followed by university
hospitals centers and long-term care facilities.

What are the patterns of patient transfer between communities?

To further understand the community structure, we constructed intercommunity networks by
combining patient flows between hospitals of the same community and across communities.
The Greedy-based intercommunity network was composed of 18 nodes representing the sum
of all patient transfers that occurred between hospitals of each community with 306 regional
transfer trajectories (Fig 3A). Out of the 22 French metropolitan regions in 2014, 4 pairs of 8
metropolitan regions were combined in this intercommunity network (Picardie and Cham-
pagne-Ardenne, Auvergne and Limousin, Aquitaine and Poitou-Charentes, and Bourgogne
and Franche-Comt¢). The network was completely connected. All regional communities were
connected to one another with an average of 4590 patients moving within these intercommu-
nity trajectories over the year. Certain trajectories played a larger role in patient movement,
notably Ile-de-France which admitted the largest number of patients from neighboring regions
Picardie and Champagne-Ardenne (4772 transfers) and Centre (3205 transfers) where health-
care hubs were most concentrated. The subsequent largest traffic came from the Rhone-Alpes,
the second largest regional center around the city of Lyon, which discharged patients to its
neighboring regions (1482 transfers to neighboring Bourgogne and Franche-Comté and

1342 transfers to neighboring Provence-Alps respectively). Nonetheless, the greatest amount
of transfers (93%) occurred within the communities themselves on average with up to 98%

of transfers occurring within Ile-De France for instance. Although most of these transfers
occurred within the communities, the regions remained highly interconnected and certain tra-
jectories played an important role in the interregional and nation-wide movement of patients
in France.
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Building the intercommunity network where community affiliation was determined by the
Map Equation algorithm allowed us to consider communities based on the directionality of
patient flow, which was overlooked by the Greedy algorithm. The intercommunity network
was composed of 113 community nodes with 3215 trajectories with an average degree of 57
and an average of 2597 patients moving between these connections (Fig 3B). Map Equation-
based intercommunity communities demonstrated more comprehensive department-level
patient flow. Communities were composed of hospitals from many different departments
within and across regions; however, the majority of communities were of hospitals within the
same department where most of the patient exchange occurred. Concerning the most impor-
tant transfer routes with the highest traffic, discharged patients coming from many neighbor-
ing departments were preferentially going to hospitals in one or a few number of departments,
indicating that there was interdepartmental centralization of patient movement. For example,
a community composed of 200 hospitals from 9 Ile-de-France departments sent the largest
number of transfers (3137 patients) to 28 hospitals of which 24 were from one department
(Val-d’Oise). In exchange, this 28-hospital community sent back 2772 patients to the larger
community. Overall, patient transfers in Map-Equation communities displayed departmental
clustering, but also demonstrated asymmetric movements of patients, concentrating towards
small communities of hospitals usually in one department, illustrating the different nature of
the communities.

Patient sharing patterns and community clustering in the networks were also analyzed
based on patient age groups in which new communities were identified (S6 Text, S10-S12
Figs). Moreover, analysis of monthly temporal dynamics of the networks showed that monthly
communities may be less clustered and patients may not visit all of the hospitals each month
but they still retained the same regional patient sharing patterns seen in the annual network
(S7 Text).

Do HAIl-diagnosed patients have specific transfer flows in the healthcare
network?

Having assessed the role of hospitals, hospital communities, and patient trajectories in each
network, we considered if the differences in the patient-specific networks and the general net-
works are due to the number of patient transfers that could lead to structural differences
between the specific patient population flows. We first compared the general patient network
to two sets of 1000 networks built from a subset of randomly chosen patients: in the first set we
selected the same number of patients as the HAI-specific network (21276 patients) at random
and in the second set the same number as in the suspected-HAI network (394859 patients) at
random 1000 times and reconstructed each network. Overall, both sets of random patient net-
works (RP) were smaller in size compared the general network in terms of the number of
nodes, edges, edge weight, and as a result average degree (Table 4). In addition, most of the
diameters and all average path lengths were larger in the RP networks. The diameters and path
lengths of the RP networks are skewed and not normally distributed (p< 0.001, Shapiro-Wilk
normality test). As a result, the number of patients used to reconstruct the networks did have
an impact of network characteristics.

We then compared the characteristics of the HAI-specific and suspected-HAI networks to
the RP networks with the same number of patients to assess if HAI patients modified network
structure differently than other patients. Overall, the RP networks were larger than their HAI-
specific and suspected-HAI healthcare networks analogues meaning that HAI patients were
transferred to fewer hospitals than other patients (Table 4). However despite these differences,
for some networks measures such as diameter, average path length, and global clustering
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Table 4. Network characteristics of the random patient networks.

Network Topology General

Measures Network (GN)
Nodes 2063
Edges 50026
Average Edge Weight | 14.02
Average Degree 48.50
Diameter 30
Average Path Length | 2.99
Global Clustering 0.23
Coefficient

Density 0.012
Average Edge 301
Betweenness

Average Total 1.6E-4
Closeness

Suspected-HAI 1000 Suspected-HAl-like | HAI-Specific Network | 1000 HAI-Specific-like RP
Network (SHAIN) RP networks (HAISN) networks
Mean (% < % < Mean (% < % <
GN SHAIN GN HAISN
1975 2032 | 100% | 0% 1266 1583 | 100% | 0%
18812 22139 | 100% | 0% 3722 3882 |100% |0.3%
4.92 543 |100% | 0% 2.31 1.62 100% | 100%
19.05 21.79 | 100% | 0% 5.88 4.91 100% | 100%
64 61.59 | 1.9% |63.0% 47 36.27 |7.0% |98.8%
3.63 3.78 | 0% 0% 5.23 8.24 0% 0%
0.16 0.19 |100% | 0% 0.08 0.09 100% |2.7%
0.005 0.005 | 100% | 0% 0.002 0.0016 | 100% | 100%
852 796 0% 100% 1557 2384 | 0% 0%
7.4E-5 1E-83 |100% | 11.5% 3.2E-5 1.7E-5 | 100% | 100%

Comparison of the healthcare network topology measures with the average measures of 1000 simulated random patient (RP) networks that were
composed of the same number of patients as the patient-specific healthcare network. The proportion of network measures equal to and less than the
general network and the proportion equal to and less than the patient-specific network measures are shown in percent %. Note: “E” refers to the E-notation
for the scientific notation of “x10” followed by the power.

https://doi.org/10.1371/journal.pcbi.1005666.t004

coefficient, there was less of a difference between the RP networks and the HAI networks than
the RP networks and the general network. For example, 63% of suspected-HAI-like RP net-
works had a diameter equal to or less than that of the suspected-HAI network (64) while 1.9%
of these networks had a diameter equal to or less than that of the general network (30). The
average diameter (61.59) and the average path lengths (3.78) of these RP networks approached
more of that of the suspected-HAI network than the general network. Thus having controlled
for the number of patients and thus the size of the network, the differences observed between
the suspected-HAI and the general network diameter and average path length may have been
due to the suspected-HAI network being a subset of the healthcare network rather than due to
differences between HAI patient transfer patterns and non-HAI patient transfers.

Discussion

In this study we show that the French healthcare networks have heterogeneous patient flows,
demonstrate characteristics of small-world and scale-free networks, and are characterized with
highly centralized movement of patients towards hub hospital centers. Hub hospitals are char-
acterized as university hospitals and private hospitals in the large metropoles that dominate
patient flow. The healthcare networks displayed two-level community clustering: regional
community clustering reflecting the French administrative structure, and department or
county-level clustering. Certain patient transfer trajectories play a more important role in
transferring patients between the regional and departmental communities. Despite differences
in the patient population and size, both the HAI-specific and suspected-HAI specific health-
care networks seem to rely on the same underlying structure as that of the general healthcare
network.

Due to weak sensitivity and specificity of the PMSI database to detect nosocomial infections
with the sole ICD-10 Y95 diagnostic, the HAI-specific network is not reliable in demonstrating
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the real patient movement patterns for those infected with an HAI.[24-28] There was no con-
firmation if an infection was absent during admission and if an infection appeared during the
first 48 hours of their stay. We suspect that the degree ranking differences and the low percent
of acute-care facilities, notably private hospitals, in the HAI-specific network may be due to
differences in coding practicing among hospitals rather than the epidemiology of HAIs. The
suspected-HAI network reflects a standardized list of diagnoses used by the French HAI sur-
veillance network which has been shown to be more specific and sensitive at detecting patients
with HAIs.[28, 29] Having considered the network size differences in the patient-specific net-
works and the general network, we show that despite the differences in size of the patient pop-
ulation, both the HAI-specific and suspected-HAI specific healthcare networks seem to rely on
the same underlying structure as that of the general healthcare network. Indeed, patient-spe-
cific networks are a subset of the general patient network and are subject to the same network
dynamics.

Public university hospital centers and private hospitals in the main metropoles of France
dominate patient flow. A study conducted in the Bourgogne region of France has shown that
patient flow was centered towards the university hospital that admitted patients from the entire
region and based on the regional proximity of the patients’ residence and patients also sought
care in two of the closest main healthcare hubs for specialized care (Paris or Lyon).[30] Highly
connected hospitals may harbor more MRSA and MRSA bacteremia cases and may have the
most potential to transmit HAIs in the entire network.[12, 13, 31, 32] HAIs may spread at a
higher rate than expected at random due to the centralization of patient movement and due to
the small average number of transfers required for patients to move throughout the network.
A 2012 point prevalence study has shown that HAIs are most prevalent in cancers centers, uni-
versity hospitals, and armed forces.[33] HAI prevalence was high in the Ile-de-France region
which has many hubs, and the north-eastern regions which were not reflected by a higher
number of transfers in the patient specific.[33] Albeit some difference in prevalence and
patient transfer patterns, hubs should be proposed as targets for sentinel surveillance in addi-
tion to priority targets of HAI control strategies where HAI is most prevalent to achieve the
most effective reduction in transmission across the country.[15]

Regional community clustering patterns as a form of network connectedness are also im-
portant in the development of strategies for coordinated HAI control.[8, 13] Our regional com-
munity clustering findings are consistent with that of the healthcare network of England in
which communities tend to share more patients among clusters of hospitals in addition to
patient flows centered towards a university hospital within the community.[13] Important inter-
mediary trajectories may play a key role in the spread of HAI between hub hospitals and between
communities. A study has shown that modifying the number of patients moving between com-
munities may reduce the spread of MRSA.[34] Furthermore, we demonstrated that a two-tier
hospital community exists. Depending on the clustering algorithm used, we identified clustering
of healthcare communities at the regional level, consistent with the French administrative
regions, and department-level communities and inter-departmental hospital clusters that took
into account the directionality of patient flow. Coordinated department-level control such as
screening of patients based on the identification of key department-level cluster admissions may
be the first line of defense against HAI spread within the regions before spread reaches the hub
university hospitals. We identified differences between department-level communities of the sus-
pected-HAI and the general network that were overlooked at the regional community level. This
may be important in distinguishing hospitals with higher potential to harbor HAI patients, with
possible consequences in terms of HAI spread prediction.

Studies have proposed reducing hospital connectedness in order to reduce the risk of epi-
demic spread of HAI in networks.[13, 35] Decentralization of the healthcare system and more
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specifically human resource and specialized health services towards the regional and depart-
ment levels may help reduce the high connectedness of hubs in the metropole centers and redi-
rect patient transfers. France has moved towards regionalization strategies with the creation of
regional hospital agencies, albeit not very effective.[36, 37] In addition, the number of univer-
sity hospitals may be insufficient, below that of the UK, a country with a similar population
size. We recommend increasing the number facilities providing specialized services and dis-
tributing them at the local level to help redirect patient flow and potentially avoid large-scale
HAI dispersal.

We considered temporal dynamics, masked in a network constructed with data for the
entire year of 2014, in which observed that monthly healthcare networks were smaller and dis-
played less centralized patient flow; hence, infection control strategies—for short-term control-
should rely more on the local department-level dynamics to minimize hospital-level outbreaks
and transmission to neighboring hospitals. In the long term, regional community dynamics
may give us clues regarding the gradual propagation of specific HAI pathogens over time
assuming HAI carriage patterns follow that of patient flow patterns in the healthcare networks.
Further studies are required to assess the temporal dynamics of HAI spread in networks to
identify any potential seasonality patterns of flow and how to prevent emerging multi-drug
resistant bacteria from becoming endemic.

Our study was subject to certain limitations which should be considered. Many of the uni-
versity hospitals represent more than one public hospital or healthcare facility due to sharing
the same identification number. For example, the largest outlier hub in Paris (AP-HP) repre-
sented 39 hospitals, 12 hospitals and 2 specialized health facilities constituted Hospices Civils
de Lyon, 9 hospitals make up the university hospital of Toulouse, and 4 hospitals make up the
APHM of Marseille. Consequently, university hospital centers accommodated a larger patient
population than hospital centers or local hospitals, influencing the network characteristics,
which may have led us to overestimate the specific patient movement patterns to and from
these centers. However, the high concentration of other hospitals especially hub private hospi-
tal centers, armed forces hospitals, cancer centers, psychiatric hospitals, and private post-oper-
ative and rehabilitation centers within proximity of these public hospital hubs demonstrates
that despite this, major cities such as Paris play the most important role in connecting patients
in the national network and that the French healthcare network is a highly centralized system.

The healthcare networks did not include patient flow from private nursing homes that have
been shown to play an important role in HAI spread.[38-42] Without private nursing homes
included in our study, our results only describe the network topology of hospital patient popu-
lations which may be both younger, have shorter duration stay, and may spread HAI differ-
ently than the complete nursing home population. As a result, transmission dynamics in our
networks may over or underestimate average hospital centrality measures, the volume of
patient movements, and the speed at which HAI can spread.

By considering all HAIs as a whole, our networks and recommendations reflect action for a
broad spectrum of HATs; however, one should consider that specific HAIs can vary in terms of
carriage and transmission patterns. In addition, recommendations based on our networks
would overlook the potential exposure to community-acquired infections, although these may
later spread in hospital settings, leading to healthcare-associated outbreaks. Future studies
should consider all potential components of patient exposure to both community-associated
and healthcare-associated infections and account for individual exposure histories to these
infections.

Despite these limitations, our study provides a first description and analysis of the health-
care networks in France. The identified characteristics and community structures may greatly
improve future inter-hospital HAI control strategies. The general patient network responds
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best to informing regional control strategies targeting key patient trajectories and hub hospital
centers. We show that the scale-free structure, the number of communities, and their distribu-
tion over the country remain qualitatively similar across all networks and that patient-specific
networks rely on the underlying structure of the general patient network. Future studies
should take into consideration network topology in the prediction of HAI spread and should
consider the potential impact of different community definitions for multi-level infection con-
trol strategies.

Methods
Materials

The Programme de Médicalisation des Systémes d’information (PMSI) database, a compre-
hensive French medico-administrative database of hospital activity and patient discharge
information, is used to construct the hospital networks.[24, 25] The PMSI database has been
used for epidemiological and medical research regarding HAIs.[24-28, 43] A lack of sufficient
specificity and sensitivity of the PMSI to detect HAISs is highlighted in these studies. Compari-
son between laboratory data and hospital data shows that the PMSI has limited coverage of
detecting nosocomial conditions.[25-28]

Hence, Gerbier et al. [28] use patient discharge summaries from the PMSI to detect nosoco-
mial infections in the University Hospital of Lyon in 2006 and 2007 for the identification of
HAISs in surgery, intensive care and obstetric units. They compare the PMSI data to a gold
standard by systematic review of patient files for those classified under surgery, the Centre de
Coordination de la Lutte contre les Infections Nosocomiales (CClin) Southwest surveillance
network for ICU patients, and a combination of surveillance data from CClin and patient
information data for obstetrics. The list of ICD-10 codes related to nosocomial conditions,
which we entitle “suspected-HAISs,” can be found in S1 Annex. Gerbier et al. find a sensitivity
and specificity for case identification of nosocomial infections to be 26.3% (95% CI 13.2-42.1)
and 99.5% (95% 98.8-100.0) for the identification of surgical site infections (78.9% and 65.7%
by expanding the number of diagnostic codes) respectively; 48.8% (95% CI 42.6-55.0) and
78.4% (95% CI 76.1-80.1) in intensive care respectively, and 42.9% (95% CI 25.0-60.7) and
87.3% (95% CI 85.2-89.3) for identification of postpartum infections respectively.[28]

Inclusion and exclusion criteria

Using patient transfer data from 2014, three healthcare networks are reconstructed based on
the following criteria:

= All patient transfers (non-specific diagnoses)

= Patient transfers with the ICD-10 code of Y95 (for nosocomial conditions or HAI) as their
principal, related, or associated diagnosis in the medical, surgery, obstetric hospitals
(MCO) and postoperative and rehabilitation centers (SSR)

= Patient transfers identified with all possible and suspected cases of HAIs in the surgical,
intensive care, and obstetric wards in 2014, by referencing the diagnoses with known speci-
ficities and sensitivities listed in Gerbier et al. publication[28] with supplementary informa-
tion from other publications.[24-26]

Only direct transfers of patients who are discharged from a hospital and sent to another in
another jurisdiction (“transfer”) or those who are discharged from one medical unit and move
to another in the same hospital jurisdiction (“mutation”) are included. The hospital discharge
summaries reflected the overall hospital stay of patients and a single diagnosis made them
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eligible without specification if it occurred during admission or at discharge. Patients who are
discharged to their residence or deceased in a hospital are excluded. Patients hospitalized in
non-continental European departments are also excluded.

Construction of patient transfer network matrices

First, the networks of hospitals and healthcare centers are re-built in silico using patient trans-
fer data to model the potential movement of patients with HAIs from one hospital to another.
In the PMSI database, each patient discharge summary contains information on the hospital
facility of stay. Each hospital facility is identified by its unique FINESS number (Fichier
National des Etablissements Sanitaires et Sociaux).[44] For this study, the FINESS and stay
number of each patient discharge summary are used to merge two PMSI databases: one for
acute-care and one for long-term care hospitals. Each patient stay is also numbered by order of
stay across different hospitals. To create the logical sequence of patient movement, we sort
each discharge summary: by patient ID and patient stay number for all observations.

The adjacency matrix [21], a graph of N nodes and E edges can be described by its’ N x N
adjacency matrix A defined as:

ij

= 1if i and j are connected
= 0 otherwise

In our patient transfer network, nodes (N) are defined as hospitals and edges (E) as the patient tra-
jectories that connect hospitals. We computed origin i and target j hospitals for each patient stay
by assessing if for each discharge the patient entered the hospital i as a transfer or mutation and
left hospital i as a transfer or mutation. The same is computed for each j hospital. Using the
iGraph package for R statistical software, we create the adjacency matrix of all i and j hospitals,
including i and j if i did not transfer out any patients but received them and vice versa for j.[45]

We also compute the number of patients moving between hospitals i and j, as w;;. The sum
of the edge weights of the adjacent edges, the weight strength, is given by:

wo__
$ =2 W

jer(

in which I'() is the set of neighbor hospitals of i.[21] Edge weights represent the number of
patients within the trajectories between two healthcare facilities.

To identify the most important hospitals of a network, a series of centrality measures are
calculated. The degree of a hospital, k, is the number of hospitals one hospital is connected to
through its patient trajectories [21] defined as:

k= A,
i
The average degree of a network([21] is given by:
1 2E
W= k=

In addition, Aj is a directed graph in which the directionality of patient transfers from one
hospital to another is taken into account. Consequently, we can calculate the indegree (deg)
and outdegree (deg") of any given node in which the degree sum formula is given by:

Y deg'(n) =7 deg (n) = |E

neN neN
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Betweenness centrality measures the importance of hospital acting as an intermediary between
other hospitals defined as:

o) =20

s#t Oy

Where betweenness centrality g(i) is equal to the sum of the o, the number of shortest paths
going from s to ¢ through hospital i measuring the importance of hospital 7 to the organization
of flow in the network.[21] The same measure is calculated for patient trajectories defined as:

gle) =3 %)

ecE Oy

where edge betweenness centrality g(e) is equal to the sum of the o,; the number of shortest
paths going from s to t through edge e measuring the importance of edge e to the organization
of flow in the network.[21]

Community clustering

Two community detection algorithms are used to assess community clustering for each net-
work, which both take into account weighted graphs.[45] A common measure of the quality of
partitions of a network into communities of densely connected nodes is modularity. Modularity
is a scalar value between the vales of -1 and 1 that measures the density of links inside communi-
ties compared to links between them.[21, 22] The modularity and different communities of our
network are defined using a community detection algorithm. The Greedy algorithm developed
by Clauset et al.[19] optimizes modularity as the algorithm relies on network formation and as a
result, computes a smaller range of communities as modularity approaches 1; however, the
Greedy algorithm does not take into account edge directionality and we detect communities for
undirected graphs of the healthcare networks. On the other hand, the Map equation algorithm
developed by Rosvall et al. detects communities based on patterns of flow and takes into account
edge directionality and the directed graphs are assessed.[20] This algorithm detects communi-
ties based on network structure and how it influences the system’s behavior.

Based on the community partitioning for each network, the mean geographic distance
between hospitals of the same community is measured. To geo-localize hospitals, we used public
government data on French hospital facilities and postal code addresses (https://www.data.gouv.
fr/). Using an online batch geocoding server (http://www.findlatitudeandlongitude.com/), the
hospitals’ addresses were converted to latitude and longitude coordinates. A distance matrix was
calculated using the haversine formula to measure great-circle distances between all hospitals.[46]

Two intercommunity matrices were developed to assess patient sharing between different
communities 1) Greedy algorithm-based communities 2) Map Equation-based communities.
Based on the algorithm, each hospital node is assigned a community number. A matrix sum-
ming the individual hospitals transfers for hospitals that share the same community is con-
structed and converted into a directed graph. In addition, the mean latitude and longitude are
calculated for each community from individual geocodes of the member hospitals. For the
Map Equation intercommunity network, the Greedy algorithm is applied to identify the num-
ber of communities present when modularity is maximized.

Ranking of hospitals

Hospitals were ranked by their degree, betweenness, and closeness centrality measures for each
network. When the centrality measures were equal, we replaced the rankings by the mean
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rankings. We tested the differences between rankings on an increasing subset of shared hospitals
with the Wilcoxon rank sum test. The test was conducted as follows: starting with the highest
ranked hospital in the general network, adding the next ranked general network hospital, and test-
ing for significant differences between the general network rank and either the HAI-specific or
suspected-HAI network rank of the same hospital until we compared all shared hospitals. As a
result, we determined the thresholds where hospital rankings across the networks start to signifi-
cantly differ which was defined as Wilcoxon rank sum test p-values under the 5% alpha risk.

Random patient networks

To compare the networks between each other, we built 1000 random patients networks from the
general network. We selected the same number of patients as either the HAT (21276 patients) or
suspected HAI networks (394859 patients) from the general patient network at random and
reconstructed these networks using their hospital discharge summaries. We calculated various
network measures and the proportion of random patient networks that had values greater than,
equal to, or less than the general patient network and the respective patient-specific networks.

Supporting information

S1 Annex. All transfer patients considered as suspected to have a hospital-acquired infec-
tion.
(PDF)

S1 Text. Power-law behavior: average strength s(k) as a function of degree k.
(PDF)

$2 Text. Power-law, log-normal, and Poisson distribution goodness-of-fit tests
(PDF)

$3 Text. “Small-world” network characteristics
(PDF)

$4 Text. Comparison with Erdos-Renyi random networks.
(PDF)

S5 Text. How do the communities vary across the networks?
(PDF)

$6 Text. Does the general healthcare network change with the age of the patients?
(PDF)

S7 Text. What are the temporal dynamics of the general healthcare network?.
(PDF)

S1 Fig. Average strength and degree distribution of the general network. The degree k rep-
resents the number of hospital connections of each hospital in the general network and the
average strength s(k) stands for the number of patient transfers as a function of degree. The
number of patient transfers and number of hospital connections were highly positively corre-
lated (r = 0.91). The best-fitting power law model was s(k) = k1.51 (dashed line). The curves
for s(k) = k (dotted line) and s(k) = 10"k (dash-dot line) are shown for comparison.

(PDF)

S2 Fig. Average strength and degree distribution of the suspected-HAI network. Distribu-
tion of hospital connections k of each hospital in the suspected-HAI network and the average
strength s(k) or number of patient transfers as a function of degree. The number of patient
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transfers and number of hospital connections were highly positively correlated (r = 0.95). The
best-fitting power law model was s(k) = k1.36 (dashed line). The curves for s(k) = k (dotted
line) and s(k) = 10"k (dash-dot line) are shown for comparison.

(PDF)

S3 Fig. Average strength and degree distribution of the HAI-specific network. Distribution
of hospital connections k of each hospital in the HAI-specific network and the average strength
s(k) or number of patient transfers as a function of degree. The number of patient transfers
and number of hospital connections were highly positively correlated (r = 0.99). The best-fit-
ting power law model was s(k) = k1.26 (dashed line). The curves for s(k) = k (dotted line) and
s(k) = 10*k (dash-dot line) are shown for comparison.

(PDF)

$4 Fig. Cumulative distribution functions and fit for degree and strength distribution of the
general, suspected-HAI, and HAI-specific network. Cumulative distribution functions of degree
k (top left) and strength s (bottom left) for the general network, suspected-HAI network (top cen-
ter, bottom center), and HAI-specific network (top right, bottom right). Fitted power-law (red),
log-normal (green), and Poisson (blue) distributions are shown when: x-min for degree = 77 and
strength = 1191 in the general network; x-min for degree = 20 and strength = 119 in the sus-
pected-HAI network; and x-min for degree = 7 and strength = 32 in the HAI-specific network.
(PDF)

S5 Fig. Cumulative distribution functions and fit for indegree and instrength distribution
of the general, suspected-HAI, and HAI-specific network. The cumulative distribution func-
tions of k- indegree for the general network (top left) and s- instrength (bottom left), sus-
pected-HAI networks (top center, bottom center), and HAI-specific network (top right,
bottom right). Fitted power-law (red), log-normal (green), and Poisson (blue) distributions
are shown when: x-min for indegree = 36 and instrength = 698 in the general network; x-min
for indegree = 13 and instrength = 131 in the suspected-HAI network; and x-min for inde-
gree = 5 and instrength = 18 in the HAI-specific network. Power-law and log-normal had
good fit for indegree and instrength in the three networks (KS-statistic p-values > 0.15) with
the exception of log-normal distribution of indegree in the general and suspected-HAI net-
work (KS-statistic p-value < 0.04). Poisson distribution was not a good fit for indegree and
instrength in all networks (KS-statistic p-value < 0.0001).

(PDF)

$6 Fig. Cumulative distribution functions and fit for outdegree and outstrength distribu-
tion of the general, suspected-HAI, and HAI-specific network. The cumulative distribution
functions of k+ outdegree for the general network (top left) and s+ outstrength (bottom left),
suspected-HAI networks (top center, bottom center), and HAI-specific network (top right,
bottom right). Fitted power-law (red), log-normal (green), and Poisson (blue) distributions
are shown when: x-min for outdegree = 101 and outstrength = 1102 in the general network; x-
min for outdegree = 27 and outstrength = 70 in the suspected-HAI network; and x-min for
outdegree = 7 and outstrength = 3 in the HAI-specific network. Only power-law distribution
had a good fit for both outdegree and outstrength (KS-statistic p-values > 0.41) while log-nor-
mal distribution was only a good fit for the HAI-specific network (KS-statistic p-value = 0.15).
(PDF)

S7 Fig. Shortest path length distributions in the networks. The length of the shortest paths
or steps between any two nodes in the networks are calculated and plotted by their frequency.
(PDF)
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S8 Fig. Distributions of p-values of hospital rank subsets using the Wilcoxon rank sum test
in the HAI-specific network compared to the general network hospital ranks.
(PDF)

S9 Fig. Distributions of p-values of hospital rank subsets using the Wilcoxon rank sum test
in the suspected-HAI network compared to the general network hospital ranks.
(PDF)

S10 Fig. Healthcare networks by age for all patients. Healthcare networks for all transferred
patients (a) aged 18 and younger (b) aged 18 to 60 (c) older than 60 years old. Greedy commu-
nities were colored by the corresponding general network community regions with additional
community color if not present for (a) 23 communities in which 3 were black (<5 hospitals)
(b) 17 communities in which 1 was black (<5 hospitals) (c) 29 communities in which 14 were
black (<5 hospitals).

(PDF)

S11 Fig. Healthcare networks by age for suspected-HAI patients. Healthcare networks for
all transferred patients (a) aged 18 and younger (b) aged 18 to 60 (c) older than 60 years old.
We detected a total number of Greedy-based communities for each age network (a) 22 total
and 19 with over 2 hospitals from a network of 1894 hospitals and 11234 edges (b) 30 total
with 17 with over 2 hospitals from a network of 1559 hospitals and 5423 edges (c) 29 total with
14 with over 2 hospitals per community from a network of 218 hospitals and 318 trajectories.
(PDF)

S12 Fig. Healthcare networks by age for HAI-specific patients. Healthcare networks for all
transferred patients (a) aged 18 and younger (b) aged 18 to 60 (c) older than 60 years old. Net-
work communities are detected using the Greedy algorithm and colored according to commu-
nity membership for (a) 1143 hospitals and 2260 edges with 50 total communities with only 28
composed of more than 5 hospitals (b) 603 hospitals and 593 edges with 41 total communities
and 19 with over 5 hospitals (c) 44 hospitals and 33 edges, 18 total communities, 2 communi-
ties with more than 5 hospitals, and 9 communities with more than 2 hospitals.

(PDF)

S$1 Table. Network characteristics of the Erdos-Renyi random networks. Comparison of the
healthcare network topology measures with the average measures of 100 simulated Erdos-
Renyi (ER) networks that are parameterized with same number of nodes, edges, and Poisson-
distributed average edge weight. For each measure, a t-test is conducted to compare the differ-
ence between the health network value and the average values of the ER networks with given
95% confidence intervals and p-values.

(PDF)
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S1 Annex. All Transfer Patients Considered as Suspected to have a Hospital-Acquired
Infection

Suspected-HAI patients are identified by the presence of at least one of the following
International Classification of Diseases, ICD-10 codes at the principal, related, or associated
diagnosis surveyed by the PMSI database [24, 28]:

Nosocomial condition: Y95

Surgical site infection: T814, T815, T816, T826, T827, T835, T836, T845, T846, T847, T857,
0860

Extensive infection: T813, T818, T888, T889, K316, K603, K604, K605, K632, K823, K833,
N360, N823, Z090, Z094, Z097, Z098, Z099, Z480, Z488, Z489, R50, R500, R501, R09, A40,
A400, A401, A402, A403, A408, A409, Adl, A410, Ad11, Ad12, Ad13, Ad14, A415, A418, A419,
A427, T874

Pneumonia: J10-,J11-,J12-,J13-,J14-,J15-,J16-,J17-, J18-

Urinary infection: N300, N34-, N390, 0862, 0863, T835

Bacteremia: A021, A207, A217, A227, A241, A267, A280, A327, A392, A393, A394, A40-, Adl-,
A427, Ad83, A499, A548, B0O07, B377, 0080, 0753, 085, P3600, P3610, P3620, P3630, P3640,
P3650, P3680, P3690

Endometritis: N710, N719, N72, 0235, O85

Breast infection: O91-

Uncategorized infections: 0861, 0864, O868
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S1 Fig. Average Strength and Degree Distribution of the General Network
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S1 Fig. The degree k represents the number of hospital connections of each hospital in the
general network and the average strength s(k) stands for the number of patient transfers as a
function of degree. The number of patient transfers and number of hospital connections were
highly positively correlated (r = 0.91). The best-fitting power law model was s(k)=k'*' (dashed
line). The curves for s(k)=k (dotted line) and s(k)=10*k (dash-dot line) are shown for
comparison.



S1 Table. Network Characteristics of the Erdos-Renyi Random Networks

HAI-Specific 100 HAI-Specific-like ER Suspected-HAI 100 Suspected-HAI-like ER General 100 General Network-like
Network networks Network networks Network networks
Network Topology P- P- P-
Measures Value Mean 95% CI value Value Mean 95% CI value Value Mean 95% CI value
19.05- 48.50-
Average Degree 5.88 5.88 5.88-5.88 1 19.05 19.05 19.05 1 48.50 48.50 48.50 1
27.43- 49.69-
Diameter 47 37.31 36.64-37.98  <0.001 64 27.83 28.23 <0.001 30 49.87 50.05 <0.001
Average Path 3.618- 2.735-
Length 5.23 6.55 6.54-6.56 <0.001 3.63 3.618 3.619 <0.001 2.99 2.735 2.735 <0.001
Global Clustering 0.0045- 0.0095- 0.02334-
Coefficient 0.08 0.0047 0.0048 <0.001 0.16 0.0096 0.0097 <0.001 0.23 0.02337 0.0234 <0.001
0.012-
Density 0.002 0.002  0.002-0.002 1 0.005 0.0048  1975-1975 1 0.012 0.012 0.012 1
Average Edge 3128.89- 988.07- 252.75-
Betweenness 1556.94 3143.72 3158.55 <0.001 852.23 989.39 990.70 <0.001 301.27 252.81 252.88 <0.001
Average Total 8.9e-5-9.7e- 5.79e-5- 1.89e-5-
Closeness 3.2e-5 9.3e-5 5 <0.001 7.4e-5 5.8e-5 5.81e-5 <0.001 1.6¢-4 1.89¢-5 1.90e-5 <0.001

S1 Table. Comparison of the healthcare network topology measures with the average measures of 100 simulated Erdos-Renyi (ER) networks that
are parameterized with same number of nodes, edges, and Poisson-distributed average edge weight. For each measure, a t-test is conducted to
compare the difference between the health network value and the average values of the ER networks with given 95% confidence intervals and p-

values.



S1 Text. Power-Law Behavior: Average Strength s(k) as a Function of Degree k

To better understand the heavy tailed behavior in the networks, we plotted average
patient transfers and hospital connectedness or degree using the following formula given by
Barrat et al.':

s(k) ~ kP

The general healthcare network’s average strength given as a function of degree £, s(k), varied
with a power B of 1.51 (S1 Fig). For the suspected-HAI networks and the HAI-specific network
average strength varies by a power of 1.36 and 1.26 as a function of degree respectively (S2 Fig,
S3 Fig). Therefore, in these healthcare networks, the number of patients transferred by a hospital
increased at a higher rate than that of the hospital’s connections and was most high in the general

network.

" Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architecture of complex weighted
networks. Proc Natl Acad Sci U S A. 2004;101(11):3747-52. doi: 10.1073/pnas.0400087101. PubMed
PMID: 15007165; PubMed Central PMCID: PMCPMC374315.



S2 Fig. Average Strength and Degree Distribution of the Suspected-HAI Network
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S2 Fig. Distribution of hospital connections & of each hospital in the suspected-HAI network and
the average strength s(k) or number of patient transfers as a function of degree. The number of
patient transfers and number of hospital connections were highly positively correlated (r = 0.95).
The best-fitting power law model was s(k)=k'*® (dashed line). The curves for s(k)=k (dotted line)
and s(k)=10*k (dash-dot line) are shown for comparison.



S2 Text. Power-Law, Log-Normal, and Poisson Distribution Goodness-Of-Fit Tests

Power law distribution of degree is a key characteristic of “scale-free” networks, in which
a small number of nodes are highly connected.'” We described the distribution of the degree and
strength of our directed healthcare networks and tested the fit of the (1) power-law, (2) log-
normal, and (3) Poisson distributions to the data (S4 Fig). Using a goodness of fit test via a
bootstrapping procedure, we found that the power law distributions had good fit for degree in all
three healthcare networks (Kolmogorov-Smirnoff (KS) statistic p-values > 0.07) evidencing that
they indeed displayed scale-free characteristics. The power law distributions for strength had
good fit in all three networks as well (KS statistic p-values > 0.2). Log-normal distribution was
also a good fit for degree in the three networks (KS statistic p-values > 0.27), as well as for
strength in the general and HAI-specific networks, but not in the suspected-HAI network (KS
statistic p-values = 0.02). Finally, Poisson distribution was not a good fit for either degree or
strength in all three networks, demonstrating that the healthcare networks were heterogeneously
distributed (KS statistic p-values < 0.001 for all).

Goodness of fit tests were also performed for distributions for k- indegree, k+ outdegree,
s- instrength and s+ outstrength, showing similar results (S5 Fig, S6 Fig). In addition, the average
strength as a function of degree also exhibited a power-law behavior, with higher power in the
general healthcare network, followed by the suspected-HAI network, and HAI-specific network
(S1 Text, S1 Fig, S2 Fig, and S3 Fig). Therefore, all three healthcare networks displayed scale-

free properties with a limited number of highly connected “hub” hospitals.

" Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architecture of complex weighted
networks. Proc Natl Acad Sci U S A. 2004;101(11):3747-52. doi: 10.1073/pnas.0400087101. PubMed
PMID: 15007165; PubMed Central PMCID: PMCPMC374315.

* Barabasi A-L, Albert R. Emergence of Scaling in Random Networks. 1999. doi:
10.1126/science.286.5439.509.



S3 Fig. Average Strength and Degree Distribution of the HAI-Specific Network
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S3 Fig. Distribution of hospital connections k of each hospital in the HAI-specifc network and
the average strength s(k) or number of patient transfers as a function of degree. The number of
patient transfers and number of hospital connections were highly positively correlated (r = 0.99).
The best-fitting power law model was s(k)=k'?*® (dashed line). The curves for s(k)=k (dotted line)
and s(k)=10*k (dash-dot line) are shown for comparison.




83 Text. “Small-world” network characteristics

In addition to assessing the scale-free properties of the networks, we assessed the “small-
world” characteristics to determine if nodes were closely within reach of all others in the network.
Small average path length and large clustering coefficients are indicators of a small-world effect.’
All three healthcare networks had smaller diameters and smaller average path length given their
size compared to Erdos-Renyi random networks (S4 Text, S1 Table), indicating that hospital
subpopulations were within close topological proximity to one another and that patients, once
admitted to any hospitals, could be more easily sent to all hospitals in the network within a few
number of transfers (Table 1). The largest network in size, the general patient network, had a
diameter of 30, defined as the longest of the shortest distance between any two nodes in the
network, and an average path length of 2.99, given by the average shortest path between all
possible pairs of connected nodes in the network. In S7 Fig, the distribution of the shortest path
lengths across the networks is shown. The general network has a higher frequency of path lengths
between zero and five whereas in the HAI-specific networks, the frequency is reduced and the
longer path lengths become more frequent. Therefore, hospitals within the general network were
more efficient in transfer patients.

Further analysis of the networks also supported this observed small-world characteristic.
Graph density, as observed in the three networks, is the total proportion of existing edges out of
the potential edges that can exist to connect all nodes together. Computation of densities indicated
that only 0.2%, 0.5%, and 1.2% out of all possible connections exist in the HAI-specific,
suspected-HAI and general patient networks respectively (Table 1). Hospitals shared patients
with a limited number of other hospitals in the network. Moreover, the global clustering

coefficient (GCC), which gives an overall indication of the clustering or number of triangles

! Watts DJ, Strogatz S, H. Collective dynamics of 'small-world' networks. Nature. 1998;393(6684):440-2.
doi:10.1038/30918.



(triplets of nodes) existing among the possible connected ones,” was high in the three networks
compared to a random network of the same size (S4 Text, S2 Table), especially in the general
healthcare network. Therefore, hospitals sending patients to the same hospitals were more likely

to be linked together by patient sharing.

? van der Hofstad R. Random Graphs and Complex Networks. Eindhoven: Cambridge University Press;
2016.



S84 Fig. Cumulative Distribution Functions and Fit for Degree and Strength Distribution of the
General, Suspected-HAI, and HAI-Specific Network
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S4 Fig. Cumulative distribution functions of degree & (top left) and strength s (bottom left) for the
general network, suspected-HAI network (top center, bottom center), and HAI-specific network
(top right, bottom right). Fitted power-law (red), log-normal (green), and Poisson (blue)

distributions are shown when: x-min for degree = 77 and strength = 1191 in the general network;
x-min for degree = 20 and strength = 119 in the suspected-HAI network; and x-min for degree =
7 and strength = 32 in the HAI-specific network.



84 Text. Comparison with Erdos-Renyi Random Networks

Given that the healthcare networks differ in size, they cannot be compared directly for all
network properties. To further assess the distinct properties of the healthcare networks, we
compared each of the three healthcare networks to 100 simulated Erdos-Renyi (ER) random
directed networks parameterized with the same number of nodes, edges, and average edge weight.
We constructed 100 Erdos and Renyi random networks' with the same number of nodes, edges,
and a Poisson distributed edge weight corresponding to total transfers of the three networks. In
the Erdos-Renyi model, the fixed number of nodes have the same probability of being connected
by a fixed number of edges.”

As expected, the random networks displayed less small-world characteristics compared to
the healthcare networks. Overall, healthcare networks were more clustered than ER networks (S1
Table). Diameter was smaller in the general healthcare network and larger for the HAI-specific
and suspected-HAI networks compared to the average ER network. Average path length was
larger in the general healthcare network and suspected-HAI network and smaller in the HAI-
specific network indicating that in the HAI-specific network have a closer average distance
between any two nodes than that of an ER network. The larger path length in the two largest
healthcare networks compared to ER networks may be due to the more heterogeneous distribution
of path lengths in the healthcare networks where the distribution of path lengths may vary
between highly connected and highly disconnected hospitals. The average total closeness was
much smaller in the suspected-HAI network and general network random networks, indicating
that hospitals in these networks will be able to disperse their patients in the network quicker,
while in the HAI-specific network, patient movement was slower than in an average ER network

(S1 Table).

" Erdos P, Renyi A. On random graphs. Publicationes Mathematicae. 1959;6:290-7.



Heterogeneity in patient trajectories and community clustering also distinguish the
healthcare networks and ER networks. Another possible contribution to efficiency of patient
movement in the general healthcare network may be due to higher average edge betweenness
(301) and a higher maximum edge betweenness (1175) compared to ER networks (252.81 95%
CI[252.75-252.88] and 32.02 95% CI [31.74-32.30] in the ER networks respectively). While
compared to the average ER network, the average edge betweenness in the HAI-specific and
suspected-HAI healthcare networks were lower, maximum edge betweenness of the HAI-specific
(73) and suspected-HAI healthcare networks (314) were higher, demonstrating that flow was
concentrated in a small number of edges and less evenly distributed in these healthcare networks
(S1 Table). ER networks display a smaller number of communities. Hospitals within the same
community were geographically further away from one another on average than in the healthcare
networks (with the exception of Map Equation-detected communities in the suspected-HAI
network). In résumé, the healthcare networks had more centralized and efficient patient flow
concentrated in a small number of nodes and edges while the general patient network was more

clustered and efficient compared to both the smaller healthcare networks and ER networks.



S5 Fig. Cumulative Distribution Functions and Fit for Indegree and Instrength Distribution of
the General, Suspected-HAI, and HAI-Specific Network
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S5 Fig. The cumulative distribution functions of k- indegree for the general network (top left) and
s- instrength (bottom left), suspected-HAI networks (top center, bottom center), and HAI-specific
network (top right, bottom right). Fitted power-law (red), log-normal (green), and Poisson (blue)
distributions are shown when: x-min for indegree = 36 and instrength = 698 in the general
network; x-min for indegree = 13 and instrength = 131 in the suspected-HAI network; and x-min
for indegree = 5 and instrength = 18 in the HAI-specific network. Power-law and log-normal had
good fit for indegree and instrength in the three networks (KS-statistic p-values > 0.15) with the
exception of log-normal distribution of indegree in the general and suspected-HAI network (KS-
statistic p-value < 0.04). Poisson distribution was not a good fit for indegree and instrength in all
networks (KS-statistic p-value < 0.0001).



S5 Text. How do the communities vary across the networks?

Healthcare networks displayed differences in community clustering of their hospitals which could
be important to better understanding activity in the national healthcare system. Visually,
community clustering was similar across the three networks (Fig 2). However, on average, each
of the 18 Greedy-based community nodes in the general network (Fig 2a) had hospitals belonging
to 4.11 different HAI-specific Greedy-based communities (Fig 2c). These 4.11 communities were
not evenly distributed and most hospitals in a general network community belonged to only one
dominating HAI-specific community. The dominating HAI-specific communities made up for
78% of the general network community hospital composition for shared hospitals between the
two networks. Similarly, on average one general network community was made up of hospitals
from 2.56 different suspected-HAI communities (Fig 2b). In addition, one suspected-HAI
community made up most (92% of the shared hospitals on average) of the general network
community composition. As a result, HAI-specific and suspected-HAI healthcare network
hospitals shared most of the community composition found in the general network. When taking
into consideration only communities containing at least 2 hospitals, the suspected-HAI network
had an equal number of communities as the general network for both algorithms (18 Greedy-
based communities and 112 Map Equation-based communities). Therefore, the suspected-HAI
healthcare network had very similar community patient sharing structure compared to the general
network for both algorithms while the HAI-specific network less so, demonstrating that hospitals

transfer HAI-specific patients differently than other patients.



86 Fig. Cumulative Distribution Functions and Fit for Outdegree and Outstrength
Distribution of the General, Suspected-HAl, and HAI-Specific Network
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S6 Fig. The cumulative distribution functions of £+ outdegree for the general network (top left)
and s+ outstrength (bottom left), suspected-HAI networks (top center, bottom center), and HAI-
specific network (top right, bottom right). Fitted power-law (red), log-normal (green), and
Poisson (blue) distributions are shown when: x-min for outdegree = 101 and outstrength = 1102
in the general network; x-min for outdegree = 27 and outstrength = 70 in the suspected-HAI
network; and x-min for outdegree = 7 and outstrength = 3 in the HAI-specific network. Only
power-law distribution had a good fit for both outdegree and outstrength (KS-statistic p-values >
0.41) while log-normal distribution was only a good fit for the HAI-specific network (KS-statistic
p-value = 0.15).



86 Text. Does the General Healthcare Network Change with the Age of the Patients?

To better categorize the patient profiles in the healthcare networks, we assessed the age
distributions of patients since different age populations may display varied pathologies,
vulnerabilities, and risks for HAI transmission. Patients across the networks were characterized
by older age with an average age for all transferred patients of 61.18 (SD=22.09), an average age
of 55.25 (SD=21.65) for patients suspected to have an HAI, and an average age of 64.94
(SD=18.51) for patients diagnosed with an HAI. Women tended to be slightly older than men in
the general and HAI-specific networks (p < 0.05, t-test). The oldest patient population was in the
postoperative and rehabilitation centers for all transferred patients and those suspected to have an
HAI (average of 68.60 (SD=18.35) and 67.45 (SD=17.40) respectively).

To assess potential changes in community clustering due to age groups, we reconstructed
3 age-specific networks (1) less than or equal to 18 years old (2) between 18 and 60 years old (3)
over 60 years old. Not surprisingly, we found that the largest network was of transfer patients
over the age of 60. Results are shown for all transferred patients in S7 Fig and for HAI and
suspected-HAI patients in S8 Fig and S9 Fig respectively. As expected, patients over the age of
60 formed a similar network to that of all patient transfers with 1996 nodes, 31427 trajectories,
and 23 Greedy communities of which only 21 had more than 5 hospitals (S7a Fig). The middle-
aged network was second largest with 1985 nodes, 18304 trajectories, and 17 communities of
which 16 had more than 5 hospitals (S7b Fig). On the other hand, children and adolescents
consistently made up smaller networks and for all transferred patients of this age group, they
created a network of 575 nodes, 1349 trajectories, and 29 communities of which 15 had more
than 5 hospitals (S7c Fig). The Greedy-based communities displayed regional geographic
clustering of hospitals, differed between age groups, and differed from the general healthcare
network. Most importantly, we saw an introduction of three new regional communities in the

oldest age group not previously identified (S7a Fig).



To better understand age distribution, which may also play a role in patient movement
patterns, we compare the networks obtained for different patient age groups. Although the
network is small, we identified that adolescent patient movement is different than that of older
patients in terms of relative community size for the largest communities. We identify three new
communities unique to patients over the age of 60 that displays some difference in community
composition than the general network, which may interest decision makers targeting elderly

populations.



87 Fig. Shortest path length distributions in the networks
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S7 Fig. The length of the shortest paths or steps between any two nodes in the networks are
calculated and plotted by their frequency.



S7 Text. What are the Temporal Dynamics of the General Healthcare Network?

To investigate any existing temporal dynamics of patient admissions, we assessed the
number of admissions by month. Patient admissions per month remained stable over the year with
a small drop in August during the holidays with an overall monthly average of 979,142
admissions.

We assessed and compared the monthly healthcare networks from the general patient
population in order to identify how the healthcare networks changed in size and how patterns of
patient flows compared over time. On average, monthly networks were composed of fewer
hospitals than the cumulative yearly network (2063 hospitals compared to an average 1218
hospitals 95% CI [1080-1357], p-value < 0.001, t-test). As a result, the number of hospitals
connections and the number of patients moving between them was reduced over monthly
intervals. We also observed that these networks were slightly less clustered (0.23 GCC in the
cumulative network versus an average 0.17 GCC 95% CI [0.17-0.18], p-value < 0.001, t-test)
with a larger diameter (30 in the cumulative network versus an average 45.83 95% CI [40.74-
50.93], p-value < 0.001, t-test) and path length (2.99 in the cumulative network versus an average
4.86 95% CI [4.77-4.95], p-value < 0.001, t-test) per month on average. Regarding Map Equation
communities, monthly networks on average had a smaller number of communities including
when considering only communities with more than one hospital (p < 0.001, t-test). On the other
hand, there was a larger number of Greedy communities in the monthly networks overall but no
difference in number and localization of communities when considering only communities with
more than one hospital. Monthly communities may be less clustered and patients may not visit all
of the hospitals each month but they still retained the same regional patient sharing patterns seen

in the annual network.



S8 Fig. Distributions of p-values of hospital rank subsets using the Wilcoxon rank sum test in
the HAI-specific network compared to the general network hospital ranks
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89 Fig. Distributions of p-values of hospital rank subsets using the Wilcoxon rank sum test in
the suspected-HAI network compared to the general network hospital ranks
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810 Fig. Healthcare Networks by Age for All Patients

S10 Fig. Healthcare networks for all transferred patients (a) aged 18 and younger (b) aged 18 to
60 (c) older than 60 years old. Greedy communities were colored by the corresponding general
network community regions with additional community color if not present for (a) 23
communities in which 3 were black (<5 hospitals) (b) 17 communities in which 1 was black (<5
hospitals) (c) 29 communities in which 14 were black (<5 hospitals).



S11 Fig. Healthcare Networks by Age for Suspected-HAI Patients
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S11 Fig. Healthcare networks for all transferred patients (a) aged 18 and younger (b) aged 18 to
60 (c) older than 60 years old. We detected a total number of Greedy-based communities for each
age network (a) 22 total and 19 with over 2 hospitals from a network of 1894 hospitals and 11234
edges (b) 30 total with 17 with over 2 hospitals from a network of 1559 hospitals and 5423 edges
(c) 29 total with 14 with over 2 hospitals per community from a network of 218 hospitals and 318
trajectories.



812 Fig. Healthcare Networks by Age for HAI-Specific Patients
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S12 Fig. Healthcare networks for all transferred patients (a) aged 18 and younger (b) aged 18 to
60 (c) older than 60 years old. Network communities are detected using the Greedy algorithm and
colored according to community membership for (a) 1143 hospitals and 2260 edges with 50 total
communities with only 28 composed of more than 5 hospitals (b) 603 hospitals and 593 edges
with 41 total communities and 19 with over 5 hospitals (c) 44 hospitals and 33 edges, 18 total
communities, 2 communities with more than 5 hospitals, and 9 communities with more than 2

hospitals.



8.2 Additional analyses
In this section, we present preliminary results from simulations of a generic epidemic model
over the French healthcare networks. This model was developed using the 2012 transfer data.

Hence, we start by describing the 2012 healthcare networks.

8.2.1 The 2012 healthcare networks

Patient discharge summaries from the PMSI database in 2012 were used to construct three
healthcare networks (Table 5, Figure 12). For all 8.1 million transfers of 2.2 million patients in
2012, the general patient network was composed of 2737 different healthcare facilities and 153
665 trajectories. The average degree in the general patient network was 112 and a total of 18
communities were identified using a “Greedy” detection algorithm.(192) The clustered facilities
were within an average of 39 kilometres away from one another.(192) The suspected-HAI
network was based on the diagnoses identified in the Gerbier et al. publication also used in the
2014 suspected-HAI network.(18, 191) The suspected-HAI patient transfer network was
composed of 2 184 facilities with 25 879 different patient trajectories. There was an average
weighted degree of 7.8 with a minimum of one and a maximum of 589 patients moving per
trajectory. On average healthcare facilities were connected to 23.7 other facilities in the
network, connected to an average 11.85 hospitals by their in-degree and an average 11.85
hospitals by their out-degree. Healthcare facilities transferred an average total of 185 patients.
There were 16 communities with an average of 20 kilometres between hospitals of the same
community. The HAI network was based on any patient with the ICD-10 code of Y95 for
nosocomial conditions as their principal, related, or associated diagnosis in the medical,
surgery, obstetric hospitals (MCO) and postoperative and rehabilitation centres (SSR). The HAI
network was composed of 1 770 healthcare facilities with 5 225 patient transfer trajectories.

There average weighted degree was 3.55 and 20 Greedy communities were identified.

Table 5. Characteristics of the 2012 French healthcare networks

HAI Suspected-HAI General Patient
Network Network Network
Patients 21047 392 537 2205799
Patient transfers 18 569 201 869 8 138 254
Hospitals (vertices) 1770 2184 2737
Trajectories (edges) 5225 25879 153 665
Average path length 3.75 3.21 2.40
Average degree (SD) 5.90 (12.5) 23.7 (33) 112.27 (132.46)
Average in-degree (SD) 2.95 (8.40) 11.85 (20) 56.14 (75.39)
Average out-degree (SD) 2.95 (5.01) 11.85(19) 56.14 (83.83)
Communities 20 16 18
Average inter-community distance (km) 39.40 20.00 39.14

SD: standard deviation
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Figure 12. The 2012 healthcare networks

HAI Network (n=20) | Suspected-HAI Network (n=16) ‘ General Patient Network (n=18) ‘

The HAI network (left), the suspected-HAI network (middle), and the general patient network (right) of France
with (top) and without (bottom) regions and edges. N refers to the number of Greedy communities detected by
the Clauset et al. algorithm.(192)

The degree distribution of the networks’ vertices was assessed by the discrete power-law
distribution function P(x) from Clauset et al.’s algorithm.(19) A Kolmogorov—Smirnov test was
used to assess the fit of a power-law distribution to each network’s degrees distribution (Figure
13). There was little evidence to show that a power-law distribution was not a good fit for the
three networks’ degree distributions (p-values > 0.05) when assessed with optimal lower cut-
offs using a goodness-of-fit based approach (at 5 degrees for the HAI-defined network, at 50
degrees for the suspected-HAI defined network, and at 426 degrees for the general patient
network). However, there was evidence that the power-law was not a good fit for all networks

when taking into consideration all degree values (p-values < 0.05).
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Figure 13

. Degree distributions in the 2012 healthcare networks.
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The non-specific network refers to the general patient network.

The difference in the number of healthcare facilities (n=2 063 in 2014 versus n=2 737 in 2012)
may be explained by the following: a smaller number of healthcare facilities in the national
FINESS database were reported in 2014 compared to 2012 (n=94 843 versus n=104 000) (193)
or a fewer number of healthcare facility FINESS to which patients were transferred. Overall,
the 2012 healthcare networks were very similar to the 2014 published healthcare networks in

terms of structure, hub healthcare facilities, and community clustering structure.(191)

8.2.2 Simulating spread in 2012 healthcare networks

Hypothetical epidemic spread of pathogens was simulated on the 2012 HAI networks. To
simulate epidemic spread, the probability of each facility becoming “infected” (meaning that at
least one colonized patient stayed in the facility) was calculated. A binomial process was used
where the number of infection attempts was the number of transferred patients from an infected
facility. The probability of “success” was calculated as the probability of a patient becoming a
new source of infection in the new healthcare facility.

In the first analysis, the networks were assessed over a period of 100 time-steps with 10
randomly chosen hospitals being initially infected. Hospital patients in infected facilities had a
10% probability of infecting a hospital where they had been transferred (p) in which infection
lasted 4 time steps () in the facility. The simulation followed a stochastic Susceptible-Infected-

Susceptible-like (SIS-like) model where hospitals were all susceptible to infection (S), could
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become infected (I) and stayed infected for 4 time-steps, and recovered, becoming immediately

susceptible (S) again.(194)

The incidence of newly infected hospitals per time step reached a maximum of ~200 hospitals
in the HAI network and ~900 hospitals in the larger suspected HAI network (Figure 14). The
epidemic died out after 20 time-steps for the HAI network and after 5 time-steps in the suspected

HAI network.

Figure 14. Simulation: histogram of the number of hospitals infected over time
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Figure 15 shows the first steps of a theoretical simulation of epidemic pathogen spread in the
geo-localized HAI network. It can be noted that once Assistance Publique — Hopitaux de Paris
(AP-HP) became infected (the largest hub hospital centre), other large hubs became infected
soon after. As a result, HAI spread throughout each community cluster’s reference centre,
leading to a national epidemic. Once infection died out in the regional reference centres,
community level spread started to die out as well. These observations could be explained by
AP-HP being the most highly connected healthcare centre and the fact that most transfers took

place within the same community.
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Figure 15. Simulation: epidemic spread in the HAI network

Colour is based on community clustering and node size was dependent on the degree of the facility.

In the second analysis, the vulnerability of hospitals to infection depending on the infection rate
was assessed. The probability of a sustained epidemic (at least one infected hospital at the end
of the simulation) was evaluated by subjecting each hospital to 30 distinct introductions of
infection with 10% infectiousness (p=0.10) with each facility serving as an index case of the
epidemic. The probability of hospitals sustaining an epidemic for 30 time-steps was calculated

and plotted by the hospitals’ characteristics.

The probability of the network sustaining an epidemic varied depending on the characteristics
of the index hospital. Figure 16 shows the distribution of the probability that an epidemic
occurred in the HAI network given all 1 770 hospitals were set as the index cases 30 times
where they had a 10% probability of infecting other hospitals in the network. A probability of
0 meant that no hospitals were infected at the end of the 30 runs and a probability of 1 meant

that at least 1 or more hospital in the network was still infected at the end of the runs.
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Figure 16. Probability of sustained epidemic in the HAI network
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For each node in the network, 30 time-steps of initial infection (index case) were run to determine the probability
of a sustained epidemic in the network at the end of the run. Each node’s probability is shown in the plot. The
probabilities compared to the initial infected node’s degree (top left), weighted degree (top right), betweenness
centrality (bottom left), and closeness centrality (bottom right). If p=0 no hospital is infected; if p=1 at least 1 or
more hospitals are infected at the end of the 30 time-steps.

The initially infected hospital’s degree (i.e. connectedness in the network) may explain the
probability of a sustained epidemic in the network. Even though any hospitals with a degree
greater than two could produce an epidemic in the network (probability=1), hospitals with
higher degrees (degree >20) tended to always result in sustained epidemic spread. When taking
into account the weighted degree (i.e. the number of patients being transferred per hospital),
there was a greater correlation with probability of sustained epidemic spread. Index hospitals
that transferred more than 50 patients tended to result in the highest probability of sustained
spread in the HAI network. Regarding the initially infected hospital’s betweenness centrality
(the importance of a hospital acting as an intermediary in the flow of patients) and closeness
centrality (the inverse of the average length of the shortest paths between one hospital and all
others in the network), there was little to no observed effect of these measures on the probability

of epidemic spread on the network.

In comparison, the probability of sustaining an epidemic given the facility’s network
characteristics was also analysed for the suspected HAI network (Figure 17). In all four plots
there were no facilities that sustained an epidemic between p=0 and p=0.2 which distinguished
nodes that did not sustain spread and those that had more than a 20% probability of sustaining

one. The density of nodes increased as the probability of sustained epidemic increased. In this
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network, nodes with a degree greater than 30 or having more than 100 patient transfers were
more likely to sustain an epidemic. This was higher than the HAI network and it was expected
because the suspected-HAI network is larger with higher average weighted and un-weighted
degrees. For betweenness and closeness centrality, there was little effect; however, there was a
clearer threshold than in the HAI network in which the hospitals with the highest values has the
highest probability of sustaining an epidemic. These analyses may be of interest because they
may enlighten novel infection control strategies targeting certain hospitals in the network based

on their characteristics and potential impact on epidemic spread of pathogens.

Figure 17. Probability of sustained epidemic in the suspected-HAI network
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The probability of hospitals sustaining an epidemic in the network for at least 30 time-steps was calculated and
plotted by the hospital’s network characteristics. The probabilities are compared to the initial infected node’s
degree (top left), weighted degree (top right), betweenness centrality (bottom left), and closeness centrality
(bottom right). If p=0 no hospital is infected; if p=1 at least 1 or more hospitals are infected at the end of the 30
time-steps.

In a third analysis, each hospital in the general patient network was subjected to 30 epidemic
initiations with varying infectiousness (p) from 1% to 10% at increments of 1% with the hospital
serving as an index case of the epidemic (Figure 18). For infectiousness greater than 5%, most
hospitals in the network had a 100% probability of sustaining an epidemic. For infectiousness
at 1%, the probability of sustained epidemic spread was higher for hub hospitals with the highest
degree, weighted degree or strength, betweenness centrality, and closeness centrality while
hospitals with the lowest of these measures had a very small probability of sustaining an

epidemic.
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Figure 18. Probability of epidemics varying hospital infectiousness in the general
network
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Each hospital in the general patient network was subjected to 30 epidemic initiations with varying infectiousness
(p) from 1% to 10% at increments of 1% with the hospital serving as an index case of the epidemic. The duration
of the epidemic lasted 4 time steps. The probability of hospitals sustaining an epidemic in the network for at least
50 time steps was calculated. The probability of infection ranged from 0% (blue), 50% (white), to 100% (red).
The probabilities were ordered by the hospital’s network characteristics: degree (top left), strength (top right),
betweenness centrality (bottom left), closeness centrality (bottom right).

The suspected-HAI network was also subjected to 30 epidemic initiations with varying
infectiousness (p); however, in this case, p ranged from 0.1% to 1% at increments of 0.1% with
each hospital serving as an index case of the epidemic. The infectiousness was set lower than
the general patient network in order to test if even in a smaller network with a much smaller
average degree (Table 5), lower rates of infectiousness would still be able to sustain epidemics
or not at all (Figure 19). The epidemic lasted 2 time-steps in this scenario. For infectiousness
less than 0.4%, very little hospitals sustained an epidemic at more than 90% probability. At 1%,
for a duration of 2 versus 4 time-steps for an infected hospital in the suspected-HAI versus the
general network, there were less hospitals that sustained an epidemic at the end of the 50 time-

steps.
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Figure 19. Probability of epidemics varying hospital infectiousness in the suspected-HAI
network

Ordered by Degree Ordered by Strength

1708 2115
2115

1708

Facilities
Facilities

1 262 596 930 1301
1 262 596 930 1301

T T T T T T T T T 1 r T T T T T T T T 1
01% 0.2% 03% 04% 05% 06% 07% 08% 09% 1% 01% 02% 03% 04% 05% 06% 07% 08% 09% 1%

Ordered by Betweenness Centrality Ordered by Closeness Centrality

—

1708 2115
1708 2115

Facilities
Facilities

1 262 59 930 1301
1 262 59 930 1301

I T T T T T T T T 1 [; T T T T T T T T 1
0.1% 0.2% 03% 04% 05% 06% O07% 08% 09% 1% 01% 02% 03% 04% 05% 06% 07% 08% 09% 1%

Each hospital in the suspected-HAI network was subjected to 30 epidemic initiations with varying infectiousness
(p) from 0.1% to 1% at increments of 0.1% with the hospital serving as an index case of the epidemic. The
duration of the epidemic lasted 2 time-steps. The probability of hospitals sustaining an epidemic in the network
was calculated for 50 time-steps and the results were ordered by the hospital’s network characteristics. The
probability of infection ranged from 0% (blue), 50% (white), to 100% (red).

Overall, these results demonstrated that a higher duration of infection and higher
infectiousness in any of the networks could lead to a higher probability of a sustained
epidemic. Notably, hospital degree and strength were shown to be good predictors of
epidemic spread and sustainability. For the highest degree and strength in terms of number of
patients transferred annually by a hospital, almost 100% of the epidemic were sustained when
these hospitals served as index cases. Betweenness and closeness centrality were also
predictors of epidemic spread; however, the gradient was always clear for all ranges of values
but more evident for the highest values. These observations may be explained by the fact that
the most connected hospitals can disperse infection to a large number of other healthcare
facilities (high out-degree and weighted out-degree) which in turn allows other facilities to
sustain the epidemic while it dies out in the most connected facilities until they become re-
infected again because they also have a high in-degree making them also susceptible to
infection. These preliminary observations from a simple SIS-like model further highlight the
important role that hub healthcare facilities play in both healthcare network structure and
potentially in epidemic spread of pathogens in healthcare settings.
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Part Four: Spread of CPE over the French healthcare
networks
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Chapter 9. Temporal dynamics of French CPE episodes

A rising number of CPE episodes have been reported in France over the years.(9, 96) The
objectives of this part of the thesis were to describe CPE episode notifications from
September 2010 to December 2015 and to predict the number of monthly CPE episodes from
the January 2016 to December 2019 using time series models. It should be noted that only
data for the department and not the hospital(s) associated with the episode were available;

therefore, the results show aggregates of the data at the French department-level.

9.1 The French CPE data from 2010 to 2015

Surveillance data on CPE episodes in France from September 2010 to December 2015 were
collected by Santé Publique France through the RAISIN active surveillance system. CPE
episodes were defined as a case or group of cases infected with the same strain of CPE known
to have been in contact with one another and identified by authorities during the outbreak
investigation. Episodes were described by the number of individual cases involved in the chain
of transmission, department, episode date (date of the first detected case), mechanisms of CPE
resistance, bacterial species, and site of infection or colonization if known. Episodes were
classified as “imported” if the index case of the chain of transmission was initially infected or

colonized in a foreign country.

A total of 2 346 episodes of CPE were reported in France between September 2010 and
December 2015. Out of 2 346 episodes, 2 067 included only one case and 279 included two or
more cases per episode. Most CPE episodes were of the class D carbapenemase OXA-48 with
a total of 1 747 episodes, followed by NDM with 332 episodes, KPC with 118 episodes, and
VIM with 101 episodes. A total of 1 110 episodes were linked to internationally imported cases
during the entire period. The episode with the highest number of cases (n=194) occurred in
September 2012 of an OXA-48 strain followed by a 149-case outbreak in October 2012 of
OXA-48. Both outbreaks were not linked to international importation of OXA-48 strains. The
spatial distribution of CPE episodes by mechanism type and importation status are shown in

Figure 20.
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Figure 20. Spatial distribution of CPE episodes, France 2011-2015
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The majority of the episodes (n = 469) occurred in Paris within the Ile-de-France region with

the majority (n = 324) being linked to an international case (Figure 11). The second and third

most common number of episodes occurred in neighbouring departments Val-de-Marne (n =
83) and Hauts-de-Seine (n = 159). These episodes were dominated by OXA-48 (n =347 in Paris
and n = 208 in Val-de-Marne respectively) followed by NDM (n = 95 in Paris and n = 39 in

Hauts-de-Seine respectively). Most cases of KPC are found in the Val-de-Marne (n = 23)

followed by Paris (n = 20). VIM cases, the least geographically dispersed, were most common

in Val-de-Marne (n = 21) and Marseille (n = 20). OXA-48 cases were the most common and

most dispersed covering 87 out of a total 101 departments (95 continental departments including

Corsica, Monaco, and 5 overseas departments).
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9.2 Modelling the evolution in time of CPE episodes in France

9.2.1 Time series model

In order to predict the number of potential CPE episodes we could expect in the future, we used
a simple approach to estimate future trends and shed light on the growing importance of CPE
incidence in France. The number of CPE episodes was forecasted using the autoregressive
integrated moving average (ARIMA) time series models with seasonality (SARIMA). The
(SARIMA(p,d,q)(P,D,Q)m) model combines both the ARIMA forecasting equation
ARIMA(p,d,q) of p, the number of auto-regressive terms, of d, the number of non-seasonal
differences needed for stationarity, and ¢, the number of lagged forecast errors with seasonal
terms P, D, and Q by the number of seasonal units m (Figure 21).(195) The seasonal model
adds components P (the number of seasonal autoregressive terms), D (the number of seasonal
differences), and Q (the number of seasonal moving average terms). The Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) were used to select the best SARIMA
model for each episode type separately. Each selected model was used to forecast 4 years of

episodes with calculated 80% and 95% prediction intervals.

Figure 21. SARIMA model by Hyndman & Athanasopoulos.

ARIMA (p,d,q) (P,D,Q)m
1 1

Non-seasonal part Seasonal part
of the model of the model

9.2.2 Forecasting results

Decomposition of the data from September 2010 to December 2015 showed an increasing trend
(green) and displayed seasonality (orange) with a peak number of episodes during the month of

October (Figure 22).
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Figure 22. Decomposition of time series of CPE episodes, France 2011-2015
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Using the entire dataset, the SARIMA model was used to predict the number of episodes
expected from 2016 to 2019. The model predicted an increasing number of episodes over time:
an estimated average of 122 CPE episodes per month by the end of 2016 (95% PI [100-149],
80% PI [108-140]), 151 CPE episodes per month by the end of 2017 (95% PI [115-186], 80%
PI [128-174]), 177 CPE episodes per month by the end of 2018 (95% PI [124-230], 80% PI
[142-212]), and 204 CPE episodes per month by the end of 2019 (95% PI [131-277], 80% PI
[156-252]) (Figure 23).
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Figure 23. Forecasting CPE episodes in France

300
= Observed
----- Predicted Mean
80% PI

250 95% P!

Episodes
o
]

o

2011 2012 2013 2014 2015 2016 207 2018 2019

Year

There was a predicted rise in the number of single case episodes (up to 200 single-case episodes
per month by the end of 2019) and stabilization of episodes with more than one case (less than
25 multiple-case episodes per month by the end of 2019) (Figure 24). This may suggest that the
control measures in place during the 2010-2015 period were able to control transmission
between infected individuals that could have resulted in recurring hospital outbreaks. It should
be noted that episodes with more than two cases used to forecast episodes represented a range
between 2 to 200 CPE cases, therefore representing both small multiple case episodes and larger

outbreaks.
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Figure 24. Forecasting single-case and multiple-case CPE episodes
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The number of episodes not associated with an internationally imported case was predicted to
increase at a higher rate than that of episodes associated with an internationally imported case,
suggesting that local spread would sustain the epidemic (Figure 25). An average of almost 150
episodes per month of episodes with no link to international cases were predicted to occur by
the end of 2019. Episodes linked to international cases of CPE infection were also predicted to
increase but only up to 75 episodes by the end of 2019. There were clear trends of seasonality

of imported episodes with a predicted peak number of episodes in October every year.
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Figure 25. Forecasting imported and non-imported CPE episodes
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In France, OXA-48 producing Enterobacteriaceae were the most common CPE infection.
OXA-48 episodes were predicted to continue to dominate at a higher rate than that of NDM,
KPC, and VIM (Figure 26). In 2014, the number of NDM episodes was higher than KPC and
VIM. By the end of 2016, 2017, 2018, and 2019, an average of, respectively, 86 (95% PI [59-
113]), 98 (95% PI [63-134]), 111 (95% P1[69-153]), and 124 (95% P1[76-172]) OXA-48 CPE
episodes per month were predicted. NDM cases were also forecast to increase with a predicted
average of 26 (95% PI [17-34], 80% PI [20-31]) episodes per month by the end of 2019.
Monthly episodes of VIM and KPC were predicted to stabilize. The model predicted between
4 and 8 VIM episodes per month and between 0 to 5 episodes of KPC per month by the end of
2019.
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Figure 26. Forecasting CPE episodes by mechanism of resistance
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In conclusion, the number of CPE episodes in France has increased over the years. The number
of episodes were predicted to increase reaching up to twice as many episodes by the end 0f2019
compared to the end of 2015. Episodes that were not linked to international importation were
predicted to dominate and sustain the epidemic. It is important to note that these results are a
reflection of the surveillance data which may have been subject to detection and deceleration
bias. However, these alarming trends highlight the need for more precautions to be taken to

control the local spread of CPE in the coming years.

67



Chapter 10. Third article - Contribution of patient transfers on the spread of
CPE in France

10.1 Summary

As detailed in chapter 9, we showed that an increasing number of CPE episodes in France have
been declared over the years, many of which have been associated with cross-border and local
patient transfer between healthcare facilities.(9) Despite France updating its national guidelines
for extensively drug-resistant bacteria in 2013, regional and inter-regional spread of CPE in
France was still being reported.(82) Therefore, to combat the spread of CPE, the impact of
patient transfers on spread must be better understood. Since the impact of patient transfers on
spread may vary, our study aimed to assess the contribution of the patient transfer network on

CPE spread in France from 2012 to 2015.

Using the healthcare network of patient transfers in France in 2014 (191), we used a previously
published statistical method to empirically test the contribution of the network on CPE spread.
Out of the total 2 273 CPE episodes reported between 2012 and 2015, we identified the most
likely potential infector episodes of each non-imported incident case (n=1 251) by selecting
candidate transmitter episodes with the shortest path distance to each incident episode. The
distribution of shortest path distances was compared to 500 simulations of permutations of the
data. Multiple spreading events and the spatial distribution of potential infectors and incident

episodes were also described.

Ninety percent of incident episodes had an identified potential infector episode for the entire
study period; however, when stratifying the data by year, only episodes in 2013, 2014, and 2015
had significantly shorter path distances compared to permutations. This suggested that the CPE
epidemic in France transitioned from an epidemic sustained importation of episodes from other
countries before 2013, to an epidemic sustained by local transmission events supported by
patient transfers. In addition, the number of events linking potential infectors to multiple
episodes increased over the years suggesting that highly connected metropoles may have led to

outbreaks through patient transfer.
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Abstract

The spread of carbapenemase-producing Enterobacteriaceae (CPE) healthcare-associated infections is a
major public health threat that has been associated with cross-border and local patient transfer between
healthcare facilities. Since the impact of transfers on spread may vary, our study aimed to assess the
contribution of the patient transfer network on CPE spread in France from 2012 to 2015. Methods: Using
the French healthcare network of 2.3 million patients, we extended a previously proposed statistical method
and tested the ability of this network to support 2273 observed CPE incidence episodes over the study
period. We aimed to identify the most likely infector for 1251 non-imported episodes using network-
supported paths (NSPs) and compared observed NSP distances to those expected by chance, using random
permutations of the data. Results: Ninety-percent of non-imported incident CPE episodes were linked to
potential infector episodes. NSP distances were significantly shorter in the observed data than expected by
chance from 2013 to 2015, but not in 2012. Linked episodes tended to occur within close geographic
distances. Multiple spreading events in which potential infectors were linked to multiple secondary incident
episodes were identified. The baseline time window of 21 to 28 days between candidate transmitters and
the incident episode was supported by the sensitivity analysis. Conclusions: We observed a transition in
2013 from an epidemic sustained by importation to being sustained by local transmission events. As a
consequence, coordinated prevention and infection control strategies should now focus on transfers of
carriers of CPE to reduce regional and inter-regional transmission.
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Introduction

The increasing number of carbapenemase-producing Enterobacteriaceae (CPE) strains poses a major threat
to healthcare systems and jeopardizes patient safety.[1-3] An alarming report by the European Centre for
Disease Control (ECDC) in 2015 described regional and inter-regional spread of CPE including four countries
in which CPE has become endemic.[3] CPE spread and subsequent outbreaks have been linked to transfers
of patients between healthcare facilities within countries and across national borders. [4-6] Due to the
unlikeliness that new antibiotics to replace carbapenems will become available in the near future, controlling
CPE spread across healthcare systems is essential. This requires better understanding of the impact of
transfer patterns on the spread of nosocomial pathogens.

Over recent years, several studies have correlated measures of hospital connectivity in healthcare networks
of patient transfers to CPE incidence in healthcare facilities, underlining the importance of coordinated
control measures at the regional scale.[7-11] However, many questions have been left unanswered. In
particular, despite studies documenting the transmission chains of cross-border transfer of CPE strains and
hospital outbreaks, the overall contribution of inter-hospital transfers on spatial dispersal of CPE over time
has not yet been assessed.

In this study, we aimed to investigate the contribution of patient transfers on the spread of CPE in France
and, in addition to the observations that have been made over the past few years, to further describe the
epidemic. Indeed, on the one hand, an increasing number of OXA-48 cases (class D beta-lactamases with
oxacillinase activity) coming into France from cross-border transfers have been reported in recent years.[3-
5, 12, 13] On the other hand, despite updated national guidelines and strategies, from the 2013 to the
2014-2015 period, France advanced from an epidemiological stage-3 of regional spread to a stage-4 of
inter-regional spread of CPE.[14]

In order to assess the extent to which patient transfers may have contributed to the transition from regional
to inter-regional spread of CPE in France, we relied on a previously published healthcare network of patient
transfers in France.[15] To empirically test the contribution of the network on CPE episode incidence, we
extended a previously proposed statistical method that assessed the contribution of a contact network of
patients and healthcare workers on Staphylococcus aureus spread in a hospital setting.[16] For the 2012 to
2015 period, we evaluated the number of CPE episodes with network-supported paths (NSPs), described
the number of CPE episodes linked to patient transfer, and conducted a sensitivity analysis on the
transmission window between potential infector episodes and incident episodes.

Methods
CPE episodes data

Surveillance data of 2273 CPE episodes occurring in continental France from January 2012 to December
2015 were used in the analysis. Data were collected by Public Health France through the HAI-EWRS active
surveillance system. CPE episodes were defined as a case or group of cases infected with the same strain
of CPE known to have been in contact with one another and identified by authorities during the outbreak
investigation. Episodes were described by the number of individual cases involved in the chain of
transmission, department, episode date (date of the first detected case), mechanism(s) of CPE resistance,
bacterial species, and site of infection or colonization if known. Episodes were classified as “imported” if the
index case of the chain of transmission was initially infected or colonized in a foreign country. We assumed
that for episodes in which there were multiple cases, the cases all occurred in the same department.

Department network

The network of patient transfers between hospitals and healthcare centres in 2014 was built and described
in detail in a previous study by the authors.[15] Patient transfer data was collected from the national hospital



discharge database, a comprehensive medico-administrative database of patient discharge summaries. Only
direct hospital-to-hospital or medical ward transfers were considered. The hospital network was transformed
into an adjacency matrix of nodes representing administrative departments, with the edges representing
the connections between departments (French administrative division between the administrative regions
and the communes). The department network edge weights were given as the sum of the number of
hospital transfers between departments for the entire year of 2014. As shown in the previous study on the
network, the number of patient transfers remained stable during the year. In this analysis, we assumed
that the number of inter-department transfers in 2014 were comparable over time and therefore, we used
this network for the entire study period.

Potential infector identification

In the methodology proposed by Obadia and colleagues [16], the authors used a hospital network of
patients and healthcare workers contacts to identify, for incident colonization episodes of Staphylococcus
aureus, the potential infectors that were best supported by the network in terms of path distance. The
distribution of observed path distances between incident cases and their closest potential infector was
compared to that obtained using randomly distributed colonization data over the same network.

Here, rather than a contact network, we used the department network of patient transfers to identify the
most likely potential infector for CPE incident episodes. We assumed that transmission could have occurred
equally among episodes with colonised or infected cases or both and among all genera of
Enterobacteriaceae. Each non-imported incident CPE episode was investigated using the following
algorithm:

1. All episodes involving CPE with the same mechanism(s) of resistance that occurred within a specific
time window prior to the incident non-imported episode in any network department were considered
“candidate transmitters”

2. All NSPs between the incident episode department and all candidate transmitter departments were
compiled from a matrix of total annual transfers of patients between each department

3. For a given incident episode, the candidate transmitter with the shortest NSP length between its
department and the incident episode department was considered as the most likely potential
infector

In order to statistically assess the patient transfer impact, the distribution of shortest path lengths between
each non-imported CPE episode and its potential infector was compared to the distribution expected under
the null hypothesis of independence between CPE transmission and the department network of hospital
transfers. Expected shortest path lengths under the null hypothesis were determined using a random
permutation of the departments of all episodes (described in more detail in Supplement 1). Five-hundred
permutations (enough to ensure stability of results) were generated and the algorithm of potential infector
selection followed for each permutation. Each incident episode and its new potential infector NSPs from
randomly permuted data were averaged, producing a distribution of shortest path distances expected under
the null hypothesis. The observed distribution was compared to the distribution of the permutated NSP
using a paired Wilcoxon signed-rank test.

Choice of a time window for candidate transmitter selection

Understanding the time it takes for CPE colonization or infection to be detected in one hospital after its
contamination via patient transfers from another hospital is essential in being able to appropriately link CPE
episodes. The estimation of this delay time relies on data from outbreak investigations.

The median duration of CPE outbreaks in French hospitals from 2004 to 2012 was estimated at 22 days.[17]
In addition, a few studies have reported the delay time in the detection of CPE colonization or infection
between healthcare facilities as a result of local patient transfers. In a multi-hospital outbreak of
carbapenemase-producing Klebsiella pneumoniae (KPC), two patient contacts were transferred and
detected positive in two other hospital facilities 15 and 29 days after the detection of the hospital index



cases.[18] In another KPC outbreak, following patient transfers out of the hospital in which the outbreak
originated, KPC colonization was detected in two other hospitals respectively 19 and 25 days after detection
of the index case in the original hospital.[19]

Based on this data, for this study, we chose to look for potential infectors of incident CPE episodes in a 1-
week time window ranging from 21 to 28 days (Wi21,2s]) before the incident episode Ei. A sensitivity analysis
was conducted to compare this baseline window to a sliding 1-week window starting from Wiy,s) to Wi30,371
before the notification of Ei.

Distance computation in the weighted department network

In order to identify the closest potential infectors over the weighted department network, we first converted
the edge weights wj; to annual transfer rates tj by dividing the total number wj; of transfers from department
i to department j by the sum of all patient admissions in the origin department i:
Wij
tij=—
15 tl
We then defined as the distance from department i to j as the negative log of the transfer rate t;:

dij = —log(t;;)

Shortest path distances were computed using Dijkstra’s algorithm with the R package “igraph.”[20] Another
distance definition proposed in a recent paper by Donker et al. [21] was also investigated in a sensitivity
analysis (Supplement 2).

Multiple spreading events

We defined multiple spreading events as events when several incident episodes shared the same most likely
potential infector. We assessed the distribution of the size of the multiple spreading events, their evolution
over time, and the spatial characteristics of these events.

Results

A total of 2.3 million patients with a total of ten million direct transfers were recorded in 2014. The
department network included 93 departments spanning continental France and 3326 connections
comprised of 2063 hospitals and healthcare centres. Over the year, a mean of 62 patients were
transferred between departments with the maximum of 8742 patient transfers within one connection.
Based on the 2014 healthcare network structure, we show the number of annual CPE episodes occurring
in each department over the 2012-2015 period in Figure 1.

Figure 1. Network of 2014 patient transfers between French departments and incident CPE
episodes occurring between 2012 and 2015. The department network is comprised of 93
departments (the two departments in Corsica (2A and 2B) were merged and two departments (08 and
09) did not have any patient transfers) linked together by over 3000 connections (grey lines). Network
components are geo-localized to the department’s prefecture. For each department, the cumulated
number of incident CPE episodes reported in hospitals of the department from 2012 to 2015 is depicted
by a circle. The bottom right multi-level pie chart provides the proportion of incident CPE episodes for
each year, along with their importation status and mechanisms of resistance.
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Among the 2273 episodes included in the study, all three classes of carbapenemases (A, B and D [2])
were reported, with 81% of class D OXA-enzyme producing Enterobacteriaceae. The number of CPE
episodes increased almost four-fold during the four-year time span, reaching a total of 956 episodes in
2015. The proportion of episodes not linked to importation from cross-border transfer increased
significantly over time from 48% in 2012 to 60% in 2015 (X test for trend in proportions, p-value = 7.44
x 107).

Out of the total 1251 non-imported incident episodes, we aimed to identify a potential infector for each
episode over the entire 2012 to 2015 period and for each year independently (Table 1). Our results
showed that, when using the baseline time window, 90% or 1122 of the non-imported episodes were
linked to a potential infector over the entire study period. Weighted NSP distances between the incident
episodes and their closest potential infectors were significantly shorter than the NSP distances of the
same incident episodes and their potential infectors from permutations of the departments (Wilcoxon
paired rank sum test, p-value = 3.27 x 10-%8),

Table 1. Characteristics of 2273 carbapenemase-producing Enterobacteriaceae episodes in
France from 2012 to 2015.

Year 2012-2015 2012 2013 2014 2015
Total episodes 2273 242 403 672 956
Imported episodes 1022 125 200 311 386

Non-imported episodes (%) 1251 (55%) 117 (48%) 203 (50%) 361 (54%) 570 (60%)

Non-imported episodes with

potential infector (%) 1122 (90%) 97 (83%) 176 (87%) 307 (85%) 496 (87%)

NSP distance of observed 5.46 7.17 5.93 5.91 4.66
data mean [95% CI] [5.19-5.72] [6.24-8.10] [5.27-6.59] [5.39-6.43] [4.28-5.04]
NSP distance of permutations 5.73 7.07 6.06 6.07 5.17
mean [95% CI] [5.49-5.97] [6.25-7.88] [5.43-6.68] [5.60-6.53] [4.83-5.50]
P-value* 3.27 x 1028 0.28 0.004 6.90 x 10 1.88 x 1023

NSP: network-supported path



* Wilcoxon paired rank sum test p-value comparing of NSP distances between observed and permuted data

When these results were stratified by year, a potential infector was identified over the department network
for 83% (in 2012) to 87% (in 2015) of non-imported episodes. Observed weighted NSP distances were
significantly shorter than the NSP distances of the permutations of the data for 2013, 2014 and 2015
episodes (Wilcoxon paired rank sum test, p-value = 0.004, 6.90 x 10, 1.88 x 102 respectively). Conversely,
in 2012, weighted NSP distances did not differ significantly (Wilcoxon paired rank sum test, p-value=0.28).
Similar results were obtained using the distance definition suggested by Donker et al. (Supplement 2).

The percent of multiple spreading events increased significantly over the four years (Supplement 3). From
27.5% in 2012 to 42.5% in 2015 of the identified potential infectors were linked to multiple spreading
events. The size of the multiple spreading events also increased: two potential infectors were each linked
to four incident episodes in 2012, three infectors to five incident episodes each in 2013, one infector to
seven incident episodes in 2014, and one infector to nine incident episodes in 2015 (Supplement 3).
However, there was no evidence of an association between the number of cases per potential infector
episode and the size of the multiple spreading events (Kendall’s rank correlation tau with averaged ties, p-
value= 0.37, 0.25, 0.08, 0.06, and 0.34 for 2012 to 2015, 2012, 2013, 2014, and 2015 data respectively).
The largest of these events originated in the Paris department and other departments with large metropoles
such as Marseille, Lyon, and Toulon (Supplement 3).

The proportion of potential infectors identified within the same department as the incident case did not
differ significantly between the observed and permutated data when all years were combined (Supplement
4). However, by year, the proportion of episodes sharing the same department as their potential infector
increased significantly from 18% in 2012 to 37% in 2015 (X? test for trend in proportions, p-value = 2.6 x
107) (Figure 2). For NSPs identified between episodes of different departments, the majority were within
close geographic distance of one another and the average distance between them reduced over time (from
250 km in 2012 to 170km in 2015) (Supplement 5).

Figure 2. Distribution of network-supported path distances for observed data and
permutations by year. A total of 97, 176, 307, and 496 NSP distances are shown for 2012, 2013, 2014, and 2015
respectively. The density distribution is shown for observed data NSP distances (light green) and the mean NSP
distances of the 500 permutations (dark green). Distances of zero correspond to paths that occur in the same
department. Distances of one correspond to a range of distances between zero and one; the same applies to distances
two through 20.
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A sensitivity analysis was conducted in order to compare the baseline time window for selecting
candidate transmitters to a sliding one-week window starting from 1 to 30 days (W1,8; to Wi30,377) prior to
the incident episode starting date. The results for the combined years can be found in Supplement 4. The
Wilcoxon paired-rank sum test p-values for all time windows shown in Figure 3 are given in Supplement 6.
When comparing all time windows for the combined years, the most significant difference was observed for
Wi20,277 and the baseline (Supplement 6). In 2012, only four windows showed a significant difference
between the data and permutations. Conversely, the test showed a statistically significant difference
between the mean NSP distances between incident CPE episodes and their potential infector for all windows
in 2015. In 2015, the windows with the lowest mean NSP distance corresponded to W(3,10) and the baseline
window Wi21,2¢;, while for 2014 it corresponded to the Wri,81 and Wii9,261 window. The most significant
differences were observed for Wi23,30; in 2013, Wi20,271 in 2014, and W(21,2¢1 in 2015. However, for all time
windows identifying potential infectors 20 to 30 days prior the incident episode date , the results were
similar with significantly shorter distances for 2013-2015 but not for 2012 (Figure 3, Supplement 6).

Figure 3. Sensitivity analysis on the impact of the time window chosen to look for candidate
transmitters: mean NSP distances between incident episodes and their closest potential
infectors obtained for sliding 1-week time windows, 2012-2015. For each year, the mean NSP distance
is plotted as a function of the first day of the 1-week time window, Window,, for observed data (in red) and permuted
data (in black). For the permutations, 95% confidence bands are also provided.
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Discussion

We were able to adapt a previously proposed statistical methodology to quantify the impact of the
healthcare network of patient transfers to CPE transmission over a four-year period. Our study suggests
that there is an association between the department network of hospital patient transfers and the spread
of CPE episodes over time.

Due to a lack of information regarding hospitals in which the CPE episodes were reported, we relied solely
on the department of the episodes. We assumed that transfer rates between hospitals of the same
department were homogenous. Although this drawback may have reduced the power of the study, we were
still able to show statistically significant differences between the NSP distances in the observed CPE episode
data and the permutations, due to sufficient heterogeneity in the transfer rates between departments.

Since CPE hospital outbreak duration has been estimated to last approximately three weeks [17], we
assumed that potential infector episodes may lead to multiple secondary episodes in other hospitals.
Therefore, to reduce the risk of linking incident episodes to other secondary episodes from potentially the
same infector episode, we deemed it appropriate to select a baseline window ranging from 21 to 28 days
prior to the date of the incident episode for candidate transmitter selection. In addition, the baseline window
was supported by the sensitivity analysis results where we observed that, among all windows, it provided
the lowest mean distance of NSPs as well as the largest difference with the mean NSP distance from the
permutations in 2015. However, it is important to note that other windows around the baseline also gave
significantly shorter distances. Therefore, we estimate a delay in notification of CPE episodes between
hospitals due to patient transfer could occur within 20 to 30 days after initial notification in an index hospital.

Our results suggest that the dynamics of CPE transmission in France have changed over time. Between
2012 and 2015, we were able to show evidence using NSP distances to evaluate the changing dynamics of
CPE spread; evidence that supports potential CPE spatial spread through the carriage of CPE by transferred
patients between French departments. CPE episodes from 2012 were not supported by the transfer network
and can be explained by other sources of transmission such as previous hospitalizations, stays in a foreign
country, or direct cross-border transfers. The proportion of imported CPE episodes decreased over time as



the number of non-imported episodes rose; suggesting a transition in 2013 from an epidemic sustained by
importation to local transmission events sustaining the epidemic. Mounting evidence for local spread
through transfers emerged in 2014 followed by the strongest evidence for transfer network-supported CPE
transmission in 2015. These results suggest that between 2013 and 2014 there was a growing contribution
of regional and inter-regional transfers in the spread of CPE in France which is in concordance with reports
by the ECDC.[14]

Even though a large percentage of non-imported cases were linked to a potential infector, the reported
87% in 2015 for example corresponded to the maximum number of incident episodes with a potential
infector episode, given the data. Since the number and frequency of OXA-48 episodes has increased over
time, the chance of an incident episode having a potential infector was high as well. Nonetheless, we found
evidence to support that the observed NSP were significantly shorter than what we expect by chance. Both
the number of linked episodes occurring in the same department increased over time and the proportion of
linked episodes occurring in different departments occurred within shorter geographic proximity over time
as well.

While we do not claim that transfers are the sole explanation for the augmentation in observed CPE episodes
between 2013 and 2015, our work suggests that they have played an increasingly significant role over time.
Episodes from international importation could also have contributed to almost half of the spread of CPE in
the country. These results are consistent with the outbreak descriptions we observe in the literature in
which both imported and non-imported cases have led to secondary cases of CPE in different hospitals. In
addition, the heterogeneity in infection control policies across different types of healthcare facilities in France
and limited implementation of specific strategies to control CPE may have led to poor control of CPE and in
consequence, dissemination over time.[22]

Due to no observed association between the number of cases per potential infector episode and the number
of secondary episodes, we were not able to show evidence to support poor control of hospital CPE outbreaks
once health authorities identified and reported a chain of transmission among cases. On one hand this may
suggest that control measures have prevented large hospital outbreaks from causing multi-department
outbreaks during the 2014-2015 period; on the other hand, most reports are single-case episodes which
might suggest a failure of surveillance authorities in identifying single-cases as part of the same chain of
transmission of other reported episodes. In addition, potential CPE cases are likely to be occurring in the
community which can lead to non-identification and poor control of any potential cross-infections. Guidelines
for screening and controlling CPE should include those epidemiological changes and be revised accordingly.

Our results suggest that the number of spreading events involving multiple episodes has increased over
time. For example, an imported OXA-48 episode in Paris was linked to nine other episodes in nine different
departments in France in 2015. Paris is a large hub for not only CPE episodes linked to importation but also
for patient transfer; this underlines the importance for health authorities to improve control efforts in large
and highly connected metropoles.

In conclusion, our study has demonstrated that a methodology of identifying potential infectors through
NSPs at the patient contact level can also be applied to a national patient transfer network level. Our results
suggest that since 2013, patient transfers in France have increasingly contributed to the epidemiological
transition of CPE dynamics from regional to inter-regional spread sustained by an increasing number of local
spreading events. Systematic screening of at-risk patients, such as hospital contacts of patients transferred
from hospitals with previous or current patients infected with CPEs is crucial in identifying carriers of CPE
to contain intra-hospital transmission. These efforts rely on regional coordination of hospital control
measures targeting patient transfers especially that of university hospital centres that play a large role in
connecting patients.[15]
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Incident .
Episode 7 Windowie-n,t-m)
. . Candidate
) : Non-Candidate Episodes Transmitters j
Episode ;
E E E E E
a b c d e
Mechanism of OXA VIM NDM KPC OXA OXA
Resistance
Department 75 13 69 54 92 33
Observed
d . - - . 1 2
7
Department 75 54 92 33 69 13
Permutation;
d//' ) B B ) 4 3
Department 75 69 54 92 33 54
Permutationsgo
d/j - - - - 2 3

For a given incident episode Ei during a given one-week sliding window, Wt-nt-mj, in which t corresponds to
the Ei date, n corresponds to the first day of the sliding window preceding the date of Ei and m corresponds
to n + 7 days preceding E;, five CPE episodes Ea»e occurred in five different departments. Among episodes
that shared the same mechanism of resistance, the candidate transmitters j, Ed and Ee, the shortest network
path distance in the observed data was between Eisq (dia = 1 < die = 2). Therefore, in the observed data,
the most likely potential infector of Ei was identified as Eq with a network-supported path (NSP) equal to 1.
The departments of Ease were permutated through sampling without replacement five-hundred times and
the potential infectors were identified. In permutation:, Ee was identified as the potential infector given that
diac = 4 > die = 3 and, in permutationsgo Eq was identified as the potential infector (dia = 2 < die = 3). The
distribution of the observed NSP distances was compared to the mean of the NSP distances of the 500
permutations for each non-imported episode Ei for significance using a Wilcoxon paired rank sum test.
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Another distance definition was recently proposed by Donker et al.[1] to measure the distances in a
healthcare network. The authors’ measure of distances was based on Opsahl et al.’s[2] work in which they
proposed a tuning parameter, alpha a, to adjust between a value of 0 corresponding to the same distance
measure we expect if we do not consider only the number of “jumps” between hospitals and 1 corresponding
to Dijkstra’s algorithm in which we measure distance as the number of transfers wi. Donker et al. simulate
the spread of antimicrobial resistant bacteria using mathematical modeling with varying measures of alpha
to obtain an optimal a = 0.25 in which the time to infection was greatest. In order to compare our results,
we re-tested our baseline and sensitivity analysis (Table S2, Figure S2) using a network of transformed
edges weights in which the new distances dj was equal to:

1
dij =—5  wherea=0.25 (1)

o

Table S2. Network-supported path distances of 2273 carbapenemase-
producing Enterobacteriaceae episodes in France from 2012 to 2015 using an alternative
measure of distance (1).

Year 2012 2013 2014 2015
Total episodes 242 403 672 956
Imported episodes 125 200 311 386
Non-imported episodes (%) 117 (48%) 203 (50%) 361 (54%) 570 (60%)

Non-imported episodes with
potential infector (%)

NSP distance of observed data
mean [95% CI]

NSP distance of permutations
mean [95% CI]

P-value® 0.23 0.002 5.06 x 107 5.07 x 103

NSP: network-supported path
* Wilcoxon paired rank sum test p-value comparing of NSP distances between observed and permuted data

97 (83%) 176 (87%) 307 (85%) 496 (87%)

0.35[0.29-0.41] 0.28 [0.24-0.32] 0.29 [0.25-0.32] 0.22 [0.20-0.24]

0.34[0.29-0.40] 0.29[0.25-0.33] 0.30[0.27-0.33] 0.25[0.23-0.27]




Figure S2. Sensitivity analysis using an alternative measure of distance (1): mean NSP
distances between incident episodes and their closest potential infectors obtained for sliding
1-week time windows, 2012-2015. For each year, the mean NSP distance is plotted as a function of
the first day of the 1-week time window Windown, for observed data (in red) and permuted data (in black);
for the observed data, 95% confidence bands are also provided.
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There was a statistically significant difference at the baseline window Wp21,2¢1 for 2013, 2014, and 2015
using the alternative definition (Wilcoxon paired rank sum test, p-value = 0.002, 5.06 x 107, 5.07 x 103
respectively) (Table S2). We observe very similar results in the original distance measure and the alternative
definition at baseline and across the time windows (Figure S2). Applying the alternative method to measure
distances in the healthcare network also showed the shortest mean NSP distances Wi20,277 in 2014 and
Wi21,281 in 2015. Whether the distances are measured as the negative log of the annual transfer rate or the
inverse of the total annual transfers to the power of an optimal scaling parameter, at the baseline window,
observed NSP distances were shorter than what would be expected by chance in the random permutations;
therefore, high rates of patient transfers may be linked to the CPE epidemic in France in recent years.
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Figure S3.1. Spatial distribution of linked episodes. Potential infector episodes are shown on the left
and secondary episodes on the right per department from 2012 to 2015.

Incident Episodas
+0

o e b 3 5 *1.50
"\u ! 7 w0 & 50-100
T B o A i 5 e

@ 200 - 250 ot
@ 250 - 300 i 3
2004 4 o TRl

The Ile-de-France regions where Paris is located, is both the hub for potential infectors and secondary
episodes (Figure S3.1).

Figure S3.2. Spatial distribution of departments with secondary episodes were associated with
multiple spreading events. The size of the events are shown for the 2012 to 2015 period. Only the
largest multiple spreading events are shown for each department.
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Most of the largest multiple spreading events originated in the Paris department (for all events of size 9 and
7) and spread to neighboring Ile-de-France departments and to other hubs departments including large
towns such as Lyon(69), Marseille(13), and Nice(06) and neighboring regions (Figure S3.2). Notably, the
Var (83), the Rhone (69), the other Ile-de-France departments (91, 92, 93, and 94), the Nord (59), and the
Loire (42) departments were also sources of multiple spreading events.

Figure S3.3. Distribution of the number of secondary episodes per infector. Number of potential

infectors by the number of their secondary episodes (from 1 to 9 in the main graph and from 3 to 9 in the
smaller graph) during the 2012 to 2015 period.
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The percent of multiple spreading events significantly increased over time (X? test for trend in proportions,
p-value = 0.02) from 27.5%, 37.5%, 33%, to 42.6% from 2012, 2013, 2014, and 2015 for potential infector
episodes with two or more linked secondary episodes and also for potential infector episodes with three or
more linked secondary episodes (10%, 12.5%, 13.5%, 19% respectively; X2 test for trend in proportions,
p-value = 0.03).
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Figure S4.1. Distribution of 1122 network-supported path distances for observed data and
permutations for all episodes occurring between 2012 and 2015. The density distribution is shown
for observed data NSP distances (light green) and the distances of permutations (dark green). Distances of
zero correspond to paths that occur in the same department. Distances of one correspond to a range of
distances between zero and one; the same applies to distances two through 20.
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There was no statistically significant difference in the proportion of episodes occurring in the same
department in the observed and permutated data (X test for trend in proportions, p-value = 0.98).



Figure S4.2. Sensitivity analysis on the impact of the time window chosen to select candidate
transmitters. The distribution of the mean NSP distances between incident episodes and their potential
infectors obtained for sliding 1-week time windows for all episodes occurring between 2012 and 2015. The
mean NSP distance is plotted as a function of the first day of the 1-week time window, for observed data
(in red) and permuted data (in black). For the permutations, 95% confidence bands are also provided.
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Figure S5. Distances to potential infectors. For observed data: the percent of potential infectors and
NSP non-imported episodes (pairs) occurring the same department or region (top); the mean distance in
kilometers (km) between pairs occurring in the same or different department (middle); the proportion of
distances between pairs among pairs in different departments (bottom).
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Table S6. Sensitivity analysis. Mean NSP distances of observed data and 500 permutations

: Wilcoxon paired rank sum test

p-values for all time windows.

2012-2015 2012 2013 2014 2015

W, | W Mean NSP Mean NSP Mean NSP Mean NSP Mean NSP

distances P-value distances P-value distances P-value distances P-value distances P-values

(o) P (o) P (o) P (o) P (o) P
1 8 5.43" | 5.55 | 3.15E-18"" | 7.29 7.34 | 0.29 5.91 5.87 | 0.03" 5.83'" | 5.95 3.41E-07"" | 4.68 4.87 1.68E-12"""
2 9 5.47 5.63 | 1.77E-20"" | 7.44 7.56 | 0.08 5.56" | 5.59 | 3.41E-03"" 5.99 6.13 5.92E-07"" | 4.74 4.96 3.24E-13""
3 10 5.44™ | 5.62 | 3.96E-27""" | 7.67 7.65 | 0.10 5.65'" | 5.77 | 1.07E-04™" | 5.92 6.12 2.00E-08™" | 4.64" 4.87 1.16E-16™"
4 11 5.48 5.65 | 1.36E-25"" | 7.53 7.56 | 0.18 5.83 5.77 | 3.31E-03" 5.91 6.09 2.03E-07"" | 4.71 4.96 7.92E-18"
5 12 5.53 5.73 | 4.29E-27"* | 7.17"" | 7.30 | 0.05" 5.95 6.00 | 4.91E-04™" | 6.02 6.20 7.25E-07"" | 4.80 5.07 4.37E-19""
6 13 5.61 5.76 | 2.92E-23™* | 7.04" | 7.12 | 0.05" 6.07 6.16 | 1.29E-04™" | 6.10 6.17 3.67E-05™" | 4.89 5.13 2.81E-15™"
7 14 5.59 5.69 | 3.24E-21™* | 6.95 6.88 | 0.48 6.20 6.29 | 5.13E-05™* | 5.96 6.07 2.00E-06™" | 4.88 5.01 2.16E-13"*
8 15 5.60 5.69 | 1.19E-23"* | 7.08 7.08 | 0.17 6.32 6.45 | 4.47E-05"" | 5.88 6.01 1.45E-07""" | 4.84 4.97 5.20E-15""
9 16 5.68 5.78 | 2.21E-24"" | 7.11 7.26 | 0.08 6.35 6.47 | 9.44E-05" | 5.95 6.17 1.87E-09" | 5.00 5.06 5.87E-13™"
10 17 5.71 5.77 | 4.25E-18"" [ 7.19 7.14 | 0.34 6.23 6.27 | 7.99E-04™" | 6.08 6.28 7.43E-08"" | 5.05 5.07 4.29E-09"""
11 18 5.78 5.82 | 3.03E-17"* | 7.47 7.45 | 0.48 6.27 6.36 | 1.17E-04™" | 6.16 6.26 3.13E-07""* | 5.04 5.04 1.24E-08™*
12 19 5.82 5.87 | 3.09E-15* [ 7.92 7.80 | 0.62 6.31 6.29 | 0.01" 6.11 6.22 7.97E-06™" | 5.05 5.12 1.09E-09"**
13 20 5.82 5.90 | 4.56E-20""* [ 7.58 7.82 | 0.01" 6.28 6.33 | 3.63E-04™" | 6.14 6.27 1.38E-06"* | 5.10 5.13 4.19E-11™"
14 21 5.88 5.94 | 1.57E-18"" [ 7.30 7.45 | 0.03" 6.59 6.61 | 2.16E-03"™ 6.32 6.37 6.35E-05""" | 5.12 5.17 2.52E-11""*
15 22 5.86 5.98 | 3.93E-20™" | 7.37 7.31 | 0.30 6.56 6.58 | 8.99E-04"" | 6.13 6.32 9.82E-07"" | 5.21 5.32 1.30E-11""
16 23 5.73 5.88 | 6.72E-20"™* | 7.58 7.39 | 0.47 6.32 6.41 | 2.56E-04""* | 6.10 6.25 2.56E-06™" | 4.95 5.18 1.22E-12"*
17 24 5.70 5.87 | 1.30E-20"" | 7.23 7.08 | 0.54 6.39 6.52 | 1.40E-03"" 6.01 6.12 1.71E-06™" | 4.92 5.20 3.71E-13™"
18 25 5.62 5.83 | 4.03E-23""" | 6.95 6.88 | 0.55 6.31 6.38 | 9.79E-03" 6.01 6.16 7.95E-07"" | 4.87 5.24 1.56E-18™"
19 26 5.57 5.82 | 1.65E-24™" | 6.86 6.76 | 0.61 6.50 6.45 | 0.15 5.73" | 6.06 5.79E-08"" | 4.87 5.29 3.85E-20"""
20 27 5.59 5.89 | 2.32E-30""" | 6.96 6.81 | 0.43 6.20 6.30 | 1.37E-03™ 5.84 6.23 8.35E-09""" | 4.99 5.43 9.32E-23""*
21 28 5.46 5.73 | 3.27E-28"* | 7.17 7.07 | 0.28 5.93 6.06 | 3.86E-03"" 5.91 6.07 6.90E-06"" | 4.66'" 5.17 1.88E-23"""
22 29 5.56 5.78 | 5.64E-23™" | 6.96 6.93 | 0.10 5.83 5.99 | 1.72E-03" 6.11 6.19 1.92E-04"" | 4.81 5.21 1.07E-17""
23 30 5.73 5.94 | 6.56E-22™" [ 7.00 6.93 | 0.33 5.75 6.04 | 1.46E-06™" | 6.33 6.36 8.40E-03"" 5.09 5.45 4.05E-18""
24 31 5.72 5.87 | 8.71E-22"" | 7.08 7.11 | 0.07 5.87 6.04 | 2.05E-05" | 6.39 6.38 1.82E-03"" 5.05 5.31 8.65E-15"""
25 32 5.61 5.74 | 2.92E-21"* | 6.98 6.79 | 0.33 5.83 5.95 | 4.48E-05""" | 6.21 6.18 2.23E-03" | 4.95 5.22 1.70E-15""*
26 33 5.73 5.86 | 2.17E-20™" [ 7.29 7.08 | 0.33 5.95 6.11 | 5.82E-04™" | 6.33 6.25 8.32E-03"" 5.01 5.29 1.03E-16™"
27 34 5.79 5.78 | 4.34E-11"" | 7.42 7.26 | 0.24 6.00 6.04 | 8.45E-03"" 6.42 6.13 0.53 5.06 5.24 1.17E-10"""
28 35 5.73 5.80 | 1.71E-14™" | 7.28 7.04 | 0.75 5.85 6.05 | 1.39E-04™" | 6.43 6.25 0.11 5.05 5.28 3.08E-11"""
29 36 5.69 5.71 | 1.23E-13"" | 7.38 7.12 | 0.80 5.72 5.84 | 2.56E-04"" | 6.31 6.11 0.03" 5.03 5.20 1.23E-11""
30 37 5.89 5.86 | 2.96E-09™" [ 7.59 7.35 | 0.38 5.94 5.98 | 3.83E-03"" 6.42 6.15 0.27 5.23 5.35 1.17E-09""

O: observed data; P: permutated data; * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; 1 shortest significant observed NSP distance; Tt second shortest significant observed NSP

distance.




10.2 Additional analyses

Based on our analysis of the contribution of patient transfers to CPE spread in France, it may
be assumed that in 2015 at least, CPE do indeed spread over the French healthcare network to
some extent. In a follow-up analysis, we hence attempted to reconstruct transmission chains of
CPE episodes among French hospitals. This analysis was performed by adapting a Bayesian
method initially developed to reconstruct outbreaks based on epidemiological and genomic data
(Outbreaker2 R package, developed by T. Jombart, F. Campbell, R. Fitzjohn) (196, 197),
without genomic data and for a large nationwide outbreak. The method was used to determine
possible chains of transmission of CPE data based on knowledge of the episode dates, the
weight of the links in the healthcare network, and the importation status of episodes. The study
aimed to identify sources of CPE infection spread in the healthcare network and to determine

what proportion of secondary infections could be explained from the network data.

The Outbreaker2 tool is an updated and more modular version of the earlier package
Outbreaker, both of which are available for use on the R programming software.(198) The
epidemiological likelihood of a given transmission tree is estimated using the distribution of a
given generation time (the time interval between a primary and secondary infection) coupled
with a model of sequence evolution defining the probability of the genetic changes along a chain
of transmission.(198) The model allows the estimation of dates of infections, mutation rates,
separate introductions of the pathogen, the presence of unobserved cases, and the transmission

tree.

Five assumptions were made about transmission in the first analysis: 1) episodes were
considered as “cases” (therefore the number of cases per episode was ignored) in the first
analysis but not in the second 2) imported episodes were considered index cases and non-
imported episodes were considered potential secondary cases, 3) an index case had to occur n
number of days before a secondary case to be linked 4) an index case episode’s department and
secondary case episode’s department had to be sufficiently linked in the healthcare network and
5) transmission could only occur between CPE episodes with the same mechanism of resistance
since no genetic data was used. Since only the department of the CPE episodes was known and

not the hospital, the department network of patient transfers was used for the analyses.

An example of reconstruction of transmission chains of 300 OXA-48 episodes occurring in
2015 is shown in Figure 27. Each link corresponds to two episodes having at least 5%

probability of existing.
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Figure 27. Reconstructed transmission chains of 300 OXA-48 episodes in 2015

A few observations may be made about some of these preliminary analyses: not all imported
episodes were part of a chain of transmission, many were not linked to any episode, and many
secondary cases had multiple potential sources of infection so uncertainty of the source was

often high.

Since CPE episodes could also group many cases that could result in many other secondary
cases, the second analysis assessed the entire dataset of each individual CPE case. Since
multiple case episodes shared the same notification date but may not have occurred during that
same date, several methods were developed to modify case dates: keeping all case dates as the
original episode date, adding random values to case dates assuming the first reported date was
the first reported case, adding a normal distribution of values to case dates, and adding a Poisson
distribution to case dates. The total number of cases linked according to different mean

generation time between cases is shown in Figure 28.
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Figure 28. Transmission chain component size by mean generation time
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The largest component size for transformed case dates corresponded to a generation time of 37
days using a Poisson distribution (Figure 28). This result was similar to findings in the previous
study assessing the role of patient transfers on CPE spread where the sensitivity analysis
supported a time window between potential infectors and incidence episodes between 20 to 30
days. However, depending on the transformation used, other time windows such as 10 to 20
days or 40 to 50 days could also have been just a pertinent. Component size or the number of
connections may not be the most appropriate criteria for selection of the most appropriate

generation time; therefore, other epidemiologically pertinent criteria should be considered.

This study showed the possibility to reconstruct large outbreaks without genomic data.
Healthcare networks used to construct chains of transmission of CPE were able to explain a
percentage of secondary CPE infections and to identify hospital hotspots of CPE spread;

however, more work is needed to refine the understanding of the links between episodes.
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Part Five: Discussion of thesis work and perspective
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Chapter 11. Synthesis of results

After illustrating the integration of network data in mathematical modelling of pathogen spread
in healthcare settings, this thesis has consisted of developing healthcare networks of patient
transfers in France in order to better understand the transfer patterns of different patient
populations, the role of the healthcare network structure in potential HAI spread, and the

contribution of patient transfers, both international and local, on the CPE epidemic.

The first work of the thesis entailed conducting a systematic review of mathematical models in
healthcare settings using real data on networks within and between institutions. This review
presented an overview of the specific methods related to integration of network data in the
various modelling studies identified and how they may improve our understanding and
predictive capacity of HAI spread in healthcare settings. Models of HAI spread that incorporate
either inter-individual contact or inter-institutional transfer network data were found to have
become more frequent over time, and to have brought new insights into more effective HAI
prevention and infection control strategies. However, to this date, they have also been limited
to a few settings and a few pathogens. Further innovations in data collection and validation of
parameter estimates of these models appear necessary for the improvement of our understanding

of HAI spread dynamic.

The healthcare networks of France were reconstructed using the French medico-administrative
database, the PMSI, after a literature review was conducted to assess its validity for detection
of HAIs. At the heart of the thesis, the reconstruction and analysis of the French healthcare
networks provided a first detailed description of the patient transfer patterns at the French
national level, based on extensive social network analyses. The French healthcare networks
were found to be characterised by heterogeneous patient flow, to demonstrate a scale-free and
small-world nature, and to have a two-tier community clustering structure. A comparison
showed that HAI-specific and suspected-HAI networks relied on the same underlying structure
as that of the general patient network. The identified key hub healthcare centres, patient flow
trajectories, and regional and local community clustering structure may help serve as a basis for

novel infection control strategies.

Based on these reconstructed networks, a preliminary simulation study of pathogen spread was
conducted in the early stages of the thesis, using a mathematical SIS model. As expected,
epidemics starting in healthcare facilities with the highest centrality measures, especially high

connectedness (degree) and a high number of patient transfers (strength), had the highest
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probabilities of being sustained in time. Therefore, facility degree and strength should be
considered as main targets for large-scale infection control strategies. More modelling work is
required for a better and more comprehensive understanding for the potential impact of control

measures on spread of specific pathogens in the healthcare networks.

Hospital-acquired infections cover a large spectrum of pathogens; in order to address the most
pressing issue faced by healthcare systems — multi-drug resistance — the second part of the thesis
focused on carbapenemase-producing Enterobacteriaceae. CPE episodes have been widespread
in France since their first introduction in 2004 and have continued to rise in number every year.
CPE episodes from September 2010 to December 2015 were described during the thesis and
were used to forecast the number of expected episodes within the following four-year period
using SARIMA models. Overall, the CPE epidemic in France was characterised by a majority
of CPE strains carrying the OXA-48 resistance gene. The CPE epidemic was predicted to
double in size in terms of the number of episodes by the end of 2019; however, the number of

multi-case episodes and outbreaks were predicted to stabilize.

In order to help better understand and develop effective control strategies against the French
CPR epidemic, the thesis then aimed at assessing the contribution of patient transfer patterns
on CPE spread. This was done using the previously described general patient healthcare
network in France in 2014 (191) and an adaptation of a previously published statistical method
to empirically test the contribution of this network on CPE spread over the 2012 to 2015
period.(199) CPE episodes were found to be significantly supported by the patient transfer data.
A transition was also observed in 2013, from an epidemic sustained by importation to an
epidemic sustained by local transmission events. As a consequence, the study suggested that
coordinated prevention and infection control strategies should now focus on at-risk patient
transfers of carriers of CPE to reduce regional and inter-regional transmission. Preliminary
work was performed to attempt to reconstruct CPE transmission chains among French hospitals;

this should be pursued.

In summary, the work conducted during the thesis described the structure of French healthcare
networks and assessed the role that patient transfers may have in the transmission of
pathogens in the healthcare setting. The particular example of the role of patient transfers in
CPE transmission serves to highlight the importance of considering the network structure in

developing novel infection prevention and control strategies.
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Chapter 12. Research limitations and perspectives

Although the research aims were met during the course of the thesis, several limitations may be
identified. Even if the criteria of the systematic review was to identify mathematical and
mechanistic models of HAI spread, the contributions of statistical models in the understanding
of transmission dynamics of pathogen spread in healthcare settings could have also been useful.
Statistical models are not only useful in describing observational studies but can also provide
insights in spread dynamics of HAIs through multistate models such as survival models or
competing risks models that can elucidate the transition probabilities of different states of
infection.(200) The review did not include publications using social network analyses that can
also provide valuable information on the impact of contact and transfer network structure on
potential HAI spread dynamics.(109, 155, 170, 201, 202) Despite these exclusions, the review
was able to identify over 200 studies and in which 76 were examined in detail, providing new
insights into the implementation of contact and transfer network data to further develop
mathematical models in healthcare settings. Future reviews either focused on the role of
statistical methods in the improving the understanding of pathogen spread dynamics in these
settings or the role of network structure in terms of network topology characteristics in order to

detail complex social structures should also be conducted.

Three main limiting factors relating to the nature of the PMSI database were encountered in the
development of the healthcare networks. The first limitation dealt with the coding bias of HAI
infection in the PMSI database in order to appropriately identify patients with HAIs; however,
the literature review and the inclusion of a second set of codes in order to identify other potential
HALI patients addressed this limitation. However, it should be noted that even with the addition
of a second set of more sensitive and specific codes, other data sources such as laboratory
confirmed results of infections could have been used to identify patients. Nevertheless, this task
would have been very difficult to achieve given the timeframe of the thesis due to the extensive
size of the number of patients to evaluate for the entire country for the entire year of 2014 and
potential issues regarding access to these data. Overall, for the purpose of the healthcare
network analyses, it was deemed sufficient to have included the HAI-specific and suspected-
HALI patient transfers in order to produce networks that reflected the overall structure of transfer

patterns of HAI patients in order to sufficiently compare them to the general patient population.

The second limitation regarding the quality of the PMSI data was in regard to the healthcare

facility identification numbers. Many of the university hospitals represented more than one
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public hospital or healthcare facility due to the sharing of the same FINESS number. For
example, the largest outlier hub in Paris (AP-HP) constituted 39 hospitals but was represented
as one vertices in the network — a very significant outlier in terms of connectivity. Consequently,
university hospital centres accommodated a larger patient population than hospital centres or
local hospitals, influencing the network characteristics which may have led to overestimation
of the specific patient movement patterns to and from these centres. However, the high
concentration of other hospitals within proximity of these public hospital hubs demonstrates
that despite this issue, major cities such as Paris play the most important role in connecting

patients in the national network.

Finally, the third limitation we encountered concerning the use of the PMSI database was the
fact that patients diagnosed with or patients suspected to have had an HAI could be treated and
clear the infection before being transferred. In addition, pathogens due to asymptomatic
carriage, the diagnoses performed within hospitals may not have allowed identifying all carriers
of potential HAI pathogens so we may have missed these important patient transfers. However,
despite these limitations in the sensitivity and specificity to be able to detect both asymptomatic
carriers and carriage status during transfer, our results suggest that this information is not
mandatory since all three networks rely on the same underlying structure. As a result, we are
able to show that models of the general patient population can reliably inform us on the transfer

patterns of different patient sub-populations.

Among the initial aims of the thesis was the development of a large meta-population-like model
of pathogen spread in the French healthcare network. As discussed in the systematic review,
mathematical models provide not only a theoretical framework to better understand pathogen
spread dynamics in healthcare settings but can also lead to the testing and evaluation of novel
infection control strategies that can inform healthcare systems on how to more effectively
manage and reduce the burden of HAIs. A simple SIS-like model was developed in the early
stages of the thesis and insights into how healthcare facility network characteristics may impact
epidemic spread were given. Nonetheless, the model lacked the complexity to inform healthcare
professionals on how to better manage at-risk HAI patients and the model did not entail the
assessment of infection control measures such as the impact of screening based on different
definitions of “at-risk” patients. In addition, the model should be further developed to include
important hospital co-factors such as antibiotic exposure and the frequency of surgical

procedures. One possible approach would be using heterogeneous probabilities of transmission
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between hospitals, depending on hospital characteristics, to account for these important

variations and better understand the dynamics of pathogen spread in the healthcare networks.

The thesis research, however, has been a precursor to a larger collaborative project that has been
funded from 2018 to 2021 entitled “Spread of Pathogens on Healthcare Institutions Networks:
a modelling study (SPHINx)” whose aim is to 1) develop a modelling platform to integrate
different levels of HAI transmission from pathogen selection within wards to their
dissemination between healthcare facilities and 2) use this platform to evaluate control
strategies at the local, regional and national level. Specific strategies, such as the impact of
antibiotic exposure in addition to the different antibiotic policies among different hospitals, can
then be taken into account in the individual and hospital-level models. A national-level meta-
population-like model of the healthcare network is also planned in the project to address the
shortcomings of the thesis due to time constraints. The research that has been conducted so far
during the thesis and a number of ideas of novel infection control strategies based on network

structure that have been proposed will be of value for future development of the project.

A few limitations were also faced regarding data on CPE episodes in France. In the time series
project for example, we had to rely on CPE data from the national surveillance network up to
December 2015 even though the study began after June 2016. Not including valuable
observations for the year 2016 in the model led to weaker estimates of the SARIMA model
parameters, larger prediction intervals, and forecasts of 2016 CPE episodes with limited
usefulness because they were in part outdated. Therefore, the advancement of the project relies
on more recent CPE episodes becoming available in order to improve the predictive capacity of
the models and to provide more timely and pertinent predictions of CPE episodes. This work is

currently being prepared.

The second limitation was due to a lack of information regarding hospitals where the CPE
episodes were reported. Indeed, the work regarding the assessment of the role of inter-facility
transfers on CPE spread dynamics had to rely solely on the department of the episodes. As a
result, transfer rates between hospitals of the same department were assumed to be homogenous
that reduced the power of the study. However, statistically significant differences between the
network-supported path distances in the observed CPE episode data and the permutations were
still observed due to sufficient heterogeneity in the transfer rates between departments. Since

hospital-level CPE data has been recently attained, future work involving modelling the
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transmission of CPE on the healthcare network will lead to the use of the entire patient transfer

network and thus, a better representation of the epidemic on the network.

Cautions regarding the interpretation of the forecasts of CPE incidence should be taken.
Limitations concerning detection and declaration bias may have biased the results. CPE
incidence data (and our forecasting results, as a consequence) could in fact reflect the increase
in declaration rates over time by healthcare facilities and laboratories and not the true burden
of disease. Some facilities may be more active in detecting CPE while others may not. In
addition, some facilities may be less likely to declare and report single case CPE episodes while
others may not. For example, university hospitals may not necessarily have more cases but
rather declare CPE due to protocol or available resources that facilitate detection. On the other
hand, some facilities may be less likely to report single case episodes or to investigate their

links with other cases and as a result, we may under estimate the incidence of these episodes.

The SARIMA models gave simple conservative estimates concerning the predictions of CPE.
These models did not take into account the mechanisms that may lead to spread and relied on
the assumption that declaration behaviour, control strategies, and spreading dynamics will not
change over time. In addition, these models consider a linear trend, while in fact pathogens do
not spread linearly but rather may result in multiple cases. Therefore, the model estimates may
actually underestimate the future incidence. However, despite the simplicity and potentially
conservative estimates of future CPE episode incidence, the study aimed to underline the
importance of improving prevention and infection control strategies aimed at CPE spread. It
may be very likely that the burden of disease will grow over time and have consequences in

terms of disease risk ad cost.

Finally, CPE infection from community settings should have also been considered. Potential
CPE cases are likely to be occurring in the community which can lead to non-identification and
poor control of any potential cross-infections. Future work should also assess the impact that
CPE community transmission; and models should consider the impact of guidelines for

screening and controlling CPE in the community.

In conclusion, many limitations were encountered regarding the quality of research of the thesis;
however, some of these limitations were either addressed directly or will be addressed in future

work as outlined in the SPHINX project.
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Chapter 13. Public health implications

Improving the current knowledge of the dynamics and mechanisms that lead to the spread of
pathogens in healthcare settings and the proposal of innovative prevention and infection control
measures stemming from this knowledge are of major public health importance. HAIs strain
healthcare systems all over the world due to several factors: increasing the burden of disease of
patients who risk longer hospital stays and even death, posing a burden to healthcare staff, and
a financial burden to the system in terms of providing an inadequate number of isolation rooms
and hospital beds to high-risk and infected patients. Among all HAI pathogens, extensively
drug-resistant strains pose a major threat to patient safety and in some cases, prevention
measures may be the sole methods to combat their dissemination when treatment with
antimicrobials is no longer an option. As a consequence of the rising need of novel prevention
and infection control measures to combat the spread of pathogens in the healthcare setting, this
thesis sought to elucidate new avenues of infection control research targeting common HAIs
and multi-drug resistant Enterobacteriaceae through the modelling of pathogen spread
dynamics. In order to achieve these objectives given the timeframe of the thesis, three
publications in international peer-reviewed journals were published or submitted: a systematic
review of mathematical modelling of pathogen spread in healthcare settings, an extensive
analysis and comparison of the French healthcare networks, and an assessment of the role of
patient transfers in the transmission of CPE in France. The following discussion aims to
enlighten the public health implications of these findings and how they may provide a body of
work to support novel ways of addressing HAI prevention and control at the national-scale, in

particular for the case of France, but to other contexts as well.

One avenue in which innovative prevention and control measures have been proposed has been
the field of mathematical modelling. Mathematical models have provided a theoretical
framework for understanding complex transmission dynamics within healthcare settings for
over 15 years (112-115). Furthermore, they have provided a quantitative approach to estimating
the impact of various infection control strategies and their combined effects (113-115, 203).
The number of publications on mathematical models of infections in healthcare settings have
become more frequent over the years. Multiple factors may have led to this observed increase
including perceived usefulness of models as tools for understanding the impact of infection
prevention and control in the health field, for understanding drivers of recent major epidemics
such as the 2002-2003 SARS outbreak (204-207) and the 2014-2015 Ebola epidemic (208-211)
or growing awareness of factors contributing to the global impact of antibiotic resistance (212).
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Due to growing use of digital data in the field of epidemiology over the years such as an
increased availability of digitalized medical records and development of sensor technology to
monitor inter-individual contacts have provided researchers with the means to build more
realistic models. Further innovations in data collection on both network structure and infection,
implementation of the data in modelling, and calibration and validation of the data in the models
are required to further reinforce existing recommendations and to evaluate new control

strategies in healthcare settings.

The analysis of the French healthcare networks provided a first description of patient transfer
patterns at the French national level. The study showed that transfer patterns of patients who
had an HAI and other patients with different diseases and comorbidities were subject to the
same network dynamics. In comparison to other healthcare networks in England (14, 175), the
Netherlands (13), Scotland (15), or the United States (16), the French healthcare networks were
very centralized systems. Public university hospital centres and private hospitals in the main
metropoles of France dominated patient flow. Studies in France have shown that highly
connected hospitals may harbour more MRSA and MRSA bacteraemia cases (13, 167, 175,
213) and that HAIs were overall most prevalent in cancers centres, university hospitals, and
armed forces hospitals (214). Therefore, these healthcare facilities may have the most potential
to transmit HAIs in the entire network through carriage by infected or colonized patients.
Pathogens in healthcare settings may spread at a higher rate than expected at random due to the
centralization of patient movement and due to the small average number of transfers required

for patients to move throughout the network.

These findings were in line with the preliminary SIS-like model results showing that the highest
probability of a sustained epidemic occurred when hub hospitals were initially infected. A
simulation model of the English healthcare network also identified university teaching hospitals
as hubs for both MRSA incidence and recommended them as ideal targets for intervention
measures such as screening of patients discharged from these hospitals as a more efficient
means of control of pathogen spread compared to universal screening measures.(175) In
parallel, the French healthcare network study also points to hubs as targets for sentinel
surveillance in addition to priority targets of HAI control strategies to achieve the most effective
reduction in transmission across the country.(161) Hence, in any context where patients are
being transferred from hub healthcare centres, special attention should be paid to any potential

HAI-related risks during admission.
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In recent years, studies that have modelled the spread of infection in healthcare networks have
argued for regional coordinated control strategies as one of the most effective ways to reduce
pathogen dissemination in healthcare settings at regional and nation levels.(110, 175) The
regional community clustering findings from the French healthcare network study were similar
to that of the healthcare network of England in which the majority of transfers occurred through
intra-regional community patient sharing and patient flows centred towards the regional
university hospital within the community.(175) Furthermore, the French study demonstrated
that a two-tier hospital community structure existed. Healthcare communities were identified at
both the regional level, consistent with the French administrative regions, and at the sub-
regional or department-level. Subtle differences between department-level communities of the
suspected-HAI and the general network may be important in distinguishing hospitals with
higher potential to harbour HAI pathogens, with possible consequences in terms of spread
prediction; however, this requires further study. Coordinated local control measures such as
screening at-risk patient transfers and increasing contact precautions based on the centrality of
a neighbouring discharge hospital with known cases may be the first line of defence against
pathogen spread within the regions before spread reaches the hub university hospitals through

intra-community transfer.

Important intermediary trajectories may play a key role in the spread of pathogens between hub
hospitals and between communities. A study has shown that modifying the number of patients
moving between communities may reduce the spread of MRSA for example.(14) The same
authors also showed that even though a healthcare facility’s strong connections were important
risk factors for a direct neighbour, weaker connections also offered ideal indirect routes for
pathogens to travel further and faster in the network.(215) In addition, for the case of CPE, they
found that in terms of absolute numbers of colonised patients admitted to a hospital by transfers
from the same region compared to transfers coming from outside their region, transfers
occurring within the same region posed more of threat.(216) Therefore, these studies parallel
the observations of a two-tier-like network structure in which infection risks depends on the
two levels. Slightly weaker links at the sub-regional level may play a more important role in the
spread dynamics in terms of absolute number of transfers and thus potentially infection risk
compared to the highly weighted and connected inter-community links between hubs. The
simulation of pathogen spread in the networks showed that albeit the hubs introducing infection
from the large metropole across to the regions, the highest number of infected hospitals resulted

from regional university hospitals disseminating the infection to the local sub-regional clusters.
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The two-tier structure may inform coordinated strategies at a more local level where healthcare
facilities not only identify at-risk patients transferred from hub university hospital centres but
also consider the risks coming from neighbouring local hospital centres. Infection control
strategies — for short-term control — should rely more on the local department-level dynamics
to minimize hospital-level outbreaks and transmission to neighbouring hospitals. In the long
term, regional community dynamics may give clues regarding the gradual propagation of
specific strains of pathogens over time (assuming carriage patterns follow that of patient flow
patterns in the healthcare networks). Future studies are needed to validate these
recommendations and to quantify the control measures. In addition, other studies are also
required to assess the temporal dynamics of pathogen spread in networks in order to identify
any potential seasonality patterns of flow and how to prevent emerging multi-drug resistant

bacteria from becoming endemic.

Long-term prevention measures are also needed to prevent emerging pathogens from becoming
endemic. Reducing hospital connectedness in order to reduce the risk of spread of pathogens in
networks is at the core of many novel infection control proposals.(139, 175) Decentralization
of the healthcare system and more specifically human resource and specialized health services
towards the regional and department levels may help reduce the high connectedness of hubs in
the metropole centres and redirect patient transfers; however, this remains to be tested. France
previously moved towards regionalization strategies with the creation of regional hospital
agencies, albeit not very effective and current trends gear more towards centralized
healthcare.(217, 218) In addition, the number of university hospitals may be insufficient in
France, below that of the UK, a country with a similar population size. Therefore, one structural
solution to alleviate the burden of pathogen spread could be increasing the number facilities
providing specialized services and distributing them at the local level to help redirect patient

flow and potentially avoid large-scale pathogen dispersal.

One notable source of concern is the risk of CPE becoming endemic. CPE episodes have
become widespread in France and the number of episodes continue to rise every year. The Ile-
de-France region, which includes Paris and neighbouring French departments, has the highest
incidence of CPE episodes, including the highest number of episodes linked to internationally
imported cases. Paris serves as a healthcare hub and attracts a high number of patients seeking
specialized care which may put them at higher risk for CPE infection. The infection risks are
thus two-fold: patient seeking specialized care may increase individual risk factors to infection

because specialized services may entail surgery and other invasive procedures; and also, patient
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exposure to a higher number of potential contacts with CPE carriers due to high CPE incidence.
The time series study predicted stabilization of episodes with multiple cases in France for the
next few years. Therefore, one can assume that the control measures already in place during the
2010-2015 period to control outbreaks have been effective and should continue in order to
control transmission to avoid recurring hospital outbreaks. It should be noted, however, that
multiple case episodes represented a range between two to 200 CPE cases per episode.
Therefore, a higher number of person-to-person transmission events may continue to occur;
however, the number of outbreaks were predicted to occur at a stabilized frequency. The study
also predicted an increase in the number of single case episodes; but, this may be due the

surveillance system failing to link transmission events or incomplete surveillance data.

The previously mentioned prevention and control strategies for pathogen spread in healthcare
settings are especially pertinent for the CPE epidemic. The dynamics of CPE transmission in
France have changed over time. Mounting evidence for local spread through transfers emerged
in 2014 followed by the strongest evidence for transfer network-supported CPE transmission in
2015. These results suggest that between 2013 and 2014 there was a growing contribution of
regional and inter-regional transfers in the spread of CPE in France which is in concordance
with reports by the ECDC.(89) In addition, the estimated delay in notification of CPE episodes
between hospitals due to patient transfer was observed between 20 to 30 days after initial
notification in an index hospital. Therefore, this recent study not only linked CPE transmission
events to patient transfers in recent years, but also estimated delay in notification of these
events. These two findings reinforce recommendations highlighting the importance of
considering patient transfer as critical risk factors for CPE introduction that could help the
surveillance system to estimate high risk periods for outbreaks linked to patient transfers from
hospitals with known CPE cases, and that could lead to public health authorities to take action

during critical periods to control spread.

Network structure can also explain the observations of these local transmission events. Both the
number of linked episodes occurring in the same department increased over time and the
proportion of linked episodes occurring in different departments occurred within shorter
geographic proximity over time as well. As previously mentioned, local department-level
community patient sharing was expected to play an important role in infection spread dynamics.
The increasing number of these possible CPE transmission events occurring in the same
department may be explained by the fact that most patient transfers in the healthcare network

occurred at the local level. Therefore, the largest proportion of CPE transmission may have
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occurred between neighbouring hospitals and public health authorities should take in to
consideration the importance of monitoring local patient transfers for potential at-risk CPE

carriers in order to have the most effective impact on the CPE epidemic.

While patient transfers are certainly not the sole explanation for the augmentation in observed
CPE episodes between 2013 and 2015 and other factors such as antibiotic exposure should have
been considered, these studies suggest that patient transfer has played an increasingly
significant role over time. Episodes from international importation could also have contributed
to almost half of the spread of CPE in France for example. These results are consistent with the
outbreak descriptions observe in the literature in which both imported and non-imported cases
have led to secondary cases of CPE in different hospitals. In addition, the heterogeneity in
infection control policies across different types of healthcare facilities in France and limited
implementation of specific strategies to control CPE may have led to poor control of CPE and

in consequence, dissemination over time.(219)

Our results may also help elucidate how patient transfers can serve as a mechanism of spread
of CPE in France. Since asymptomatic carriage of CPE could occur and there may be
heterogeneous detection of colonised patients across different healthcare facilities,
understanding patient transfer patterns may also help elucidate the potential risks for new

introductions in the healthcare network.

There was no observed association between the number of cases per potential infector episode
and the number of secondary episodes. On one hand this may suggest that control measures
have prevented large hospital outbreaks from causing multi-department outbreaks during the
2014-2015 period; on the other hand, as previously mentioned in the time series study, most
reports were single-case episodes suggesting a potential failure of surveillance authorities in

identifying single-cases as part of the same chain of transmission of other reported episodes.

Network dynamics may also help explain CPE outbreaks. The number of CPE spreading events
involving multiple episodes has increased over time. For example, an imported OXA-48
episode in Paris was linked to nine other episodes in nine different departments in France in
2015. Paris has been identified as the largest hub for not only CPE episodes linked to
importation but also for patient transfer. Other examples of multiple spreading events involving
hubs further highlight the important role of links with a large number of patient transfers in
connecting geographically distant hospitals in terms of HAI transmission. These observations

underline the importance for health authorities to improve control efforts in large and highly
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connected metropoles and healthcare facilities. These efforts also go hand-in-hand with
coordination between the regional surveillance systems, local expert laboratories and regional
health authorities in order to rapidly identify CPE cases. Healthcare facilities should also be
urged to quickly notify any cases or potential contacts. In addition, screening measures, contact
precautions, and strict cohorting of patients (which have been shown especially effective in one

particular CPE outbreak (9, 95)) should be implemented once cases are identified.

85



Conclusion

Healthcare networks have been important in elucidating the role of patient transfer patterns in
pathogen spread in healthcare settings. The major limiting factor of this work has been the
lack of a detailed modelling study quantifying the impact of pathogen spread in the healthcare
networks; however, this body of work provides a foundation for future work on modelling
spread. In addition, the various findings of the studies conducted during the course of the
thesis may help enlighten public health implications of patient transfers on spread dynamics in
order to provide a body of work to support novel ways of addressing prevention and control in
healthcare settings at the national-scale. These studies support regional coordinated efforts at
the local, regional, and national level between healthcare facilities that requires the aid of the
surveillance system in order to coordinate these efforts and mobilize facilities to implement
new measures accordingly. In addition, these efforts require the cooperation of university
hospitals who play an important role in the healthcare network structure. At-risk patient
transfer identification using network topology measures may prove useful for specific
pathogens such as multi-drug resistance bacteria. CPE episodes have been linked to both
international importation and local spread; as a result, it is of upmost importance for
healthcare network dynamics to be considered in the prevention and infection control process.
This thesis serves to highlight the importance of healthcare network structure in the

development of effective prevention and infection control measures.
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SPREAD OF PATHOGENS IN HEALTHCARE
NETWORKS: ASSESSMENT OF THE ROLE OF
INTER-FACILITY PATIENT TRANSFERS ON
INFECTION RISKS AND CONTROL MEASURES

Résumé

La propagation des pathogenes, notamment des bactéries multi-résistantes, au sein du réseau
des hopitaux, est un grand enjeu de santé publique. L’évaluation du role joué par les transferts
inter-établissements des patients sur cette propagation pourrait permettre 1’élaboration de
nouvelles mesures de contrdle. L utilisation des données de réseaux de contact inter-individus
et de transferts inter-établissement dans la modélisation mathématique ont rendu ces modeles
plus proches de la réalité. Toutefois, ces derniers restent limités a quelques milieux
hospitaliers et quelques pathogénes. La thése a eu pour objectifs de 1) mieux comprendre la
structure des réseaux hospitaliers francais et leur impact sur la propagation des pathogenes
dans le milieu hospitalier ; et 2) évaluer le role des transferts sur la propagation des
entérobactéries productrices de carbapenemase (EPC). Les réseaux hospitaliers frangais sont
caractérisés par des flux de patients vers des hubs et par deux niveaux de communautés des
hopitaux. La structure du réseau de transfert des patients présentant une infection nosocomiale
(IN) n’est pas différente de celle du réseau général de transfert des patients. Ce travail a
¢galement montré que, depuis 2012, les transferts de patients jouent avec les années un rdle de
plus en plus important sur la diffusion des EPC en France. En conséquence, la structure du
réseau des hopitaux pourrait servir de base pour la proposition des nouvelles stratégies de
contrbles des IN en général, et des EPC en particulier.

Infections nosocomiales ; réseaux hospitaliers ; entérobactéries

Résumé en anglais

The spread of pathogens and multi-drug resistance in healthcare networks is a major public
health issue. Evaluating the role of inter-facility patient transfers may provide insights on
novel infection control measures. The increasing use of inter-individual contact and inter-
facility transfer network data in mathematical modelling of pathogen spread in healthcare
settings has helped these models become more realistic; however, they remain limited to a few
settings and pathogens. The main objectives of this thesis were two-fold: 1) to better
understand the structure of the healthcare networks of France and their impact on pathogen
spread dynamics; and 2) to assess the role of transfers on the spread of Carbapenemase-
producing Enterobacteriaceae (CPE). The French healthcare networks are characterized by
centralized patient flows towards hubs hospitals and a two-tier community clustering
structure. We also found that networks of patients with healthcare-associated infections
(HAIs) form the same underlying structure as that of the general patient population. The
general patient network was used to show that, since 2012, patient transfers have played an
increasingly important role over time in the spread of CPE in France. Therefore, the structure
of healthcare networks may help serve as a basis for novel infection control strategies to
tackle HAIs in general, and CPE in particular.

Hospital-acquired infections; healthcare networks; Enterobacteriaceae




