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Abstract

Long term longitudinal surveys have the advantagenable several sampling of the studied
phenomena and then, with the repeated measuresmaihtdind a confirmed tendency.
However, these long term surveys generate larggespological datasets including more
sources of noise than normal datasets (e.g. orgdesineasure per observation unit) and
potential correlation in the measured values. Heve, studied data from a long-term
epidemiological and genetic survey of malaria dieda two family-based cohorts in Senegal,
followed for 19 years (1990-2008) in Dielmo and i@ years (1993-2008) in Ndiop. The
main objectives of this work were to take into aguofamilial relationships, repeated
measures as well as effect of covariates to medsofte environmental and host genetic
(heritability) impacts on the outcome of infectiovith the malaria parasit®lasmodium
falciparum and then use findings from such analyses foaljgkand association studies. The
outcome of interest was the occurrence Bf falciparummalaria attack during each trimester
(PFA). The two villages were studied independentlydemiological analyses, estimation of
heritability and individual effects were then perfeed in each village separately. Linkage and
association analyses used family-based methodsedbas the original Transmission
Disequilibrium Test) known to be immune from popida stratification problems. Then to
increase sample size for linkage and associatiatyses, data from the two villages were
used together.

We adopted several different approaches to findnnmrak factors associated with the
occurrence oPFA. The main risk factors found by all used methadbath cohorts were the
age of the individual and the period of survey, tmest commonly known variables
influencing the burden of malaria in endemic areas. the one hand, two data mining
methods, Classification and Regression Tree (CARTJ HyperCub® identified similar
disease susceptibility groups defined by theseusr@bles: almost 3 to 4 times more risk to
develop PFA for individuals having young age (~1 to 5 yeard @h both cohorts by
HyperCub€&; ~1 to 5 in Dielmo and ~1 to 15 in Ndiop by CARANd being exposed during
periods before the use of efficient drugs (peribésre 2004, the year of change in drug
treatment fromChloroquine against which malaria parasites developed resistato a new
and more efficient drugransidarand later in 2006 artemisinin-based combinati@rapy).
Whereas CART retained only these variables havirapg predictive value via its “pruning
tree” procedure in which the objective is to opimthe misclassification rate, HyperCfibe
also included hemoglobin type and cumulative exgpexe of P. malariae infections that
significantly increase the relative risk 8FA On the other hand, regression analysis by



Generalized Estimating Equations (GEE) method fausidonly those variables with a strong
contribution in defining highest risk groups, busa other important variables showing
significant association wittPFA. Thus, GEE added variables sex, season of the year
hemoglobin type, blood group, Glucose-6-phosphakydrogenase (G6PD), cumulative
experience to infections Wy. falciparum malariaeandovale and exposure.

In addition to these epidemiological factors, malainfection and disease are strongly
influenced by human host factors. To quantify theserces of variation, correlated random
effects such as those due to genetic relationsmpeng individuals and repeated measures
within individuals should be taken into accountstatistical models. Thus, we evaluated the
heritability of malaria phenotypes known to be uefhced by human genetics, the number of
clinical malaria episodes d@. falciparummalaria attacksRFA) and the proportion of these
episodes being positive for gametocytd?fgan), the specific stages of the parasite
responsible for parasite transmission to the meésgWe performed Generalized Linear
Mixed Models (GLMM) that account for familial relahships and repeated measures and
have adjusted the models on the significant enwiemtal variables identified in the
epidemiological analysis, to estimate and sepdbate/ariance of the phenotypes among four
sources: host additive genetics (heritability), ranndividual effects or permanent
environmental effects including other personal @ffdike genetics non-additive, house and
unexplained residuals. We found a significant adeligenetic effect underlyinBFA during

the first drug period of study; this was lost inbsequent periods. There was no additive
genetic effect forlPfgam analyzed in Dielmo only. By contrast, the intraiindual effect
increased significantly. The complex basis to thenéin response to malaria parasite infection
likely includes dominance/epistatic genetic effeeteompassed within the intra-individual
variance component. There were no house or mateffiegks.

We then performed genetic studies that focus odidate genes for susceptibility/ resistance
to malaria. We used family-based methods with atifedus model, more powerful and
better adapted, for multifactorial diseases suchmataria, to test for genetic linkage and
association at any number of independent loci gemebusly. We used 45 Single Nucleotide
Polymorphisms (SNPs) on candidate genes as gereiables and the adjusted individual
effects on PFA as the phenotype of interest. Sitilastudies showed a gain of power from
single locus to multi-locus models in detectingeagfic effect on a phenotype suspected to be
influenced by several independent loci. Then, mattus models should be appropriate for
malaria phenotypes supposed to be the resultstimhacdrom many different genes having
weak marginal effects. We then applied this metteodur real malaria data by analyzing the
SNPs one by one in a first step and SNPs showirlgaat a weak significance (P-valdge
0.10) for association with the phenotype were seteén a second step for a multi-locus



model that analyzes simultaneous transmissionlekalfrom those SNPs. Five SNPs showed
weak marginal protective effects against malartaratorrection for multiple testing: three
SNPs on theSLC4A1(AE1l) gene (Band 3) located on chromosome 17 @@121, P =
0.0005; ael_117_118, P = 0.0598; ael 174 187,.D99%), one SNP on theglobin gene
(Xmnl) located on chromosome 11 (Xmnl, P = 0.0588) one other on the gedd0O
located on chromosome 9 (abo297, P = 0.0854). \&fe @ahalyzed these five loci together and
obtained more significant protective effects (Pueal were distributed from F0to 10° for
joint effects corresponding to different ways ofrdmning these five loci).

Key words: Malaria, Repeated measures, Family based, Genetg#ability, Multi-locus,
Linkage, Association.






Résumeé

Les études longitudinales sur une longue périodagitent d’échantillonner plusieurs fois le
phénoméne étudié et ainsi, avec des mesures répdégmger une tendance confirmée. Mais,
des lors, elles produisent de trés larges basdemigees épidémiologiques accompagnées de
plus de sources de bruit par rapport aux étuddssareation unique ; et souvent, contiennent
de la corrélation dans les mesures. Ici, nous apoésenté a travers cette these une étude de
long terme des facteurs épidémiologiques et gamesdicqdu paludisme menée dans deux
cohortes familiales du Sénégal, I'une dans le géllale Dielmo suivi pendant 19 années
consécutives (1990 — 2008) et l'autre dans le gallale Ndiop suivi pendant 16 années
consécutives (1993 — 2008). L'objectif de ce trhvge thése a été de développer des
méthodes d’'analyse statistique pour identifier déaes de susceptibilité / résistance au
paludisme prenant en compte les relations famdjdks mesures répétées et des potentielles
interactions génotypes — environnement dans I'éfi@lo des phénotypes. Par la suite, de tels
phénotypes corrigés des facteurs identifiés comotengielles sources de confusion et/ou de
bruit ont été alors utilisés pour les tests desdiniet d’association génétique. Le phénotype
principal étudié chez chaque volontaire a été f@eswe ou non d’acces palustre, attribué a
une infection au parasiflasmodium falciparugrdurant chaque trimestre de préseriieA).

Les études ont été menées de maniére indépendamgeckacun des deux villages, de méme
que les analyses descriptives, I'estimation deolatribution génétique humaine et des effets
individuels. Les tests de liaison et d’associati@métique ont été réalisés par des méthodes
familiales basées sur l'analyse de la transmissitalléles des parents aux enfants
(Transmission Disequilibrium Test). Ces méthodent stbnnues pour étre robustes par
rapport au probléme de la stratification de popaitaet donc nous permettent d’augmenter la
taille de notre échantillon dans les études dsdraet d’association génétique en analysant les
deux villages en méme temps.

Différentes approches ont été adoptées pour l'ifiestion des facteurs épidémiologiques liés
a la survenue d’acces palustres. L’age et les amtesuivi ont été les principaux facteurs liés
au risque de faire un accés palustre, identifiéstpates les approches et dans les deux
villages. Ces deux variables sont connues pourdétierminant dans I'incidence des épisodes
en zone d’endémie. D’'une part, les méthodes expioes (data mining) a savoir CART
(Classification and Regression Tree) et Hyper€ubat identifié des groupes semblables de
susceptibilité au paludisme se basant sur leshlaggge et année : le risque relatif de faire
un acceés palustre est 3 a 4 fois plus élevé clsgelmes enfants (~1 a 5 ans a Dielmo comme
a Ndiop selon les résultats de HyperCupel & 5 ans & Dielmo et ~1 & 15 ans a Ndiop selon



CART) et durant les années avant l'introductiontrdgements plus efficaces (i.e. la période
avant 2004, année de changement de la chloroqungeclequel les parasites avaient
développé une résistance a un médicament plusedfiteFansidaret plus tard en 2006 les
combinaisons a base d’'artémisinine, ACT). CART aigihun arbre de décision final par
validation croisée en optimisant & chaque foig¢er de reclassement. Par conséquent CART
a gardé dans ces arbres finaux que les variablese@nnée qui ont une haute valeur
prédictive pour le paludisme, en général quelle gai lI'origine des données étudiées.
Cependant, HyperCuBleecherchait le facteur ou la combinaison de fastqui maximiserait

le risque de développer IHFA et par conséquent a permis d’identifier en pluseke deux
variables le type d’hémoglobine et le nombre datfens aP. malariae expérimenté
auparavant, qui ajoutaient des risques supplémestdD’autre part, la régression par GEE
(Generalized Estimating Equations) a égalementtiiiei@ge et année aussi bien que toutes
les autres variables associées a la survenue odeafelRA au seuil qu'on s’est fixex(= 0.05).

De ce fait les modeles GEE ont ajouté les varialdege, saison de l'année, type
d’hémoglobine, groupe sanguilGlucose-6-phosphate dehydrogenase (G6PD), durée de
présence dans le trimestre et les nombres d'iciestaP. malariaeet P. ovaleexpérimentés
auparavant.

En plus des facteurs épidémiologiques déterminans des infections et acces palustres, les
facteurs génétiques humains ont aussi une influedseimportante, surtout dans le devenir
d’une infection. Pour évaluer proprement la pad fdeteurs génétiques et non génétiques, la
corrélation des effets individuels, due aux foitad de parenté entre les personnes suivies, et
les corrélations dans les mesures répétées dodtentprises en compte dans les modeles
statistiques. L'étape suivante de notre étude d'@téluation de la contribution génétique
humaine dans les phénotypes comme le nombre d’goakstres par trimestre et la
proportion de ces acces positive aux gamétocyseirine transmissible du parasite. Nous
avons donc adapté le modele mixte linéaire gés&&bLMM) pour tenir compte des liens
de parenté et des facteurs épidémiologiques etsagaiué la part de chacune de ces quatre
sources de variabilité des phénotypes : les effétgtiques additifs (héritabilité), les effets
intra-individus contenant les autres effets indingl$ tels que génétiques non additifs, les
effets maison et le résiduel non expliqué. Nousnavinouvé des effets génétiques additifs
durant les premieres années de suivi (pendangikertrent a la quinine et a la chloroquine)
qui, par la suite, ont été réalloués aux effetsatmdividus. En effet, la composante
polygénique de la réponse aux infections palustiesz 'homme comprend des effets
génétiques additifs, mais aussi d’autres effet®ggmes non additifs, tels que des effets de
dominance/espitasis, qui sont compris dans lesseiffiéra-individus. Aucun effet maison ou
encore maternel était significatif.



Nous nous sommes alors intéressés aux géenes canplada la derniere partie de cette these
en essayant de tester lesquels seraient potemtezite impliqués dans la susceptibilité/
résistance au paludisme. Nous avons proposé uneodeétasée sur la famille, avec un
model multi-locus plus puissant et mieux adaptéantexte de maladie multifactorielle telle
que le paludisme, pour tester la liaison et I'agg@mn a plusieurs genes conjointement. Nous
disposions de 45 SNPs candidats comme variablestigéas et de I'ensemble des effets
individuels ajustés sur les facteurs épidémiologggicomme phénotype. Les études de
simulation ont confirmé le gain de puissance awacenapproche multi-locus par rapport a
une approche simple locus, quand le phénotype ftoéitva influencé par plusieurs génes en
méme temps. Le model multi-locus serait alors agépaur les phénotypes du paludisme qui
sont supposés étre les résultantes d'actions dgephs genes a modestes effets marginaux.
Nous avons donc analyseé les 45 SNPs un par unwignpremiére étape et ceux qui étaient
significatifs au seuil d’erreur de 0.10 ont étées@ibnnés dans une deuxieme étape pour les
modeles multi-locus. A la premiére étape, 5 SNRséth significatifs au seuil de 0.10 aprés
corrections aux multiple tests: 3 SNPs sur le g8h€4A1(AE1), Band 3, situé sur le
chromosome 17 (ael 20 21, P = 0.0005; ael 117 A18,0.0598; ael 174 187, P =
0.0995), 1 SNP sur le gepgglobin (Xmn1) situé sur le chromosome 11 (XmnZE €.0598)

et un autre sur le gerfBO situé sur le chromosome 9 (abo297, P = 0.08543 deuxiéme
étape, ces 5 SNPs ont alors été analysés conjantezhleurs effets protecteurs conjoints ont
été beaucoup plus significatifs (P-values distrésuéntre 18 to 10® pour les effets conjoints
correspondant a différentes facons de les combiner)

Mots clés: Malaria, Repeated measures, Family based, Genétastability, Multi-locus,
Linkage, Association.
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Preface

Context

One of the main goals of genetic epidemiology isaarch for molecular pathways implicated
in pathogenesis and in immune response. Findinguadérstanding these pathways can be
usefull to treat diseases and to develop vaccines.

Presently Plasmodiuminfection as well as malaria disease has been slibmugh several
studies to be influenced by environmental factonsl @lso by human geentic factors.
Therefore, before genetic analysis using genome-@&proaches for linkage and association
studies, it is of great interest to evaluate retatontribution of genetic and non-genetic to the
disease phenotypes. Estimation of heritability i@kility of the outcome attributable to
additive genetics) based on a good knowledge oilyastructure is essential to estimates how
much in the disease is attributable to the humaeties.

Long-term malaria phenotypes, pedigree and genstgp&a exist for two cohorts in Senegal.
Preliminary genetic analyses have proved inforneaéind yet several major statistical issues
have arisen that are not currently developed irfighé of infectious disease research and will
be a major obstacle in the future. These issueshareffect of genetic relationships (non-
independence between individuals), the incorponadiorepeated measures that depend on the
individual (non-independence of observations withgtividuals) and potential gene-gene and
gene-environment interactions.

Studied populations

We studied a large dataset from a long-term epidegical and genetic survey of two sub-
Saharan African family-based cohorts, followed I8ryears (1990-2008) in Dielmo and for
16 years (1993-2008) in Ndiop. Dielmo is the vi#agvith holoendemic transmission
(perennial and high intensity) and Ndiop with mewtEmic transmission (seasonal and at a
lower intensity compared to Dielmo). Malaria tramssion intensity differs between the two
villages because of the presence of a river infboe(see location and maps of the study sites,
Figures 1.A — C. below) that offers a mosquito tneg site all-year round. These sites are
managed by a tripartite agreement between thauh§tasteur de Dakar (IPD), the Institut de
Recherche pour le Développement (IRD) and the Minisf Health and Prevention of
Senegal. A field research station, with a dispgneam by nurses and paramedical personnel,
was built for the program in each village and iem@®4 hours a day, 7 days a week.
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Therefore, almost all fever episodes had been tegpaio the clinics with blood smears
checked for malaria parasites. The health careeis-df-charge for the volunteers. Every
person satisfying adhesion conditions could becanwelunteer and every volunteer could
leave the study at any time, therefore forming natlyic open cohort. Further details of the
study sites and adhesion criteria are previous$grileed (Trape, Rogier et al. 1994; Rogier,
Tall et al. 1999).
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Objective

The aim of the thesis was to develop and apply@pjate statistical analyses to identify key
factors contributing td’lasmodium falciparunmalaria phenotypes in two long-term family-
based longitudinal data sets in Senegal. The cigdlevas to implement rigorous statistical
methods that can take into account familial refegiops, repeated measures as well as the
effect of covariates, to generate heritability esldor specific phenotypes and to then perform
linkage and association studies of specific candig@nes in single and multi-locus models
using the residual malaria phenotype. The finall geas to obtain fine measures of both
environmental and host genetic impacts on maldrenptypes within a population context of
related individuals.

This subject and the design of the study provideehahallenges in statistical modeling,
especially in the research field of statistical gjers. Inferences from statistical models
assuming basic sample designs with independencengambservations or absence of
interactions among variables have been more géynaddressed. Here, it is not the case with
a longitudinal study where the repeated measuressafime individual are not independent,
and thus require application of generalized modasGeneralized Estimation Equations
(GEE) or Mixed Models. Also, it is challenging fstatistical genetics methods that use
familial relationships when testing for geneticeets underlying diseases. Here, the outcome
of Plasmodiuminfections (the phenotype) varies within the samedividual from one
observation to another depending on many factotsinsic (like host genetics) as well as
extrinsic (like environment). Then for malaria, tways to find the most likely category for
the disease status (susceptible or resistant) omdividual with such variation on the
phenotype always need research efforts in statlsnethods. Most of the methods previously
developed to test for genetic effects have beemgued for Mendelian diseases and not
directly applicable for complex infectious diseases

Thus, this motivates us to do this thesis for tiuglys of human genetics and environmental
aspects underlying malaria disease by focusingtatisical methods adequate for such a
multifactorial disease.

Plan of the thesis

The key environmental factors determining the owmmeoof infection with the malaria
parasitesPlasmodium falciparumwill be evaluated by analyses of family-basedyltudinal
survey. The overall human additive genetic contidvu (i.e. heritability) to malaria
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phenotypes will be estimated and the role of caatdigenes assessed. For this, our study will
be presented in five chapters.

The first part of Chapter 1 “General Introductiqeresents malaria disease and the last part
presents the main statistical issues in the arsmbfsepidemiological and genetic data from
malaria survey.

Chapter 2 “Descriptive Methods” is the epidemiobtagdi analysis part preceding genetic
analyses. The methods section of this chapter stdit by reviewing some data mining

methods usually performed to handle very large s#asaand, then, the new HyperClibe

approach combining regression and optimizationriegles will be presented. Another part
of this section will present regression method en&alized Estimating Equations (GEE) to
find significant population effects influencing theurden of the disease. Results and
discussion sections gives the application of tmesthods to the two studied cohorts.

Chapter 3 “Heritability” begins the genetic studyripas a first step and presents a method to
estimate the overall genetic contribution to maladisease. A first section presents the
methods used to calculate kinship between relgiaies of individuals in the population.
Methods of inference of the genetic relatednessngmiadividuals in a population are
explained in detail. A second section presents uke of Mixed Models to estimated
heritability (additive genetic contribution) via n@nce components analysis; and
simultaneously, association analysis in a valiceaamtrol like design from family data by
incorporating the kinship information. Result angcdssion sections give the applications of
these methods to the two studied cohorts.

Chapter 4 “Linkage and Association Analysis” is #$econd part of the genetic study and
presents family based linkage and association tesig allelic transmission count based on
the Transmission Disequilibrium Test (TDT). A firgart of the methods section presents
some useful definitions in genetics and in multipdsting contexts that will be discussed
frequently through this chapter. Using the multimaindistribution, the second part presents
the likelihood version of the TDT to test for lird@and association between phenotypes and
each of the considered loci in a single-locus ap@no A third part shows how to generalize
TDT in a Multi-locus and Multi-allelic Approach teest disequilibrium in the simultaneous
transmission of alleles from multiple unlinked lo@xtending the method proposed by
Andrew Morris and John Whittaker for two loci (M@riand Whittaker 1999). This method is
powerful to find multiplicative or epistatic effecbetween several independent genes having
weak marginal effects.

Chapter 5 “General Conclusion” summarizes all figdi and provides some research
perspectives in the field of statistical genetitsaltifactorial diseases.

In the annex, some basic notions of metric, e.gliean and Mahalanobis distances and the
influence of their choice when measuring similastdissimilarities between observations, are
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presented as a preliminary to the “Descriptive Md#i chapter, for interested readers. Next,
the R scripts used to simulate data and to anabymereal data are provided. Lastly, the
publications related to the thesis (and the lisother publications) are presented.
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1.General Introduction

Statistical analysis in malaria genetic epidemiglb@s always been a challenge due to the
fact that the disease phenotypes are difficultefing and are influenced by several known
sources such as host genetics, individual's immstage, parasite genetics, environmental
factors and their interactions. Obtaining relialdenclusions on factors underlying the
outcome of malaria infections needs robust studsigis like family-based longitudinal
survey to distinguish between the parts of eaclncgoof variation.

Malaria infection and disease are strongly inflezhdy human host and environmental
factors and may vary considerably in their seveahd clinical manifestations. Previous
studies indicated an important contribution of hgestetics to the outcome of malaria disease
(Mackinnon, Mwangi et al. 2005). Some known genetitd biological markers, most
especially those linked to the host immune respomaee been implicated in the frequency
and severity of malaria disease (Phimpraphi, Pawdl.e2008; Sakuntabhai, Ndiaye et al.
2008). Before going on statistical analysis, sorspeats of malaria disease are presented
here.

1.1.Presentation of malaria disease

Malaria is a multifactorial infectious disease thais affected human populations since the
beginning of mankind and is still the major pamgltsease affecting and killing humans. It
also affects animals, including monkeys, rodenigisb and reptiles. Malaria is caused by
parasites of the gentasmodiunbelonging to the apicomplexan phylum, which invade
reproduce in erythrocytes. Hematophagous mosquabéise genusAnophelesare required
for the transmission of the parasite from one huhnast to another. The four most prevalent
Plasmodiumspecies implicated in human malaria aéasmodiumfalciparum (the most
virulent, more frequent in AfricalR. malariag P. ovaleandP. vivax (absent in sub-Saharan
Africa, more frequent in Asia and Southern America)nong the three species present in
Africa P. falciparumis the most prevalent and is responsible for mmstbidity and
mortality. The main aspects of malaria can be sunzed in three points: (i) the mechanism
of transmission through the parasite life cyclewssn host and vector, (ii) the clinical
symptoms, showing illness, that depend on a sgestAge of this life cycle and (iii) the
burden of morbidity and mortality. The high prevale of malaria in developing countries
underlines the extent to which it represents aipuidalth challenge.
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The parasite life cycle

The parasite needs two hosts to complete its {ifdec a mosquito vector and a vertebrate
host (in our study a human host).

A — In the human: The femakenophelesmosquitoes whilst taking a blood meal, injects the
malaria parasites in the form of sporozoites (I)e Eporozoites migrate to the liver, invade
hepatocytes and multiply. These hepatic merozo{@s are then liberated into the
bloodstream, and invade red blood cells, startiregdsexual proliferation cycle, grow into
trophozoites and for the most part undergo asesamication to form a schizont (3). This
schizont contains many merozoites that ruptureetelood cell and then seek to invade new
red blood cells; this asexual cycle of the pardsitesponsible for illness. A small fraction of
the merozoites develop into sexual stages of tihaspa, namely gametocytes (4); the sexual
form is necessary for transmission of the parasitthe mosquito. Gametocytes, or gamete
pre-cursors, are either male or female.

B — In the mosquito: Once ingested by mosquitoefenaale gametocyte forms 1 female
macrogamete (5.f) and a male gametocyte forms @rmle microgametes (5.m). Zygotes
(6) are formed by the fusion of gametes (5.f amd)5Zygotes become ookinetes (7) that
infiltrate the midgut wall and form oocysts (8).€le oocysts expand over time and finally
release sporozoites (1) after 10-14 days. The gpaes move into the mosquito salivary
gland, making the mosquito infectious for humansduher next blood meal. Figure 1.1
below from Teun Bousema and Chris Drakeley (BousanthDrakeley 2011) shows the life
cycle of theP. falciparumparasite between human host and mosquito.

For researchers, an appreciation of this life ciglgecessary to focus on specific stages when
developing drugs for treatment or insecticidesciraeas well as eradication policies.
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FIG. 1.1. Life cycle oPlasmodium falciparurSource: Bousema and Drakeley, 2011).
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Clinical symptoms

Several clinical manifestations can occur from et#ht infections or a same infection by
malaria parasites depending on host genetic, paragnetic, environment and their
interactions. Symptoms would include fever, chillsen fever is high, sweating, headaches,
cough, abdominal pain, diarrhoea, nausea, vomiéntarged liver and spleen (sometimes not
palpable), loss of appetite, orthostatic hypotemsioyalgia (limbs and back), asthenia, etc.,
that overlap with many other diseases. Cliniciares therefore faced with the challenge of
correct diagnosis in an environment where the ifsaadf fevers (or other malaria symptoms)
attributable to malaria will alter. Determining tpecific cause of a clinical episode during
co-infections with other diseases needs reliableurate methods of diagnosis. However,
children with advance illness, often present foresal clinical symptoms that can be due to
several different diseases (English, Berkley et28D3). In malaria endemic areas, several
clinical manifestations due tBlasmodiuminfection occur and overlap with those of many
other disease (Kallander, Nsungwa-Sabiiti et ad420Indeed, malaria is so difficult a disease
to diagnose by clinical examination alone, thabatgms are not considered useful (Mwangi,
Mohammed et al. 2005) and lead to over-diagnosimalfria (Amexo, Tolhurst et al. 2004;
Reyburn, Mbatia et al. 2004). Although the use ayfid diagnostic tests (RDTs) has the
potential improve malaria differential diagnosise(B Wongsrichanalai et al. 2006),
asymptomatic parasite prevalence can be very mgireas endemic for malaria, leading to
misdiagnosis and failure to treat the pathogenamsiple for the episode in question.

Prevalence

Plasmodium falciparuns the most common plasmodial parasite invadingdns. Malaria is
endemic in 108 countries in 2010 making about 3lBob people (half of the world
population) at risk of infection as shown in Figur@ from the World Health Organization
(WHO). World malaria Report for the year 2009 estied malaria to cause about half a
billion episodes per year and is responsible fard®00,000 deaths per year (WHO 2009).
Children under 5 years old are the major “at-rigk8up for malaria morbidity and mortality.
Malaria represents a serious public health probtemfrica, where one in every five (20%)
childhood deaths is due to the effects of the dise@he main factors maintaining the disease
highly prevalent in Africa are: the propitious catrc conditions, the existence of the vector
Anopheles gambiadhe socio-economic conditions, the developmentesfstance to most
anti-malarial drugs and the lack of a vaccine.
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The situation in Senegal according to the “World Né&xia Report 2010” (website:
“www.who.int/malaria/world_malaria_report_2010/en’) Throughout Senegal where we
performed this study, malaria is endemic with seaktransmission occurring from June to
November; and almost all cases are caused.bfalciparum Inpatient malaria cases and
deaths declined markedly between 2007 and 200&@aith in 2009. During the transmission
season, 100% of the population is at risk of inectccording to the 2010’'s WHO report,
with heterogeneity in the distribution as shownHgure 1.3 below. The national malaria
control program delivered 4.5 million long-lastingsecticidal-treated nets (LLINS) during
2007-2009 covering 73% of the population at rigkd aver 661 000 people (5% of the
population at risk) were protected with indoor desil spraying (IRS). In the post-campaign
national survey in 2009, 82% of households hadnardticide-treated mosquito net (ITN).
The program delivered about 320 000 artemisinirebasombination therapy (ACT)
treatment courses in 2008 and 184 170 in 2009jcgarif to treat about half the reported
malaria cases (probable + confirmed cases) in wbé&gsector.

In order to control malaria, tropical countries lsuas Senegal have scaled up their
intervention strategies combining prevention, wiglementation of LLINS, with improved
diagnostic techniques (rapid diagnostic tests - RBd the introduction of an efficacious
treatment using ACT. In addition, intermittent peative therapy is implemented in specific
groups such as the pregnant women. ACTs preseatade@dvantages: i) high efficacy and no
naturally occurring resistance reported in sub-8ahafrica; ii) effectiveness against sexual
stage parasites (gametocytes) with the potentiatethuce parasite transmission (Okell,
Drakeley et al. 2008); iii) effective reduction tfe asexual parasite population (Adjuik,
Babiker et al. 2004; Nosten and White 2007). TRAGTs are expected to reduce overall
malaria transmission and to impede parasite resistdo the drug combined with the
artemisinin derivative (amodiaquine in Senegal).
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I Countries or areas where malaria transmission occurs

Countries or areas with limited risk of malaria transmission

This map is intended as a visual aid only and not as a definitive source of information about malaria endemicity.
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FIG. 1.2. Malaria, countries or areas at risk ahmission in 2010 (source: WHO, 2011).
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FIG. 1.3. Geographical distribution of confirmedlar& cases in Senegal, per 1000 population (SoWeeld Malaria Report 2010).
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1.2. Genetic susceptibility to malaria

The study of the contribution of human geneticghe risk of severe malaria has a long
history, with Haldane in the 1950s reporting a magde of the sickle cell mutation (HbS), in
the protection against severe disease (Haldane).1S#®e then, genetic variants/globin:
HbE (Hutagalung, Wilairatana et al. 1999), HbC (Awga, Guindo et al. 2000), HbS (Aidoo,
Terlouw et al. 2002; Williams, Mwangi et al. 2005¥-globin (Weatherall 1997;
Mockenhaupt, Ehrhardt et al. 2004; Williams, Wamletial. 2005); Band 3 protein (AE1)
(Foo, Rekhraj et al. 1992); HLA (Hill, Allsopp ek 4991) and several cytokine loci: Tumor
Necrosis Factor-alpha (McGuire, Hill et al. 1994;ld6h, Symons et al. 1997; Knight,
Udalova et al. 1999), Interleukin-12 (Morahan, Bisutt al. 2002), Interferon-alpha receptor-
1 (Aucan, Walley et al. 2003), Interleukin-4 (Gy&uka et al. 2004) have been demonstrated
to confer protection to severe malaria. To date,ntfajority of studies have been case/control
association studies, comparing severe malaria ¢oraplicated cases. However, there is still
a gap of study in this genetic susceptibility fitdd uncomplicated malaria.

1.3. Main statistical issues for analysis of malaria dat

Identifying main risk factors and their interactsoim studies of multifactorial diseases always
induce statistical and bioinformatics challengesr nalaria disease, there are several
epidemiological, environmental, biological and geneariables that underlie the outcome of
infection and their interactions are difficult toderstand.

Several statistical methods have been proposednfoltivariate analysis and to test
interactions among variables. Without prior hypsthgit is almost impossible to test all
possible combinations of variables in a model dhdassible interactions among them. Even
if a combination of variables is considered, thernaction terms to test need to be specified
priori in the model formula. Traditional statistical medls have limitations in dealing with
this complexity, especially when large numbers arfiables are analyzed simultaneously. In
addition, most variables may not be distributedwlag most regression methods assume. In
our context of long-term study (16 and 19 yearsuwfey) and family-based design, many
variables are implicated and are different in thgpe. Individuals are not independent and
data are correlated due to within family simil&sti shared environment, as well as repeated
measures on a same individual. The number of mesgar individual is not the same due to
self-presentation of persons making models for atggt measure more complex. The
successive measures can be influenced by theatfiffparasite species implicated in previous
infections or by actions of medical staff on theée& presentation (e.g. effect of drug
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administration: the efficacy and the dosage carudedtotal or only partial clearance of
parasites and can impact on the time to the neisbde). These complexities in the data
induced by the method of survey and by the chanatits of the population may provide
only weak or even false evaluation of epidemiolabie.g. effect of environmental variables)
and genetic parameters (e.g. heritability estimajesetic effects sizes and significance) if
they are not taken into account.

To handle all these difficulties, non parametri¢adaining methods is increasingly used in
analyzing very large epidemiological and geneti¢ama datasets (Protopopoff, Van Bortel et
al. 2009; Loucoubar, Paul et al. 2011) to evaliagortance of non-genetic variables that can
confound genetic effects. The HyperCtibeethod we introduce in chapter 2 can detect all
significant interactions among a large number ofiakdes without prior hypotheses or
knowledge of their existence. For more details @gepublished results in “An Exhaustive,
Non-Euclidean, Non-Parametric Data Mining Tool fonraveling the Complexity of
Biological Systems — Novel Insights into Malarid’oucoubar, Paul et al. 2011). This aspect
can be of great interest in analyzing genome-widea cbn malaria where phenotypes are
known to be the results of several genes and #pestatic effects. Thus, this method would
help to identify the main chromosomal regions simgna promising signal from the hundreds
thousands single nucleotide polymorphisms (SNR®dyall along the genome. This could be
advantageous to handle the multiple testing problesiiced in genome-wide association
studies (GWAS).

After the computational management of large dasasetl the identification of relationships
among variables, estimation of the overall genetintribution, the heritability, is the next
step. Estimation of the heritability of phenotymas adopt different methods: a more general
approach that estimates the human genetic coritibub the phenotype on the whole
genome and a more specific approach that estinfagesontribution of one specific genomic
location or a set of distinct locations. Whatevae tmethod, information on familial
relationships (kinships) among studied individuslnecessary to estimate the heritability.
Several studies on genetic susceptibility/ resttaio malaria have first provided the overall
human genetic contribution to the disease (StiaBeck et al. 1999; Mackinnon,
Gunawardena et al. 2000; Mackinnon, Mwangi et 8052 Phimpraphi, Paul et al. 2008;
Sakuntabhai, Ndiaye et al. 2008; Lawaly, Sakuntabhal. 2010; Loucoubar, Goncalves et
al. 2011) before focusing on genes potentially oaesfble to the heritability signal in their
studied populations.

Another challenge of great interest in family basadlies is the polygenic aspect of malaria
disease, with the improvements in traditional lgdgeand association methods they create.
One should allow for hypotheses that assume a @aiivelland/or interactive force of several
distinct genes, each having a weak marginal etiadhe outcome of malaria infections; this
point of view differs from the one used in the stuf monogenic diseases for which one
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single gene determines the disease phenotype. plaiegd above in the thesis objectives,
new methods for tackling polygenic infectious dsesaare required.
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Part I:

Epidemiological Analysis
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2.Descriptive Methods

Abstract

We studied data from a longitudinal survey of malan two Senegalese cohorts, followed
from 1990 in Dielmo and 1993 in Ndiop to 2008. The#come of interest was the occurrence
of aPlasmodium falciparunmalaria attack during each trimestBfF@). Data were analyzed
independently in each village and we adopted a@ffeapproaches to find main risk factors
associated with the occurrenceRIFA. The risk factors identified by all used methad$oth
cohorts were the age of the individual and theqakof survey. Data mining methods showed,
relatively to the general population, almost 3 trdes more risk to develdpFA for young
people (~1 to 5 years old in both villages by Hyheré”; ~1 to 5 in Dielmo and ~1 to 15 in
Ndiop by CART) and exposed during periods before uke of efficient drugs (i.e. before
2004, the year of change fro@hloroquine for which malaria parasites developed resistance,
to a more efficient drug treatmemansida). Whereas CART retained only these variables
having strong predictive value via its “pruningeterocedure, in which the objective is to
optimize the misclassification rate, HyperClibalso included hemoglobin type and
cumulative experience &f. malariaeinfections that significantly increase the relatiisk of
PFA Analysis by Generalized Estimating Equations (GEiethod found not only those
variables with a strong contribution in definingghest risk groups, but also other important
variables showing significant association WRA. Thus, GEE added variables sex, season of
the year, hemoglobin type, blood group, Glucosdwésphate dehydrogenase (G6PD),
cumulative experience to infections Byfalciparum malariaeandovale and exposure.
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2.1 Introduction

Before genetic study for the identification of stahce/susceptibility genes to a given disease,
one should start by trying to understand the epidiegy of the disease in the studied
population, and then, perform the adequate methbdarmlysis for further genetic
investigations. First investigations should idgntifie existing links and influences among
considered variables. This step is all the moreomamt in the case of multifactorial diseases,
like malaria, where confusions can occur becauséheffact that observed or measured
phenotypes are simultaneously influenced by diffefactors, environmental, human non-
genetic and genetic. This work will be done by dataing and also by regression methods
handling repeated measures.

Additional difficulties arise in populations livingn highly endemic areas where people can
tolerate the parasite in the blood at a certairell®ecause of the development of clinical
immunity (Rogier, Commenges et al. 1996). A majuallenge is to determine the fraction of
clinical manifestations attributable B falciparummalaria. Phenotype definition is therefore
primordial and the impact of non-genetic factorsamy defined phenotype for malaria (and
several other multifactorial diseases) needs talisentangled prior to genetic analysis of
resistance/susceptibility.

The first subsection presents several data minieghoas used to identify relationships
among variables in a dataset. We start by reviewimige methods usually performed to
handle large datasets, i.e. large number of vasahbhd large sample size. Subsequently, we
will compare them with a new exhaustive, non-Ewedid and non-parametric approach
combining regression and optimization techniqueslidg with hypercube forms in a multi-
dimensional space (Loucoubar, Paul et al. 2011)d&s mining methods are not always
appropriate for repeated measure designs, a secdrséction presents the use of Generalized
Estimation Equations (GEE) introduced in 1986 byn#Yee Liang and Scott L. Zeger
(Zeger and Liang 1986) to describe longitudinaladdt highlights the robustness and
advantage of their estimation technique in presafiagnknown correlation within multiple
measurements of a same subject, which is oftenabe in real data.
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2.2 Material and Methods

2.2.1 Data mining

There is a need for data mining tools to explorgdaand complex biological datasets to
identify combinations of factors that optimally éxip the outcome of interest. Hypothesis-
free data exploration can potentially generate hbypotheses that emerge from the data and
which are beyond our imagination. These novel Hygegs can subsequently be tested using
specific statistical methods or animal models.

In biology, data mining has been essentially foduse sequence alignment algorithms to
manage the ever-increasing amount of genetic dddae recently, data mining technology
has been proposed as an alternative to traditsiatitics to deal with high dimensional data
generated by Genome Wide Association studies,arktitowledge that accounting for gene-
gene and gene-environment is crucial to undersktamadan genetic susceptibility to disease
(Nelson, Kardia et al. 2001; Ritchie, Hahn et @02, McKinney, Reif et al. 2006; Cordell
2009). Factoridlapproach an€lusteringare widely used for data mining. In addition tatsu
methods in the field of genetic data analyses,rs¢wew heuristic tools have been developed,
notably non-parametric modeling techniques suclClassification And Regression Trees
(CART) (Breiman, Friedman et al. 1984) and Randoarefts (Breiman 2001). These
methods present several advantages: models hawapaeity to provide accurate fits of the
response in a wide variety of situations, enablfitttng of non-linear relationships between
explanatory variables and the dependent variabi) wo assumption that explanatory
variables are independent.

Complementary to these non-parametric methods andraditional statistical methods,
HyperCub& (Augustin Huret, Institute of Health & Science, riBa France,
http://www.institute-health-science.org) uses lagsieral generalized algorithms and genetic
algorithms. The underlying idea is to describe @skzt by a group of « local over densities »
of a specific outcome with n@ priori hypothesis or notion of distance, each « overitdens
being completely independent from every other. Tim$hod deals with points in a space with
absolutely no assumptions, including those conogrnnetric and distance or nature of
neighborhood essential in classi€llstering Indeed, working with a distance or a defined
topology is already an assumption and either is thunot true and, thus, can introduce bias
into the model.

! Factorial methods represent data from a spacelaviger dimension, characterized by initial varézbas the
axes for representation, to a space with lower dgios, characterized by Principal Components (atdfal
Axes) made with linear combinations of initial \&bies, as the new axes for representation.
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These data mining methods can be specified in tigondt approaches: Supervised and
Unsupervised. In “Supervised” methods the Y vadgalthe outcome, is observed and the
analyses are guided by this outcome; the othempent#ent variables are selected depending
on their capacity to explain the different categsrior the distribution of values of the
outcome. By contrast, in “Unsupervised” methodsrehis no Y variable, and then, all
variables play a symmetric role; the analyses aseth on techniques that find relationships
among variables and/or combinations of variablestiment to highlight similarities/
dissimilarities among observation units.

2.2.1.1Supervised

As supervised methods we can cite Factorial Disoant Analysis (FDA) with a design pf
quantitative explanatory variables plus one qualiéa dependent variable. FDA is a
descriptive method based on graphical representatging principal components that are
made with linear combinations of initial variablébgse principal components explain the
dependent variable. We also have Discriminant AsialyDA) with a same design as
previously except for the fact that the qualitativariable is not observed and has to be
forecasted. There are also Classification and Regme Tree (CART) (Breiman, Friedman et
al. 1984) and Random Forests (RF) (Breiman 2001hoas that can handle any mixture of
types of variables. Next, in this chapter, we wale CART as a supervised data mining
methods to compare with the new exhaustive, noridgan and non-parametric approach
(Loucoubar, Paul et al. 2011). This method alsol@ardle any mixture of types of variables,
so adapted for application on our malaria datatbetscomprise quantitative and qualitative
variables.

Classification and Regression Tree

CART is a rule-based method that allows dichototionaof an explanatory variable into two
classes or subsets (called nodes) with signifigadiiferent profiles for the response (i.e.
maximizing the discrimination); this works in a uesive way applying same splitting in each
child class (called sub-nodes) until convergenceoAg all partitions of the explanatory
variables at a node, the principle of the algoriikro split the data according to a threshold
on one of the variables, such that the reductionedérogeneity between a node and the two
sub-nodes is maximized. Each split is based onglesvariable; some variables may be used
several times while others may not be used attalenerates a binary tree through recursive
partitioning minimizing heterogeneity criterion cpated on the resulting sub-nodes. This
splitting algorithm (the growing step), to obtaim a first time the deep maximal tree, is



44

always followed by a pruning procedure that finatjopts the tree with the minimal expected
misclassification error rate, by cutting off insificant nodes.

In theory there are several functions for the mem®i heterogeneity, but the two most
widely used are the Gini index and the Shannoropmgtthat can be easily illustrated when the
dependent variable is categorical.

Let Y be a binary dependent variable taking valiesd 1. Lef, andf; be the proportions of
y=0andy =1 at a node:

= Giniindex =X fixf; = Zizp1 ix(1—f) = 1= Zizo 1 fi = 1- (fp 2+, 9)
» Shannon entropy =% ; fixlog(f;)) = — [foxlog(fo) + f1xlog(f1)] where 0%og(0) =0

CART uses these indices for convergence criterith@fsplitting process. By definition these
indices will be close to 0 at a node if that nodmtains almost only one category
(homogeneity), i.e. for one categary: is close to 1 and then &lwith j #i are close to 0.

As it is the case for the growing step, there aiteraons to guide the pruning procedure. The
two pruning procedures widely used for the mini@a of the misclassification error rate
are by the control of the minimum number of obstoves in each node (control of the tree
size) and by cross-validation. Decreasing the mimmmumber of observations at the nodes
increases the complexity (number of nodes and,|taés the size of the tree) and decreases
the misclassification error rate. However, thisichdeads to overfitting, and then, the final
decision tree will perform poorly on new indeperntdeata (lowtrue predictive poweof the
tree). So the minimum size needs to be calibratetlcaoss-validation can help to find the
optimal tree size by making a compromise betweenctmplexity and the misclassification
error rate of the tree through some complexity dosttion. See Breimaet al (Breiman,
Friedman et al. 1984) for more details.

2.2.1.2Unsupervised

As unsupervised methods, we can cite Principal Gorapt Analysis (PCA) (Pearson 1901;
Hotelling 1933; Jolliffe 2002), Multiple Correspognice Analysis (MCA) (Greenacre 2010)
and Clustering (Everitt, Landau et al. 2001; Manly 2005). The tfirst methods, PCA and
MCA, use linear algebra to represent data in aespéth reduced dimensions via singular
value decomposition (Trefethen and Bau 1997). PGéA BICA are very similar and have
three major common aspects: (i) Homogeneity intype of variables to analyze, all are
quantitative in PCA while all are qualitative in MC(ii) Symmetric role of variables, i.e. non
distinction between endogenous and exogenous Vesiainly relations between variable are
important; (iii) Search of factors or principal cpanents by making linear combinations of
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initial variables; graphics are made using princgamponents as for FDA. These methods
are also based on Euclidean geometry. For furtk&ild in methods and illustrations, see
Philippe Besse & Alain Baccini 2007 “Explorationagstique” (Besse and Baccini 2007).
Clustering as unsupervised data mining method, can handigxture of variables with
different types and metrics other than Euclideame $imple example on cluster analysis in
Annex A (on Figure A.l) illustrates how the resuttan be influenced by the metric
considered. This then encourages us to use datagmmethod, not only non-parametric, but
also without any defined metric, see pag.1.3below, the HyperCulSemethod.

Cluster analysis

Cluster analysis (Everitt, Landau et al. 2001; Ma2005) is a multivariate statistical method
that try to categorize a sample of subjects intfedint groups depending on their profile (or
their measures) on a list of variables, such tlatparable subjects are placed in the same

group.

Cluster analysis can be used on genotypic datdetatify genes that characterize a specific
population or differentiate many populations (ethnic groups or different animal races of a
same species, or a disease status) by measuriaggiEme, represented by a set of maker loci,
its capacity to classify similar subjects in a sagraup.

Limitation: Cluster analysis is sensitive to the metric se@dio measure the distance
between two subjects (as shown in Figure A.1 oféA) and also to the order of clustering.
One can obtain different results by using differapproaches, thus, the metric and the
clustering method should be chosen carefully.

Non-hierarchical clustering methods, or k-meanshows introduced by Forgy in 1965
(Forgy 1965), are preferred to hierarchical onésy(s, complete or average linkage, Ward’s
method). Indeed, k-means algorithm supposes thatvdd be classified irk classes and then
work as follows:

0] k points are randomly chosen in the space of indalsl as centroids of tHeinitial
classes;

(i) each individual observation is associated to thesedt class (distance to the
centroids), in the sense of the defined metric;

(i)  barycentres of the clusters that have been formedf@und and are set as new
centroids;

(iv)  steps (ii) and (iii) are repeated until the aldamtconverges, i.e. until no change in the
clustering between two iterations.
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2.2.1.3The HyperCub&method

We introduce here a new data mining tool using rite¢hod of hypercubes. This method
belongs to the supervised data mining methodssbbésed on non-Euclidean geometry, it is
assumption-free and proceeds through an exhaustieing (Loucoubar, Paul et al. 2011).
HyperCubé& approach combines regression and optimizatiomtgaks by searching for all
possible stratifications and identifying the bestbination of variables to explain a specified
outcome.

HyperCub& data mining algorithm

The HyperCub@ technology is accessible as a web based softlvateequires a significant
computing power provided through a SaaS architect{nttp://www.institute-health-
science.org). A hypercube is a subspace definedh lombination of conditions, each
condition being either a range or a modality of antmuous or discrete variable (see
illustration on Figure 2.2.1). A hypercube has e@asi characteristics: its dimension, the
number of variables involved; the “Lift”, the measwof the over density compared to the
whole database; the “Size”, the number of pointtuhed in the hypercube.

After defining the dependent variable, HyperCulpeogram generates a series of rules by
exhaustively exploring the space of the randomaldes, generating optimal subspaces
significantly enriched with the occurrence of ewenand defining for each interesting

subspace, its explicative variables and their spoading values. A rule is a set of a limited
number of continuous and/or categorical variables #heir associated values. A search by
HyperCub& program is divided in three steps:

(i) A stochastic exploration of the space of randeaniables Subspaces are exhaustively
generated following this procedure: One point isdamly chosen as a germ (i.e. a starting
point) in them-dimensional space defined by timexplanatory variables; after, &doint is
randomly selected to form a segment. These twotpaiarrespond to apical points of a
starting subspace having a hypercube design améseag the diagonal of this hypercube (see
Figure 2.2.1). This diagonal (jointly the volumetbé& hypercube) will be optimally increased.
Each subspace is selected depending on two caristrdis size, the number of events
included in the subspace, and its purity, the peege of positive events in the subspace. To
define explanatory variables, the correspondingfakeach variable delimiting the subspace
is suppressed, and the subsequent subspace tssadi$fying the previous constraints. The
variables for which the corresponding axe mustiesgnt to satisfy these constraints are the
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explanatory variables. The subspace is cancellgdldes not satisfy the constraints defined
by the user and a new subspace is generated.

(i) An optimization of the characteristic of theygercube The volume of each initial
hypercube selected at the first step is locallyimeaed depending on a Z score using genetic
algorithms, and always constrained to a minimunitypur

(i) Validation of the rule using a non-parametrapproach The Z score of the optimized
hypercube is compared to those generated by amapdanutation of the dependent variable.

X1 4 Rule = {al <x1<bl}N{a2<x2<b2}N{a3 < x3<hb3}N{asd < x4 < b4}
Ax1 . o Ax2

ot

++ -

: > X2

In the whole datasi
Pr(Y=1) =0.27

In the hypercuk
Pr(Y=1) =0.44
L RR=1.6

»®

Figure 2.2.1: Principal for selecting a Hypercuby just selecting the two apical points)

For exhaustiveness, these three steps are repaatiedll points have been used as starting
point and all the events have been studied; il¢halevents in the learning dataset have been
included in at least one rule. The user can steddaarning process at any time and know the
coverage of his exploration. Due to human limitasion understanding complex rules, the
maximal number of explanatory variables inside eadb can be fixed, thereby defining
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complexity. HyperCubRuses an exhaustive non-parametric and non-Eudlicesthodology,
it does not use proximity between events but omgegates subspaces in which events are
present or not and counts occurrences.

One has first to define variables to introduce itite learning dataset and run a simple lift
analysis. “Simple lift” classifies variables acciogl to their first order effect and has three
major roles: to verify consistency of the data,detect circular variables and to detect
variables with pivot points that define thresholalues for their impact on the outcome.
“Spearman (or Pearson) Correlation” associated W#imple lift” help to define which
variable to choose amongst the correlated varialdemetimes, a combined variable from
correlated variables is the best choice. The legrmrocess is followed by a validation
process. Signal Intensity Graph (SIG) defines tkktionship between the two main
parameters of a learning process, “purity” and €%iZl'his graph shows the value of the
“purity” for five different “sizes” defined from th database and from a randomized database
obtained by permutation. After defining the lastgmaeter, “Complexity”, which defines the
maximum number of variables per rule, the learmrgress is run. From the total number of
rules, a set of minimized rules is obtained fromtarative process. In the first step, the rule
explaining the most number of events is chosenarehch of the following steps the rule
explaining the maximal number of events in the rieimg event space not included in the
first rule is added. The iterative process is séopwhen all the events explained by the total
number of rules are explained by the set of mingahirules. The total number of rules and/or
the minimized rules is used to perform further gsial

As mentioned previously, data mining is not alwagequate for handling repeated measures
and some of them, like the HyperClibmethod, do not provide a way to adjust the resrits
the significant covariates effects. To make uptfese weaknesses, appropriate regression
techniques like GEE, presented here, or Mixed nsogetsented in the next chapter 3, are
used and were developed to handle data from ladigéiisurveys.

2.2.2 GEE: estimation of population parameters for repeatmeasurements data

One of the aims of this prior descriptive analysiso evaluate effects of the key known non-
genetic factors that lead to the illnesg>(dalciparumattack denote®FA) of a person when

he or she is exposed during a trimester. This¢askbe done using techniques other than data
mining, like regression on environmental variakdesl individual non-genetic variables like
age. However, here, the basic assumption of indkpae between observations in simple
regression does not hold. The longitudinal desifjthe data has the advantage to provide
consistence effects but induces several inconveagsuch as non-independency; repeated
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correlated measures of a same individual shouldalken into account using extended
regression methods.

This part presents a brief description of the esitem of Generalized Linear Models to
Generalized Estimation Equations (GEE) (Zeger andnd. 1986) in the context of
longitudinal studies to accurately take into acdaanrelation of multiple measurements from
the same subject. We present here the model awdtlggvymain theory for the estimation of
parameters.

2.2.2.1GEE model

Two main specifications are needed in the contE@EE models:

(a) Measurements on the same subject are allowed ¢orbelated,
(b) Measurements on different subjects are assumesl ittdependent.

Specification (b) could be problematic / not meewlanalyzing family data, but as a first step
we are interested in population mean effects abbées; methods presented in Chapter 3 will
take into account non-independency among indivlual

Lety; ,i =1, ..,Nandj =1, ...,n;, denote the outcome of infection (dependent faée)eof
the i™ individual at hisj™ episode. There ardl individuals andn, measurements on the

individual i and n= ZiNzlni total episodes. Note that the observation timesditier from

one individual to another (Zeger and Liang 198®)e presenceyf = 1) or absenceyf = 0) of
illness in subjects as well as several other epidlegical covariates like level of parasitemia,
sex, current age, etc., were recorded at eachdmi®ow a subject. We have to consider an
individual as a unit. If we take an individualhis observed data are stored in a vegtaf
dimension (i.e. number of row x number of colummsg) for the dependent variable and in a
matrix X; of dimensiom;xp for thep covariates:

Vi Hiy
sy = with expected meag, =|:
yini Hin,

var(y;,) ‘e coV(Yirs Yin,)
and variance-covarianc¥, =| : B

cov(Yp, , Yi) ... var(y,)
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Xh Xi ”' Xﬁ
. Xi =|:
XLoxE e X

Then, for individual, the expected phenotype is modeled\:]é,ei ) = X, whereg is the link

function, that express the expected phenotypdiasa function of the explanatory variables,
andg the vector containing the effects of {hexplanatory variables.

T
The GEEs to solve for estimatiggs given by: Zi'il%v{l(\(i - U ) =0 (generalization of

quasi-likelihood equations).

If repeated measurements from a same individuakre supposed to be independent,
would be equal to a matri¥y with varfy)’'s on the diagonal and O elsewhere, i.e.

var(y;,) 0
covlyi,yj)=0, 0] #],j andj in {1, ..., m}: A = , and in that case GEE
0 var(y,, )

would be exactly the simple GLM. However, in mos$tcases, this independency within
individual does never hold because repeated olismmgaare made on each individual,
correlation must be anticipated among an individualeasurements. It must be accounted for
to obtain a correct statistical analysis. Then, (goy;)'s are specified in a “working”
correlation matrixR(«) that can reflect the type of correlation among gasifrom a same
individual. The a defines the parameterization of tf¥s which are the same for all
individuals. Note that “working” refers to the faittat R(e) is not expected to be correctly
specified, but estimators will be consistent antl have consistent variance estimates even
when R(a) is misspecified (Zeger and Liang 1986). Therefdhe covariance matrix of

repeated phenotypes of a same individimcomesy, = AR (a)A"?.

Note that in quasi-likelihood theory, varianceypis expressed as a known function of the
expectation of; divided by a scale paramet@rVi = h(w)/ @, thenA; would be expressed as

diaglh(ui1), ..., hfuni))/ @ and finally V, = AY?R (a)A"? /¢ , expression of the covariance

matrix more frequent in the literature.

A useful feature of the GEE approach is that itas necessary for the “working” correlation
matrix to be correctly specified to obtain a cotesis and asymptotically Gaussian estimate of
B, the effects of explanatory variables on the phgre Several working correlation structure
had been presented by Liang & Zeger, and choosiagMorking correlation matrix to be
close to the real one, however, increases effigiédeger and Liang 1986). In our study, the
outcome of an infectionPFA or Not) of two successive clinical episodes forimdividual
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were assumed to be correlated, implying our choi@n autoregressive of order one, denoted
AR(1), “working” correlation structure:

1 a a a a

a 1 a a’ a"t
R(a)=

a" a’ a’ a 1

The parametet € [0, 1], therefore more two episodes are far awess their correlation is
important.

2.2.2.2GEE iterative estimation

The iterative fitting algorithm used in GEEs cangoesented through the following steps:

0] An initial estimate of effect® is computed using simple GLM, i.e. by assuming
independence;

(i) Current Pearson residuals are deduced on theddfabis current estimate gf

(i)  An estimate of the working correlation matriR(), having the chosen
parameterization form, is computed on the basithefcurrent Pearson residuals and
the current estimate ¢f

(iv)  An estimate of the variance Vi is then computed,

(v)  Anupdated estimation gfis computed taking into accouvit

Steps (i) to (v) are repeated until convergenee,until no change in the estimationfofThe
final (and stable) estimate ¢fobtain is the GEE estimation of the effects of lamptory
variables.

2.3Results

In this results section, only main findings aresgr@ed. The detailed methodology, of our
already published results concerning the descapainalysis (Loucoubar, Paul et al. 2011),
are presented in the Annex.
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2.3.1 The measured phenotypes

The main outcome of interest in our study iB.dalciparummalaria attackKFA). PFA was
defined as a presentation with measured feverlgaxitemperature >37.5°C) or fever-related
symptoms (headache, vomiting, subjective sensatibrfever) associated with i) &.
falciparum parasite/leukocyte ratio higher than an age-deg@ngyrogenic threshold
previously identified in the patients from Dielmidlage (Rogier, Commenges et al. 1996), ii)
a P. falciparumparasite/leukocyte ratio higher than 0.3 pardsit&bcyte in Ndiop village.
The threshold was used because of high prevalehcasymptomatic infections in the
populations, as occurs in regions endemic for rmaalg@inton 1931; Miller 1958; Richard,
Lallemant et al. 1988; Smith, Genton et al. 1994).

Time period of observation was classified as adster, and then units of observation were
person-trimesters. The dependent variable was etefas a binary trait: individuals with at
least one clinicalPFA during that trimester or witholPFA. In total, there were 46,837
outcome events of person-trimesters from 1,653viddals. Almost 20% of the events were
PFAin both villages.

NB: We were also interested in other phenotypesr#ikdct frequency and infectiousness of
the disease for an individual, see chapters 3 &)4the number oP. falciparumclinical
episodes, or malaria attacks, during each trimgata#PFA and units of observation for this
phenotype were person-trimesters; 2) the propodfainical episodes that were positive for
gametocytes, parasite stages transmissible to mosgfgan).

2.3.2 The covariates

Some explanatory variables are time-dependent [zl were evaluated for each trimester.
These included current age, experience of expdsutherPlasmodium sppP. ovaleandP.
malaria@ before the current trimester defined by the cwamd number of previous
infections, the corresponding year and trimestare tspent in the village during the current
trimester. Other variables are individual-dependanluding sex, geographic location (e.qg.
village, house), and genetic profiles (e.g. blogget hemoglobin type, Glucose-6-phosphate
dehydrogenase (G6PD) deficiency status (by genstgpe by enzyme activity). The list of
variables analyzed are presented in the Annex lnti¢ation 1 (Loucoubar, Paul et al. 2011).
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2.3.3 The changing epidemiology of malaria in the lastaciale

We categorized clinical episodes for a volunte¢o i& groups: #0 as absence of episode
during a trimester of observation or as havingicdih episode(s) withouP. falciparum
infection, but including malaria episodes duePoovaleor P malariae (not PFA), #1 as
having at least one episode wkh falciparuminfection but not attributed tB. falciparum

l.e. parasites density under the threshold (RB®), #2 as having at least one episode
attributed toP. falciparum i.e. parasites density above the threshd®&A). For each
volunteer and at each trimester of presence, thdance rate oP. falciparuminfections (#1)
and attacks (#2), corresponding to panels A andspactively of Figures 2.3.1.a for Dielmo
& 2.3.1.b for Ndiop, was estimated as the numbesuzh episodes divided by the number of
days of presence for each time period.

The global burden of malaria decreased dramatioallgr the last decade in both sites
(Figures 2.3.1.a & 2.3.1.b) as reported in sevetlaér malaria endemic areas (Bhattarai, Al
et al. 2007; Ceesay, Casals-Pascual et al. 2008 dDa, Bejon et al. 2008) due to efficacy of
combining effective vector control and effectiveseananagement. Figures 2.3.1.a and 2.3.1.b
thus reflect the decreasing impact on the burdeheoACT (2007) and ACT plus long-lasting
insecticidal-treated nets (LLIN) (2008) at a rutcammunity level. The at-risk population for
malaria episodes remained the younger childreny anfew malaria episodes occurred in
adults in either village (Figures 2.3.1.a & 2.3)1.b
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FIG. 2.3.1.a. Incidence rate (per person per y&aralaria infections (A) and attacks (B) betwe®2 and 2008 depending on age

in Dielmo.
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Figures 2.3.2.(A-D) show that the number of malapasodes per individual decreased over
time; this was most notable in the over 12 year gdoup. This trend was similar for the
clinical episodes not related . falciparum Figure 2.3.2.(A-D) illustrates the changing
epidemiology of clinical malaria following the usé an efficient antimalarial drug therapy
such as ACT combined with systematic malaria detecfollowing the onset of clinical
symptoms. Notably, in children below 12 years of,ae decrease in the number of malaria
episodes reveals an increased number of non maténieal episodes. This is probably due
to concomitant infections that were previously eewously classified as malaria episodes,
although may reflect release of co-circulating pgns from the suppressive effectRaf
falciparummalaria. As in adults, the numbers of persons witctlinical episodes increased
between 2001 and 2008; this was more marked ingN@ither than in Dielmo.
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Episodes with P Falciparum infection

Legend: |:| No Episode but not attributed to 2. Falciparum malaria (not PFA)
m Episodes without P Falciparum infection - Episodes attributed to P Falciparum malaria (PFA)
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FIG. 2.3.2.(A). Evolution of the number episodedaygmer individuals within group having less tharyéars-old in Dielmo.



number of persons

number of persons

58

. . Episodes with P Falciparum infection
Legend: |:| No Episode but not attributed to 2. Falciparum malaria (not PFA)

m Episodes without P Falciparum infection - Episodes attributed to P Falciparum malaria (PFA)

230 q 250 + 250 ~ 250
2001 2002 2003 2004
200 1 200 1 200 4 200 4
150 + 150 150 150 A
100 {7777
50
0 0
01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 68 7 8 9 10
number of episodes number of episodes number of episodes number of episodes
230 1 230 4 250 + 250 T
2005 2008 2007 (]| 2008
200 A 200 A
100 +
50 4 1— 50
0 0 1_
1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10

FIG. 2.3.2.(B). Evolution of the number episodeetyer individuals within group having more tharnygars-old in Dielmo.
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Episodes with P Falciparum infection

Legend: |:| No Episode but not attributed to 2 Falciparum malaria (not PFA)
m Episodes without P Falciparum infection - Episodes attributed to P Falciparum malaria (PFA)
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FIG. 2.3.2.(C). Evolution of the number episodeetyper individuals within group having less tharny&ars-old in Ndiop.
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Episodes with P Falciparum infection

Legend: |:| No Episode but not attributed to 2. Falciparum malaria (not PFA)
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FIG. 2.3.2.(D). Evolution of the number episodeayper individuals within group having more tharygars-old in Ndiop.
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2.3.4 Results from data mining using CART

Data mining analyses by CART used Gini index in gmitting step as measure of

homogeneity of the nodes and cross-validation ia tiruning step to optimize the

misclassification error rate, using pack&gartfrom R software version 2.13.2. Thus, CART
identified two major variables, Age and Year, wharke determinant to predict occurrence of
PFA The different leafs correspond to different symgations in terms of susceptibility /

resistance.

In Dielmo for example, person-trimesters aged frento 14 years-old whatever the period
and their measured values for other variables,dmadar risk to develog?FA compared to
the entire cohort (Figure 2.3.3 (A)); they are norenat risk but not yet protected (RR = 0.95
[95%CI: 0.89 — 1.02]). Individuals having more thait4 years-old are in general protected
whatever their other aspects (RR = 0.23 [95%CI1 6-D.24]). However, having age between
0.22 and 5.48 and being present during years fr88® 1o 2003 defined the high risk group
for having PFA (RR = 3.26 [95%CI: 3.16 — 3.38]). No other var@aldr combination of
variables yielded a higher Relative Risk by CARTtmoe.

In Ndiop, malaria epidemiology is strongly depertdapon season, as expected because
mosquito abundance depends on the rains in thegeil All individuals are protected (RR =
0.23 [95%CI: 0.21 — 0.25]) during the period of ygam January to June (coinciding to dry
season, i.e. no rainfall, in this region of Africdjle to absence of the vector and therefore
absence of transmission. In this second cohort) é&wemore than 15-year-old, the protection
is weak (RR = 0.85 [95%CI: 0.80 — 0.91]) comparedhte same age group from Dielmo
because they are not always exposed to malarietiofs and hence have developed weaker
clinical immunity. All individuals having less thabb-year-old are at risk, confirming that
immunity is acquired later in this lower endemiearthe highest relative risk was found for
period from 1992 to 2003 (RR = 3.12 [95%CI: 3.02.23) before decreasing to half the level
in 2004 and after (RR = 1.50 [95%CI: 1.39 — 1.61]).

Figures 2.3.3 (A & B) are the classification tregmntified by CART for each village. Figures
show at each node the cut-off values that divide dhtaset into two; at each final leaf are
given the Relative Risk (RR) and the number of &vassociated with that leaf.
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A , age <8.12
|
age >=13.6 year < 2004
I I age >=0.22
RR=0.23 RR =095 RR = 1.42 |
size = 13746 size = 3621 cive = '-|881 RR = 0.34 age <5.48
size =135 [ |
RR=218 RR =3.27
size = 1350 size = 3041
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|
age <15.55
RR=0.23
<
size = 11183 I year 2°°4|
RR=0.85
size=5623 ~ RR=1.50 RR =3.12
size = 1817 size = 4152

FIG. 2.3.3. Classification tree generated by Cfasdion and Regression Tree (CART)
analysis of risk factors determining the occurreotcB. falciparummalaria attacksRFA) per
trimester in Dielmo (A) and Ndiop (B).
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2.3.5 Results from data mining using HyperCuBe

We divided our dataset into three phases: learnialiglation and replication. We analyzed
the two cohorts separately. A random variable wasted dividing the data of each cohort
into two groups of equal size (in and out sampl€&kg learning phase was carried out using
the “in sample” from the first studied cohort. Imetvalidation phase, rules defined in the
learning phase were validated in the “out samplethe same cohort. The effect of each
validated rule from the first cohort was studiedhia second cohort in the replication phase.

We selected the best predicted rule for furthetissigal study. The best predictive rule
contained 1,689 events from 148 individuals and defined as: individuals who lived in
Dielmo during 1992 to 2003, were of an age betwkda 5 years old, having hemoglobin
type AA , and having had previo®s malariaeinfection (PMI) less than or equal to 10 times.
These individuals had 3.71 (95%CI: 3.58 — 3.84e8morePFA than the general population;
and this sub-population was the most representétirecontaining the maximum number of
events) among those with a RR of at least equal#b.

2.3.5.1Replication of the rule in the 2nd cohort

In order to validate the biological and epidemidatadjaspect of this HyperCuBeule, it was
replicated in Ndiop where a sub-population defiasdabove for Dielmo presented a higher
risk to develog®FA compared to the general populatioff=(665.96, DF=1P < 10", RR of
2.35 (95%ClI: 2.22 — 2.48) and OR of 3.50 (95%CL63- 3.87). The result was optimal in
Dielmo and replicated in Ndiop. Thus, the four aates identified above to be risk factors in
Dielmo were also risk factors in Ndiop.

The two cohorts differ in one very pertinent manmerDielmo malaria transmission occurs
all year round because of the presence of a stnadira that enables mosquitoes to breed. In
Ndiop, transmission is highly seasonal and occuringd the rainy season (July-December).
Hence, we calculated the risk in Ndiop using orflg tperiod of year between July to
December, a period when environmental factors aite similar in the two villages. We
obtained the same relative risk, RR = 3.78 (95982 — 3.94), OR of 11.80 (95%CI: 10.11
— 13.77), with a highly significant Pearson chi-agutest °= 1542.50, DF=1P < 10%9).
Furthermore, this risk was maximum in Ndiop whee a@s re-set to 3 to 7 years old (RR =
4.11, 95%CI: 3.97 — 4.27 and OR = 17.31, 95%Cl1684- 20.41) with more events (Size =
932 events from 179 individuals of Size of 863 from 157 when using age 1 to & an
higher significanceyf= 2076.17, DF=1P < 10"9).



64

2.3.5.2Comparison with other models

We examined whether a classical statistical mettmdd identify the same or better rules.
We performed logistic regression analysis and CARihg the Dielmo data. We performed
logistic regression using several model selectioathods: (1) selection based on an
exhaustive screening of candidate models in eabbkeswof explanatory variables, selecting
the best one in terms of Information Criterion (&siv Akaike Information Criterion (AIC));
(2) forward selection and backward elimination. Tésults obtained are presented in Table 9
from Publication 1 (Loucoubar, Paul et al. 2011)l gub-groups identified using model
selection techniques had lower predictive valuesdievelopingPFA than the HyperCuffe
rule. For sub-groups explaining the same or a greatmber of events than the one found by
HyperCubé&, the RR was lower and the 95% confidential intsned RR did not overlap with
those for the HyperCuBeule (Table 9 from Publication 1).

We tested whether the HyperC(ibeile predicted the highest risk of developiRBA We
used the HyperCulemodel as a reference. We modified the referengeeHubé€ rule by
either removing one of the variables or addinganables identified by multivariate analysis.
As shown in Table 10 from Publication 1, there wmasother model that gave higher RR or
OR than the one identified by HyperC(heith equal or greater size.

2.3.5.30ptimality of the rule

We then tested whether the cut-off values delirgitine range of values in the HyperCfibe
rule (defined as the reference rule) for each bégisvere the optimal ones. Hemoglobin type
was fixed as AA or not. We modified the range ofitcmuous variables of the reference rule.
As the cut-off values for continuous variables wesasidered at integer values, there were a
finite number of subsets that we could try for nfigidig a rule. We tested all possible ranges
of the continuous variables (Age, previous PMIs afdr). We first fixed 2 variables and
changed one variable at a time. The variable toghavas first defined as the range of
integer values between its minimum and maximum ae&luand then reduced from the
maximum to smaller integer values covering an eemreasing total range until the
minimum. This was repeated step by step until eaidger value of the variable was set as
the minimum for a step. Therefore, the total nundfezhoices for a variableis 1 + 2 + 3 + ...
+ maximum= sum of a finite arithmetic sequence = (firstwahk last value)x(number of
values)x(1/2). Each choice corresponds to a spetifidification of the reference rule (i.e. a
specific interval of values defining the modifiedla). Then, for Age, previous PMIs and
Year, there are (1+98)x98x0.5 = 4851, (1+45)x45x%9.5035 and (1+19)x19x0.5 = 190
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possible choices respectively. We then fixed 1 alde and changed 2 variables
simultaneously. When Year is fixed and the couphge( previous PMIs) changed
simultaneously, there are 4851x1035 = 5,020,78Siplaschoices. For previous PMis fixed
and (Age, Year) changed and Age fixed and (previBddls, Year) changed there are
4851x190 = 921,690 and 1035x190 = 196,650 posslhoéces. When we selected choices
with at least same size as the reference rulerdbelting RR was always lower than the
reference RR. Figure 2.3.4 shows the effects ofmtbdified ranges (i.e. the effect of other
choices different from the one found by HyperCl)ben the RR. If all 3 variables were
allowed to vary simultaneously there would be 4,8%t Age) x190 (for Year) x1035 (for
previous PMIs) = 953,949,150 possible choices. tirhe for running such an analysis on one
computer with 2 central processor units (Duo CPQDZ5Hz 2.00 GHz), Memory (RAM) of
3.00 GB) is estimated at ~ 5678 days (~ 1.94 cso@mw®lyzed per second) using function
“system.time(’)of R-software, and thus not possible to analyyetibs ways of screening
exhaustively.

Figure 2.3.4 below shows RRs for all other possitiédinitions of risk group on the
explanatory variables, with equal or greater simntthe HyperCulferule. Y-axis indicates
the RR. A) Only ranges of Age are modified: 102ices among 4,851 possible choices had
size equal or greater than 1,689 (size of the Hypké€ rule) and are plotted; B) Only ranges
of previous PMIs are modified: 35 choices amon@3,0ossible; C) Only ranges of Year are
modified: 25 choices among 190 possible; D) Rarafesoth Age and previous PMIs are
modified simultaneously: 25,040 choices among 5,02® possible; E) Ranges of both Age
and Year are modified simultaneously: 8,912 choamasng 921,690 possible; F) Ranges of
both previous PMIs and Year are modified simultarso 1,110 choices among 196,650
possible. Filled red triangle represents the RRHgperCub&'s rule (HyperCub®s risk
group), empty black circles represent the RR oéotioices of risk groups.
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2.3.6 Results from GEE regression

Multivariate analyses using GEE (with binomial diatition and LOGIT link function)
identified several factors determining the riskdsvelopingPFA during a trimester. The
results comparing estimations from GEE and estonaticonsidering independence of
repeated episodes within a same individual are sanmed below in Tables 2.3.1. (A) and
(B) for Dielmo and Ndiop respectively. Only intetians of order 2 were tested and the
significant (P-value< 0.05) are presented.

The use of LOGIT link unable to have directly thigusted odds ratios (OR) by taking the
exponential of the parameters estimated from thdetso Therefore, an additive effect of
interaction estimated between two variables isutad by a multiplicative effect on each of
their marginal OR; that's becausxp(atb) = exp(a) x exp(b)For instance, on Table

2.3.1.(A) for Dielmo, between Hemoglobin and G6RBe marginal GEE estimates of the
adjusted OR of havin@FA for each of these variables are respectively &8 3.01 while

the interaction effect is 0.33. Then, individualshw/AA” hemoglobin and “Not BB” G6PD

are 4.28 times more susceptible to devéd\ during a trimester than those with “Not AA’
hemoglobin and “Not BB” G6PD. However, having “BB6PD additionally, i.e. individuals
with “AA” hemoglobin and “BB” G6PD, changes the kifrom 4.28 to 4.28x0.33 = 1.41
compared to the same individuals (i.e. “Not AA” hegtobin and “Not BB” G6PD).
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Table 2.3.1.(A): Risk factors identified by GEEvilage of Dielmo.

Analysis considering

independence GEE Analysis
Variables Adg;ted 95% Cl P-values Adgthed 95% Cl P-value
Sex Male (ref.) 1 - - - 1 - - -
Female 3.02 [1.92 4.75] 1.74E-06 3.02 [1.79 5.11] 3.63E-05
Hemoglobin Not AA (ref.) 1 - - - 1 - - -
AA 421 [2.45 7.24] 1.89E-0Y 428 [2.08 8.82] 7.82E-05
Sex*Hemoglobin Female & AA 0.33 [0.20 0.527] 2.95E-06 0.33 [0.18 0.58] 1.2BE-
G6PD Not BB (ref.) 1 - - - 1 - - -
BB 296 [1.90 4.62] 1.81E-06 3.01 [1.56 5.78] 9.67E-04
Hemoglobin*G6PD  AA & BB 0.33 [0.21 0.527] 2.07E-06 0.32 [0.16 0.64] 1.1058-
Blood group A, B, AB (ref.) 1 - - - 1 - - -
o] 1.27 [1.13 1.42] 3.35E-05 1.27 [1.03 1.56] 2.32E-02
Age group (in years) <4 (ref.) 1 - - - 1 - - -
5to14 0.21 [0.18 0.24] <1.00E-16 0.21 [0.16 0.27] <1.Q0&-
15t0 34 0.05 [0.04 0.06] <1.00E-16 0.05 [0.04 0.08] <1.Q0%-
>35 0.03 [0.02 0.04] <1.00E-1p 0.03 [0.02 0.04] OCE-16
Drug treatment period Quinine (ref.) 1 - - - 1 - - -
Chloroquine 0.81 [0.70 0.92] 1.86E-08 0.80 [0.66 0.97] 2.44E-02
Fansidar 0.20 [0.16 0.26] <1.00E-16 0.20 [0.14 0.29] <1.Q0E-
ACT 0.11 [0.08 0.15] <1.00E-1b 0.11 [0.07 0.16] <1.00E-
Semester Jan. - Jun. (ref.) 1 - - - 1 - - -
Jul. - Dec. 1.24 [1.11 1.39] 1.15E-04 1.24 [1.12 1.38] 8.15E-05
cumulated PFA +Attack 1.06 [1.06 1.07] <1.00E-1b 1.06 [1.05 1.07] <l1.40&
cumulated PMI +1nfection 0.95 [0.94 0.97] 3.54E-14 0.95 [0.93 0.97] 1.63E-05
cumulated POI +infection 0.84 [0.81 0.87] <1.00E-16 0.84 [0.78 0.90] 7.05E-0
log(exposure) +2.78ays 2.26 [1.80 2.84] 1.74E-1P 2.28 [1.74 2.99] 3.03E-09
v" PMI: P. malariaeinfections
v" POI: P. ovaleinfections
v' Exposure: number of days of presence in the vildgetrimester
v Drug treatment period b@uininewas from 1990 to 1994, yhloroquinefrom 1995

to 2003, byFansidarfrom 2004 to mid-2006 and ACT from mid-2006 to 2008.
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Table 2.3.1.(B): Risk factors identified by GEEvillage of Ndiop.

Ane_nyS|s considering GEE Analysis
independence
Variables categories Adj(l)lSRted 95% ClI P-values Adj(l)JSRted 95% Cl P-value
Hemoglobin Not AA (ref.) 1 - - - 1 - - -
AA 1.33 [1.17 1.51] 7.24E-06 132 [1.12 1.55] 8.68E-04
Age group (in years) <4 (ref.) 1 - - - 1 - - -
5t0 14 0.61 [0.54 0.70] 1.48E-18 0.62 [0.52 0.73] 2.14E-08
15t0 34 0.18 [0.16 0.21] <1.00E-16 0.18 [0.15 0.22] <1.Q06E-
>35 0.09 [0.07 0.11] <1.00E-16 0.09 [0.07 0.12] 0QE-16
Drug treatment period Quinine (ref.) 1 - - - 1 - - -
Chloroquine 0.59 [0.51 0.68] 2.98E-13 0.58 [0.50 0.67] 3.87E-13
Fansidar 0.18 [0.15 0.22] <1.00E-16 0.18 [0.15 0.22] <1.Q06-
ACT 0.06 [0.05 0.07] <1.00E-16 0.06 [0.05 0.07] <1.Q06&-
Semester Jan. - Jun. (ref.) 1 - - - 1 - - -
Jul. - Dec. 21.61 [19.21 24.31] <1.00E-16 21.58 [19.07 24.4111.08E-16
cumulated of PFA +attack 1.08 [1.07 1.08] <1.00E-1b 1.08 [1.07 1.09] <1.00¥¢
cumulated of POI +infection 0.88 [0.84 0.91] 7.84E-10 0.87 [0.81 0.93] 8.49E-05
log(exposure) +2.78ays 229 [1.97 2.67] <1.00E-16 236 [2.00 2.77] <1.00&-

2.4 Discussion

All approaches used confirm the general decreaseatdiria burden over time and identify
almost the same factors underlying the risk of tgyeg P. falciparum malaria attacks:
increase of age (after 5 years old) led to a deere&the risk oPFA; a decrease RR &fFA
also occurred from 2004, the year of change in dregtment frontChloroquine for which
malaria parasites developed resistance, to a ndwnarne efficient drugRansidan, and years
after when there was a combined of artemisinindbasembination therapy (ACT) and
LLINs. However, different approaches gave slighiifferent and complementary results.

The two cohorts differ in one very pertinent manmerDielmo, malaria transmission occurs
all year round because of the presence of a stna#ira that enables mosquitoes to breed; in
Ndiop, transmission occurs only in rainy seasomfiduly to December. All methods used
confirm this difference in environment between the villages. Even if environmental
factors are much closer between the two cohorts flaly to December, we should expect
different effects that could be due to genes xremvnent interactions because of the break of
six month in transmission in th&Zohort.



70

When we used different data mining methods, e.gRTAand HyperCulie variables
identified (Age and Year) and their ranges werey\@milar. Slight differences in results
reflect the differences in methodologies of the tteohniques. CART uses a sequential
approach first splitting the dataset accordingh iinost significant variable and identifying
the threshold value of that variable that maximittes discrimination in the two subsets of
data (i.e. leasPFA vs. mostPFA). Then, CART will further sub-divide each subsgtthe
next most significant variable that leads to maxmliscrimination. This approach thus leads
to canalization of the data along different pathsyagsulting in a decreased sample size for
comparison. The fact that some variables can be& s&weral times at several nodes
depending to their importance makes this methddeép in the final tree only variables with
strong effects, like Age and Year. In addition,imation by maximum discrimination at
each level may paradoxically lead to an erroneoisoptimal end-point many levels down.
HyperCubé&, by contrast, analyses all variables simultangouwsth no sequential selection
that leads to such loss of power or canalizatimngla potentially eventual sub-optimal
pathway. This aspect unable HyperClltie catch additional effects of hemoglobin ahd
malariae infections. Also, the great disadvantage is thpassibility of adjusting on factors
making confusion.

While data mining methods keep only variables vationg predictive values in the final
results (because of high threshold for effects iypétCub& and competition between
variables at each split in CART), regression meshbg GEE can keep factors with weak
effects just if they are significant at 0.05 anldwab for adjusting on other variables. Another
advantage of GEE is the grouping of measures fraanae individual; the consequence can
be seen as a compromise between the initial sasig#ef = total number of episodes from
all individuals) and a more realistic sample sike=number of different individuals). This
readjustment of the size is seen in the increastaoidard errors of estimates and subsequent
increase of P-values from “Analysis consideringeipeihdence” to “GEE Analysis” (Tables
2.3.1.(A) & (B)).

All these epidemiological aspects of malaria disadiscussed in this chapter are important to
be understood before genetic analyses presenthad mext chapters 3 & 4.

Let us remember the main objectives of the thegisch are totake into account familial
relationships, repeated measures as well as effectvariates to measure both environmental
and host genetic (heritability) impacts on the mddmalaria phenotypes, and then use
findings from such analyses for linkage and assiotistudies.

Thus, according to these objectives, we have tworabquestions. (i) Among this observed
variability of malaria disease through these popoes, with a great implication of
epidemiological variables like age and year perioghat is the overall human genetic
contribution? This question will be treated in ttedowing Chapter 3 “Heritability”. (ii)

Which of our candidate genes can be suspectedviey iradependently or jointly, significant
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genetic effects on the malaria phenotypes alrealjiysted on significant epidemiological
factors? This question will be treated in the Chagt“Linkage and Association”.
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Part |I:

Genetic Analysis
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3.Heritability

Abstract

In addition to epidemiological factors describedhie previous chapter, malaria infection and
disease are also strongly influenced by human fam$ors. To quantify these sources of
variation, correlated random effects such as thdge to genetic relationships among
individuals and repeated measures within individushould be taken into account in
statistical models. Here, we have evaluated théalhdity of two Plasmodium falciparum
malaria parasite phenotypes known to be influermetiuman host genetics, the number of
clinical malaria episodes @@. falciparummalaria attacksRFA) and the proportion of these
episodes being positive for gametocytd®fgan), the specific stages of the parasite
responsible for parasite transmission to the mésgWe performed Generalized Linear
Mixed Models (GLMM) that account for familial relahships and repeated measures and
have adjusted the models by significant environalentariables identified in the
epidemiological analysis, to estimate and sepdh&terariance of the two malaria phenotypes
among four sources: host additive genetics (helit@b intra-individual effects or permanent
environmental effects including other personal @ffdike genetics non-additive, house and
unexplained residuals. We found a significant adeligenetic effect underlyinBFA during
the first drug period of study; this was lost irbsequent periods. There was no additive
genetic effect forPfgam analyzed in Dielmo only. By contrast, the intraiindual effect
increased significantly. The complex basis to theéin response to malaria parasite infection
likely includes dominance/epistatic genetic effeeteompassed within the intra-individual
variance component. There were no house or matefieaks.
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3.1Introduction

After the identification of potential non-genetianables influencing malaria phenotypes by
descriptive methods, estimation of heritabilitypisecond step prior to association studies that
use family based methods like allelic transmissionnts. The heritability analysis provides
an indication of the genetic contribution undertyi specified phenotype and is an important
parameter determining the statistical power in geapping studies that use pedigree
information. A large heritability implies a strongorrelation between phenotype and
genotype, so that loci with an effect on the phgoetcan be more easily detected (Visscher,
Hill et al. 2008). Estimation of the heritabilitin this context of family-based longitudinal
survey, needs rigorous and adapted statistical hibdeaccounts for repeated measures and
disentangles the influence of genetic and envirartaidactors on the phenotype of interest.

Here, we have collected family data. Thereforedietl individuals are genetically related to
each other, so their measured values for the pypestare expected to be correlated unless
the variability in these values attributable to efes is null. This chapter presents an
extension of GLMM using genetic relatedness amodgiduals (i) to estimate the effects of
covariates free from potential bias induced by matependence between individuals and (ii)
to understand how the phenotypes are geneticalliyoarenvironmentally determined by
evaluating their variance components. The persefigcts of each individual are also
evaluated and represent fine phenotypes for gehekiage and association studies, as these
individual effects are already adjusted on potérgia/ironmental confusion factors. This
extended model, explained in subsection 3.2.2.2wpeWill generate appropriate statistics
from this family design, e.g. true standard errofsthe estimates, independent random
individual effects (Vazquez, Bates et al. 2009; ¢mubar, Goncalves et al. 2011).

3.2 Material and Methods

3.2.1 Genetic relatedness

Let us introduce here two main techniques useduemify genetic relatedness or genetic
covariance between relative pairs in a populafidre first approach is to use the relationship
information from the pedigree and infer kinshipvbegn individuals based on the probability
of sharing same genomic materials; we will preseimteedingandcoancestrynotions which
are used to calculate genetic covariance. The geagpproach that is more accurate is to use
pedigree information and individual genotypes tboneste kinship between individuals but
relatively to a set of genomic regions for whicmggype data are available. This second
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method is based on Identity-By-Descent (IBD) okla$ at the considered loci; more the
markers loci are dense more the estimates are aecuk disadvantage of thi$“method
could be the cost for large genotyping coverageéha population to avoid missing data;
individuals with missing genotypes at a marker ®uill present missing IBD information at
that locus for all pairs including those individsial

3.2.1.1Pedigree-based genetic relatedness

The Genetic covariance between two individuals &ancomputed using the pedigree
information. For individuals A and B, a given paira pedigree, the genetic covariance is
computed asr(A,B) = 2xcoancestrfA,B) where thecoancestrybetween A and B is
calculated referring to the method presented bydrar and Mackay in 1996 (Falconer and
Mackay 1996):coancestrfA,B) = Z,(1/2)'™x(1 + lcommon ancestyr Wherep is the number of
paths in the pedigree linking A and ®p) the number of individuals (including A and B) for
each pattp and k is theinbreedingcoefficient of X also equal to trmancestrybetween the
two parents of X, is set to O if X is a founder.

lllustration: Consider, as an example, the pedigree below (TaBl& and Figure 3.2.1.(A))
containing 18 individuals named {A, B, ..., R} fordltalculation of genetic covariance’s.
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Input: pedigree relationship

Table 3.2.1. Example of simulated pedigree file.

individuals Father Mother Sex
A Mal
B Fem
C . Mal
E A B Fem
F A B Fem
H C B Mal
D Mal
G Mal
I . . Fem
M D E Fem
K G F Mal
L H I Fem
J . Fem
N K J Mal
0] K L Mal
P . . Fem
Q N M Mal
R 0] P Fem
(=)
®) c
O
O—1x :

Q

FIG 3.2.1.(A). Pedigree structure derived from Eabl.1.
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Output: Genetic relationship (or kinship) coeffitie derived from the pedigree structure.

Table 3.2.2. Genetic relatedness matrix computen fredigree structure represented in Figure 348).1.(

individuals | A B C D E F G H I J K L M N ©) P Q R
A 1 0 0 0 0.5 0.5 0 0 0 0 0.25 0 0.25 0.125 0.125 0.18® 0.063
B 0 1 0 0 0.5 0.5 0 0.5 0 0 025 025 025 0.125 029 0.188 0.125
C 0 0 1 0 0 0 0 0.5 0 0 0 0.25 0 0 0.125 O 0 0.063
D 0 0 0 1 0 0 0 0 0 0 0 0 0.5 0 0 0 0.25 0
E 0.5 0.5 0 0 1 0.5 0 0.25 0 0 0.25 0.125 05 0.125188® O 0.313 0.094
F 0.5 0.5 0 0 0.5 1 0 0.25 0 0 05 0125 025 0253138. O 0.25 0.156
G 0 0 0 0 0 0 1 0 0 0 0.5 0 0 0.25 0.25 0 0.125 0.125
H 0 0.5 0.5 0 0.25 0.25 0 1 0 0 0125 05 0.125 0.068313 O 0.094 0.156
I 0 0 0 0 0 0 0 0 1 0 0 0.5 0 0 0.25 0 0 0.125
J 0 0 0 0 0 0 0 0 0 1 0 0 0 0.5 0 0 0.25 0
K 0.25 0.25 0 0 0.25 0.5 05 01250 0 1 0.063 0.125 0.5 0531 O 0.313 0.266
L 0 0.25 0.25 0 0.1250.125 0 0.5 0.5 0 0.063 1 0.063 0.031 0531 0 0.040.266
M 0.25 0.25 0 05 05 025 0 0.125 0 0 0.125 0.063 1 0.063 0.094 0 0531 0.047
N 0.125 0.125 O 0 0125 0.25 0.25 0.063 O 0.5 05 0.031 0.063 1 0.266 0 0531 0.133
O 0.125 0.25 0.125 0 0.188 0.313 0.25 0.313 0.25 0O 0531 0531 0.094 0266 1031 O 0.18 0.516
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.5
Q 0.188 0.188 O 0.25 0.313 0.25 0.1250.094 O 0.25 0.313 0.047 0.531 0.531 0.18 0 1031 0.09
R 0.063 0.125 0.063 0 0.094 0.156 0.125 0.156 0.125 O 0.266 0.266 0.047 0.133 0.516 0.50.09 1
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The genetic relatedness between individuals N amlégqual to 0.266 from Table 3.2.2. This
value is calculated as followed:

The number of paths linking N and O from Figure. B@) isp = 2.

e Path 1 containsn(1) = 3 individuals {N, K, O} with K as the commancestor (Figure
3.2.1.(B)). Inbreeding coefficient of K¢ | is thecoancestrybetween the two parents of K
(F and G) and is null because F and G are not igatigtlinked.

» Path 2containsn(2) = 7 individuals {N, K, F, B, H, L, O} with B athe common ancestor
(Figure 3.2.1.(C)). Inbreeding coefficient of B,,lis null because B is a founder.

Therefore, genetic relatedness between individiasad O is:
= 2x( 0.5"x(1+Ik) + 0.8@x(1+ Ig) )

= 2x( 0.5°(1+0) + 0.5'x(1+0) ) = 0.266

FIG 3.2.1.(B). Path 1 linking N and O. FIG 3.2Q0).(Path 2 linking N and O.

Remark 3.2.1:In general, the genetic relatedness between parehchild is 0.5, between
grandparent and grandson is 0.25, between greadgmeent and great grandson is 0.125, and
so on, following the series 1/2, 1/4, 1/8, ...2%/(hereg is le number of generations. It is
because from generation 1 ¢pin this kind of direct lineage, the path is unigared the
number of individuals making the link goes from= 2 ton = g+1 (always the number of
current generation +1).
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3.2.1.21BD-based genetic relatedness

Identity-by-descent (IBD)

Given a pedigree and given a locus, a pair of edlef two individuals in the pedigree is
called identical by descent (IBD) if both allelesvie been inherited from a common ancestor
(or are “physical copies” of the same founder a)leRemember here that each founder
contributes one allele at each given locus, anah@ill founder alleles are physical copies of
founder alleles, the “copying” taking place by ssgtion during meiosis or a sequence of
meioses. IBD-status is determined by the segregatiocess, not by the nature of the alleles.
The two alleles of a single individual are neveDIRunless there is inbreeding in the
pedigree) and two individuals may share 0, 1, alléles IBD, depending on chance and their
familial relationship. For instance, a father (espvely a mother) and child always have
exactly one allele IBD, if the possibility that ti@her (respectively a mother) carries the
maternal (respectively the paternal) allele ofdhidd is excluded. Thus, a parent and his child
always shared 50% of genetic materials at any I¢soisn the whole genome). At a locus, a
maternal grandmother and grandchild carry 1 geri2 ifBthe child receives his mother’s
maternal allele and the child’s father is not redato the grandmother (see illustration on
Figure 3.2.2 below). The grandmother and granddhish share 50% of genetic materials at
that locus (what arise rarely at many loci simudausly or if the number of generations
between ancestors and descendents increases, dtle toransmission of alleles with
probability 50/50). This method then joins in socases the method of Falconer and Mackay,
1996, describe above to measure genetic relatipn#BD approach will be different to the
Falconer and Mackay’s approach (i) at a locus whtegeoccurrence of allele transmissions is
not equilibrated and will be specific to that locois (ii) if we look at a small number of
generations; but will tend to the Falconer and Magtkapproach if we look at a large number
of loci simultaneously or in more generations.
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FIG 3.2.2. IBD illustration: Individuals G and Hale 1 allele IBD, the allelas.
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Multipoint IBD can be calculated by MERLIN (AbecssiCherny et al. 2002) using genome
wide microsatellite genotypes for example. There #iree estimated IBD-coefficients
between each pair of individuals at each marker=Rf@obability of sharing O allele, P1 =
probability of sharing 1 allele and P2 = probapilaf sharing 2 alleles. MERLIN uses
information from pedigree, which specifies indivadluelationships, genotypes and markers
location to estimate IBD probabilities. We will nestplain here the method used by MERLIN
to compute these probabilities; see Abecasis, Ghetral. 2002 for details on this method. A
view of the output file format can be representedodiowed:

Table 3.2.3. Presentation of IBD probabilitiesdach pair of individuals at each marker.

Family Individual 1 Individual 2 Marker PO P1 P2
D1 D1430 D1426 D1S2667 0.00419 0.83123 0.16458
D1 D1430 D1427 D1S2667 0.00083 0.16877 0.83040
D1 D1430 D1433 D1S2667 0.83040 0.16877 0.00083
D1 D1430 D1425 D1S2667 0.00502 0.99498 O
D1 D1430 D1437 D1S2667 0.00083 0.16877 0.8304
D1 D1430 D1430 D1S2667 0 0 1
D1 D9903 D1423 D1S2667 1 0 0
D1 D9903 D9901 D1S2667 0 1 0

We can now use P1 and P2 to define a kinship «oeffi, or genetic relatedness, between all
relative pairs from genotyped individuals.

Genetic relatedness derived from IBD probabilities

Kinship for a pair of individuals at a markérhe IBD coefficients were computed in each
village separately. P1 and P2 are used to measnshift between two individuals, at a
markerm, this kinship value is K= P1x(1/2) + P2 and represent the probabilityhafrsg at
least one allele identical-by-descent. P1 was dividy 2 because there are two equiprobable
ways of sharing one allele identical-by-descentait be inherited from the father or from the
mother; and we know that when two individuals slare allele identical-by-descent it comes
either from the father or from the mother.
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Kinship for a pair of individuals through the whajenome: We defined the mean kinship
between two individuals in general as the mean inghp values computed among all
markers = (IM)XZKm = (IM)XZ(0.5xP1 + P2), m= 1, ...,M; whereM is the number of
microsatellite markers.

Remark 3.2.2 The genetic relatedness matrix can be derivede piecisely, from genotypes
on genome wide dense SNPs (single nucleotide pofmsims); thenM is very large
making more robust the overall genetic similarigiveen individuals.

3.2.2 Estimation of covariates effects, individual effscand genetic parameters using
Generalized Linear Mixed Models (GLMM) and genetielatedness matrix

Mixed models are adequate to estimate the efféda@gmanatory variables on a phenotype in

longitudinal survey with case-control design. Omebpem arises when we are in presence of
family data where individuals are genetically lidkeheir measured values for a given

phenotype are expected to be influenced by theietaded random additive genetic effects.

This part presents how to use the additive genetiatedness matrix derived from the
pedigree structure to estimate heritability anddavert the “family design” to an equivalent
“case-control” design; and then obtain parametémeses free from familial correlations.

This method has already been applied in severaharreeding models (Henderson 1973;
Vazquez, Bates et al. 2009) but not so popularumdn genetic studies. For more details
concerning general mixed models theory itself, (¢@@&d and Ware 1982; Henderson 1984;
McCulloch 2008).

The name “Mixed Model” comes from the fact that thedel contains both fixed effecfs
parameters, and random-effegigarameters. Individuals are genetically relatedach other,
so their measured values for the phenotypes areceqgb to be correlated unlesé (the
variability in the phenotype attributable to geosgtior the between individual genetic
variance) is 0.

3.2.2.1Design and hypothesis of the GLMM

The design for Mixed Model is the same as the @®el dor the GEE model in Chapter 2. The
yi,i=1,..,Nandj =1, ..,n, are the measured values for the phenotype df timelividual
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at hisj™ observation. There afd individuals andn; measurements on the individiaand
n= ZiN:lni total observations. Measured values forgl®variates are stored in a matrix X.

One main additional hypothesis here is the nonpaddence between related individuals in
the studied population. Therefore, we have to take account both the effect of familial

relationships and repeated measurements in thesgign models. In the following text, we
will use the term “genetic” effects or variances $amplicity but we mean “additive genetic”

as we use the information from pedigree to caleuldetween individuals genetic

covariance’s.

General formulation of the GLMM

The expectation of the phenotype conditional to ¢bgariates and the random effects is
modeled as follows:

E(Y 7, X, Z)=u=1"(Xp+2Zy+¢)
<=> |(u)=Xp+2Zy+e

where Y (x1) denoted the vector of observed values for thenptype;u (nx1) is the
expectation of Y conditional to the random effeatsl the covariates;is a function that links
the expected phenotypewith a model that is linear in the explanatoryi@bles;s (px1) is
the vector of fixed effects for the covariates; k() is the design matrix, of rarnk relating
fixed effects tou; y (Nx1) is the vector of random genetic effects of khéndividuals; Z
(nxN) is the design matrix relating the random effdotg; ¢ (nx1) is the vector of random
residuals.

Distribution of random genetic effects

For each individual, the corresponding random genetic effigés supposed to be normally
distributed with mean 0 and variance the unknowwéen individual genetic varianeg’:

7 ~N(0,04°). o4 is the additive genetic variance component.

Random effects are then identically distributed. weeer, because of genetic non-
independence, for each pair of individuals \ we have cov, y) = ogz><(genetic covariance
betweeni andi’) = a;; ><og,2 (= 0 if and only ifi andi’ are not related). The scalay is the
element at row and column’ of A, the genetic relatedness matrix or the matfiadditive
genetic covariance’s between individuals with disien (NxN). Genetic covariance’s
between individuals are derived in this study fréme population pedigree structure and
stored in a squared matrix A. Therefore, the veataandom genetic effects is distributed as
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a Multivariate Normal with mean 0 and covariancdrma%gzz y ~ N(O, Aagz). Note that if
there is no genetic relationship between individu@l would be equal toy) the identity
matrix of dimensioNxN; and then, the model would be equivalent to a Empxed model
in a context of non-family data.

Distribution of random residuals

The random residuals are supposed to be indepeaddntentically distributed as a Normal
with mean 0 and variance the unknown residual natia,:

&i ~y(0,0:9). o/ is the residual variance component.

Then, ¢, the vector of random residuals is distributedhanultivariate Normal with mean 0O
and covariance matrixd,> where } is the identity matrix with dimensiomxn):

&~ N(O, Ino-rz).

3.2.2.2Integrating the genetic relatedness matrix in aifpmata analysis: How to define
an equivalent model design where individual effactsindependent

Let us rename Y* % (¢ ). Y* can be consider as a linearization of thergitgpe through the
link functionl. The expected mean of Y* and the variance of ¥ ar

()  E(Y) =EXf+2Zy+e)
= E(Xp) + E(2)) + E) = XXE() + Z¥E() + Ef)

= Xp (asymptomatically).

Proof: Random effects have expected mean equal to @@ssed above. In addition, the
estimation of, ,[3 obtained by solving the Henderson’s mixed modelagiqns (Henderson

1984), is the “best linear unbiased estimator” (E)Uf variance components above are
known and is “asymptomatically (or empirically) tHeest linear unbiased estimator”

(EBLUE) if variance components above are unknovhusTE(,[?) - [, at least.

Therefore, the expected mean of the phenotype sqjmonels to the fixed part of the model and
is predictable by only observing the covariates kemalving their estimated effects.
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(i)  Var(Y*) =Var(Xp + Zy +¢)

=Var(Zy +¢) (as X5 is the fixed part, thus has variance equal
to 0)
= Var(zy) + Var() (asy ande are independent)

= ZxVar)xZ' + Varf) (Z" is the transpose of Z)
= Z(AoAZ" + loy?

= ZAZ 6 + loy?

If individuals were independent, i.e. A , Mariance of Y* could be expressed as'@Z +
ls;>. However, using linear algebra theory by the methGholesky decomposition of a
matrix”, we can show that there is an equivalenpresgsion of the variance of Y*
corresponding to the modeling of data from indepemndndividuals, havingy* as an
equivalent vector of random effects and Z* an egl@nt design matrix relating to Y* so
that:

Var(Y*) = Z*(165)Z* " + lo”. lay” is then the covariance matrix of the equivaledeendent
random individual effectg*.

Theorem: Cholesky decomposition of a matrix

If A is a symmetric positive-definite matrix, theie a triangular matrix L so that A can be
written as A = LL'. L can be seen as the “square root” of the métrix

Note that the genetic relatedness matrix A compusgag the pedigree information (Falconer
and Mackay 1996) is a positive-definite matrix, agd identical twins are in the pedigree in
which case it would be positive semi-definite.

Equivalent model with independent random effects!f we set A = LL then:
Var(Y*) = Z(Ao)Z" + loy”
= Z(LLT6AZ" + loy?

= ZLL"ZT64 + loy?
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= (ZL)(ZL)Tog” + lov?
= (Z¥)(Z*) Tog” + lov? (Where we set Z* = ZL)
Then, if we define* = L™y, we can rewrite the model as:
Y*=XB+ Z** + ¢ (because Z= Z(LL ™)y = (ZL)(L™Yy) = Z*y),
and they* are independent, in other terms &) (= Icrgz, as demonstrated below:

We assumed that~ N(O, Aagz). Theny* = LYy is also distributed as a multivariate Normal
with mean E¢*) = L"'E(y) = L'™x0 = 0 and variance:

Var(*) = (LYxvar@)x(LY)"

= (LYx Ac?x(LYT = (LHLLT(LY o

L)L) ey

= 2

The random effects are now independent and thencldmesical mixed model assuming
independence between levels (here individuals) m@arapplied, and the estimate of fixed
effects obtained are fine, i.e. corrected for gerretationships.

Then, the estimation of fixed effects (effects ovariates) stored in the vectcf} and the
estimation of random effects (the variance compt®)estored in the vectory are
respectively given by:

B = (xT\7‘1x)' XTV ty*
=627 el
whereV =z * Z*7 &; +167, and this illustrates the incorporation of theskiip matrix in the

estimation of the effects. See the standard metbodolve the mixed model equations
(Henderson 1984) for more details on the estimatigorithms.



90

3.2.2.3Rewriting GLMM as genetic model

The objective of the model used for the analysis teeestimate and separate different sources
of variation underlying the total variationrp2 observed for the phenotype: the relative
contributions of human genetioﬁsg2 (additive genetic variance), permanent environment
effects gp¢, maternal effectsr,?, house effectsn? and unexplained residual variatia.

The repeated measurements design allows us toasephe two first sources of variation and
the occurrence of related individuals living infdient houses allows separation of additive
genetic variance from that due to shared household.

For reasons of simplicity when writing the algebrasections above, we presented the case
for which the variance of the phenotype was splib igenetic and unexplained residual parts
only. However, one can explain more by extractingnf the residuals, for instance, the
permanent environmental, maternal and house effectany other evaluable source of
variation.

heritability (additive genetic effects)

For a given phenotype in a given population, Hbiiig (in the broad sense) is by definition
the proportion of phenotypic variation that is intel among individuals. This fraction
genetically determined variance is defined as arare attributable to genetics” divided by
“total variance of the phenotype”. In our caseif@tance, we use the additive approximation
through familial relationships, and thus we obt#we fraction of “additively determined
variance” or additive heritability (heritability ithe narrow sense) equal to:

h2]’=0.92/%2=%2/(0.92+abe2+am2+ah2+q2).

Remark 3.2.3: These variances are measured in a given populahare dependent on that
population. For instance, if a population is geradly very homogeneous, in the extreme case
of only one genetic type, then the heritabilityIvdeé small, because most variation will be
environmental. When a single gene is responsibla fdisease and the variant of that gene is
at fixation, heritability will be zero.



91

Permanent environmental effects

The random individual effect is included a secantketin the model assuming independence
between individuals. While the first term will capt the additive genetic variance, this
second term will capture the variance between iddals attributable to effects other than

additive genetics, e.g., “permanent environmehgdfects due to acquired immunity, as well

as non-additive genetic effects due to dominanckegmistasis (Mackinnon, Gunawardena et
al. 2000; Vazquez, Bates et al. 2009). The fractibrvariance determined by permanent
environmental effects is then equal to:

abe2/0b2=0be2/(aé2+abe2+am2+ah2+q2).

Maternal effects

For the individual level, we had the distributiasr the vector of random genetic effects as
y ~N(O, Aagz) where A reflects the familial relationships beénendividuals. Using the same
approach for the “mother” level, a squared matrixoMdimension the number of mothers
reflecting familial relationships between mothersuld be derived from the pedigree.
Therefore, the vector of random genetic effectsnfmthers is distributed as a Multivariate
Normal with mean 0 and covariance matrix§ m~ N(O, Ma,.9). The fraction of variance
determined by maternal effects is then equal to:

0.m2/0b2:0.m2/(0b2+Jpe2+am2+q]2+q2).

House effects

In this step of our study, the two cohorts are yred separately and we assume absence of
any spatial correlation among houses within a saitfege. So the vector of random house
effects, ¢, contains independent elements and then is assumdae distributed as a
multivariate Normal with mean 0 and covariance irdtior”> where }; is the identity matrix
with dimension xH): ¢ ~ N(0, lyar?). The fraction of variance determined by sharedsko
effects is then equal to:

%2/%2=%2/(0§2+0be2+0m2+0F‘2+q2).
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Residuals variance
The unexplained fraction of variance in the phepetis equal to:

0;'2/%2=0|.’2/(0é2+0be2+Jm2+ah2+q2).

Remark 3.2.4: These different variance components are suppasée independent. Then,
the vector of all random effects is assumed t@Wla multivariate normal distribution:

y 0 Ao 0 0
pe 0 0 IO e 0
m| ~ N o| ; 0 0 Md? 0
h 0 0 0 0 l,02 0
£ 0 0 0O 0 0 |, 02

In IS an identity matrix with dimensioN, Iy is an identity matrix with dimension the number
of housedH, and } is an identity matrix with dimensiom= Zin; , wheren; is the number of
measures for individual

3.3Results

For details concerning the findings, see our alygaudblished results on the heritability of
malaria phenotypes (Loucoubar, Goncalves et allg@tesented in the Annex. However, let
us present here only main findings.

From 1990 to 2008, four different drug regimens evienplementedQuinine from 1990 to
1994, Chloroquine from 1995 to 2003,Fansidar (SP)from 2004 to mid-2006 and
Artemisinin-based combination therapy (AGMm mid-2006 to 2008. The chloroquine drug
period was divided into before (CQ1) and after (FQ299. This was done both to reduce the
chloroquine period dataset size and to examineht@oquine periods prior to and during the
observed emergence of parasite resistance to ithis (Nloranate, Durand et al. 2007). The
statistical analyses were performed independeatlgdch of the five drug treatment periods.
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3.3.1 The measured phenotypes

The phenotypes analyzed were: 1) the numbé?. dalciparumclinical episodes, or malaria
attacks, during each trimestatbPFA and units of observation for this phenotype were
person-trimesters; 2) the proportion of clinicalsepes that were positive for gametocytes,
parasite stages transmissible to mosquitdefgafr). For nbPFA phenotype, we used
logarithm of the duration of exposure as offsetydifiore results compared between groups the
number of P. falciparum malaria attacks during each trimester after dngdiby the
corresponding duration of exposure. These two piypes were chosen to be representative
of different types of phenotypenbPFA will be strongly influenced by variation in
transmission intensity, whereBfgamwill more strongly reflect the host-parasite iateon.

We first excluded any observations of each trimrefstewhich the individual concerned was
not present for at least 30 days (=1/3 of the tsi@®; he or she was considered to be mostly
absent. Also, when two clinical episodes were @pse was probable that most of the
observed variability in parasites densities cowddatiributable to the effect of drug treatment
on parasites rather than to human genetics or ipagesnetics. Therefore, before statistical
analysis, repeated clinical presentations within cbihsecutive days were considered to
introduce biais in the study and were excluded ftbenanalyses, unless there was a parasite
negative blood smear between two clinical episo@esy individuals for whom there was
pedigree information were included in the analysis.

3.3.2 The covariates

For nbPFA variables found to influence occurrence of cihimalaria episodes in Chapter 2
“Descriptive Methods” were considered as covariatkseping in final models those
significant: sex, age groups, house, season, Yeamaiegories: 1990 to 1994 for quinine
period, 5 categories: 1995 to 1999 férchloroquine period, 4 categories: 2000 to 200théo
2" chloroquine period, 3 categories: 2004 to 2006Famsidar period, 3 categories: 2006 to
2008 for ACT period) and logarithm of number of dgyesent in each trimester as offset
variable.

For Pfgam we additionally considered the presence of oBflasmodiumspp. parasites(
ovale andP. malariae 2 categories: yes/no) and time since last treatni®y contrast for
Pfgam effect of age was found to be best described vdgenwas a continuous variable in
each drug period.
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3.3.3 Evolution of heritability of phenotypes with malaaiendemicity and drug
treatment changes

We applied this specific mixed modeling and estedathe evolution of the variance
components with respect to the four successive tteggment regimens implemented. More
details on findings are presented and discussd@ubiication 2 “Impact of changing drug
treatment and malaria endemicity on the heritabdit malaria phenotypes in a longitudinal
family-based cohort study” (Loucoubar, Goncalvealef011).

The family structure (pedigree) was available adtelemographic census performed for every
volunteer at his adhesion in the project. A veib@rview of mothers or key representatives
of the household was used to obtain informationgenetic relationships between studied
individuals, their children, their parents, andidentify genetic links among the population.
The total pedigrees, in Dielmo and Ndiop respebttiveomprised 828 and 948 individuals,
including absent or dead relatives, composed ofd2@6222 nuclear families (father — mother
couples with at least one child) with averages.6fédhd 3.8 children per family.

In addition to calculating the heritability, we iesate the shared environment (here house)
and permanent environment effects, including anytemal effects. For each variance
component, an estimate was also generated for iedohdual contributing to the overall
component. Thus, for the additive genetic and peantenvironment effects, an estimate
was established for each person. This predictetvichahl effect constitutes the individual
trend (usually called individual slope) of the pbme after adjusting on age, transmission
season as well as any other significant covariatek also corrected for random variations
within individual repeated measurements. Thenviddals can be ranked depending on their
personal susceptibility or resistance to the dspagositive slope corresponds to a positive
contribution and a negative slope to a negativdridnrion to the population’s mean of the
phenotype. Therefore, a natural phenotype free fnoam confounding factors will be this
individual trend in the next chapter for genetitckhge and association study. Similarly for
house and maternal effects, estimates were edtadlfer each house and mother.
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3.3.3.1Studied sample and effects of covariates on nuwitier falciparum attacks

The first composite phenotype considered was tmeben of P. falciparumclinical episodes
per person per trimestePEA). Over the 19-year study period (1990 to 2008Dialmo
village, 713 individuals were present between ond @5 complete trimesters generating
22,169 person-trimesters of presence. There wei@ah of 5,680 clinicalP. falciparum
episodes. In Ndiop village, over the 16-year stpdyiod (1993 to 2008), 906 individuals
were present between one and 63 complete trimegeerating 20,734 person-trimesters of
presence. There were a total of 5,730 clinRallalciparumepisodes. The mean (or tendency)
of the phenotype is modeled by the fixed part @ thixed model. In both villages, at any
drug treatment periods, the number of clinical egés decreased with age (P<0.0001). Year
and season also had a consistent influence orutinéer of clinical episodes (P<0.0001) with
always a stronger effect of season in Ndiop as @rpe The incidence rate of clinical
episodes per trimester decreased significantlypWohlg the introduction of Fansidar in 2004
as shown in Figures 3.3.1 (A & B); this changeha tncidence rate is most evident in the
most susceptible age group (<5 years of age inhtgke and continue transmission area,
Dielmo; and <10 years of age in the lower and segswansmission area, Ndiop). Results
concerning the variance (or fluctuation around &my) of the phenotype modeled by the
random part of the mixed model are variances compsnpresented in Tables 3.3.1 & 3.3.2
below.
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FIG. 3.3.1.(A). The incidence rate (mean +1.96xSBMlinical P. falciparumepisodes per person-trimestefA) according to age

classes (from left to right on the X-axis) <5, [5}1]15—-35] and>35 years that best describe the effect of agefohin Dielmo.
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3.3.3.2Evolution of heritability for number of P. falcipam attacks

The narrow sense heritability BFA was estimated by drug period. During the quinieequl
there was significant heritability, estimated a®#6out which decreased and became non-
significant in the subsequent drug treatment pstiod Dielmo village (Table 3.3.1 and
Figure 3.3.2 (A) that gives the variance componentspercentage). Conversely, the
permanent environment effect (PE) increased simamfly following the quinine period,
accounting for over 50% of the observed variancBRA. There was no house effect during
any period (Table 3.3.1 and Figure 3.3.2 (A)).

Table 3.3.1: Variance components of numberIeA for village of Dielmo.

|Drug period | varcomp| stderr |  Z | Pr>z | 95% ClInf [95% CI Sup |
Quinine

Genetit 0.941 0.38¢ 2.45( 0.01¢ 0.18¢ 1.69:

PE 0.39] 0.247 1.58( 0.057 0.15Z 2.34:
Houst 0.03( 0.10¢ 0.28( 0.39( 0.00z 854¢
residual 0.69: 0.01¢ 43.41( <.000? 0.66: 0.72¢
Chloroquine 1

Genetit 0.257 0.20¢ 1.25( 0.211 -0.14¢ 0.65¢

PE 1.10¢ 0.20¢ 5.30( <.0001 0.78¢ 1.66¢
House 0.039 0.059 0.670 0.252 0.007 85.995
residual 0.603 0.012 50.300 <.0001 0.580 0.627
Chloroquine 2

Genetic 0.281 0.242 1.160 0.246 -0.193 0.756
PE 1.230 0.229 5.370 | <.0001 0.880 1.838
House 0.101 0.109 0.930 0.177 0.026 6.787
residua 0.49: 0.011 46.87( <.000! 0.47: 0.51¢
Fansidar

Genetit 0.00( - - - - -

PE 1.797 0.214 8.380 | <.0001 1.441 2.304
House 0.036 0.059 0.610 0.272 0.006 392.83
residual 0.395 0.010 41.290 <.0001 0.377 0.415
ACT

Genetic 0.000 - - - - -

PE 1.759 0.208 8.450 | <.0001 1.413 2.250
House 0.125 0.096 1.300 0.098 0.042 1.39Q
residual 0.357 0.008 43.240 <.0001 0.341 0.374
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In village of Ndiop, heritability was not signifinafrom the short survey during the quinine
period (1993 and 1995) compared to village of Deelf990 to 1995). During the first half of
chloroquine period there was significant heritapjlestimated at 19%, but which decreased
in the subsequent drug treatment periods; even wiveas significant during Fansidar period
only, the estimated value was lower (Table 3.3@ Rigure 3.3.2 (B) that gives the variance
components in percentage). The permanent enviraneféett (PE) was significant during
the quinine period, estimated at 15%, decreasddglthe first years of chloroquine period to
11%, but increased back to 19% during the last syesr chloroquine. Both variance
components of the phenotype (Genetic and PE) desamturing Fansidar and ACT, periods
for which the prevalence of malaria disease wag M®v in this second village. There was no
house effect during any period (Table 3.3.2 andileé.3.2 (B)).

Table 3.3.2: Variance components of numbePIBA for village of Ndiop.

|Drug period | var.comp | std.err | Z | Pr>27 | 95% CI Inf |95% Cl Sup |
Quinine

Genetit 0.09: 0.06: 1.46( 0.14¢ -0.03: 0.21f

PE 0.143 0.067 2.130 0.017 0.068 0.474
Houst 0.00( . . . . .
residual 0.719 0.023 30.720 <.0001 0.675 0.767
Chloroquine 1

Genetic 0.253 0.113 2.240| 0.025 0.032 0.473
PE 0.147 0.088 1.680 0.046 0.060 0.764
House 0.032 0.027 1.180 0.119 0.010 0.521
residual 0.934 0.018 51.860 <.0001 0.899 0.970
Chloroquine 2

Genetic 0.144 0.082 1.760 0.078 -0.016 0.305
PE 0.220 0.070 3.130 0.001 0.128 0.464
House 0.020 0.025 0.810 0.208 0.005 4.147
residual 0.786 0.016 49.190 <.0001 0.755 0.818§
Fansidar

Genetic 0.111 0.053 2.090| 0.037 0.007 0.214
PE 0.000 - - - - -
House 0.04¢ 0.04¢ 1.09( 0.13¢ 0.01¢ 1.18
residual 1.163 0.028 42.210 <.0001 1.111 1.219
ACT

Genetic 0.031 0.062 0.500 0.618 -0.091 0.154
PE 0.000 : : : : :
House 0.006 0.031 0.200 0.421 0.001 6.60E+36
residual 1.368 0.032 42.570 <.0001 1.307 1.434




100

The permanent environment effect (PE) includes, mgsbother parameters, any maternal
contribution, whether genetic or environmentaltie case of malaria parasite infection, for
example, infection during pregnancy can lead to banth weight with consequent effects on
health of the newborn and potentially later in li@uffy 2007). Thus, as classically

performed in heritability analyses, we consequeatigluated the contribution of a maternal
effect in addition to the additive genetic and panent environment effects. There was no
maternal effect during any drug period.
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FIG. 3.3.2.Proportion of variance in the number of cliniddl falciparum episodes per
trimester explained by additive genetic (solid Jinatra-individual (dotted line, squares) and
house (thin dotted line, triangles) effects in Biel(A) and Ndiop (B).
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3.3.3.3Studied sample and effects of covariates on Pipialem gametocyte positivity

The second composite phenotype considered was uheber of P. falciparum clinical
episodes that were positive for gametocytes, tmasgia stages transmissible to mosquitoes.
This phenotype was analyzed only in Dielmo duehtlack of positive gametocytes samples
in Ndiop due to the low prevalence and seasonahmaalransmission; the small sample size
and the high disproportion in the number of obstoma with presence or absence of
gametocytes were note adequate for the non-lineadmodels used here (non convergence
of the restricted maximum likelihood algorithm fstimation). In Dielmo, the prevalence of
gametocytes at clinical presentation increased f8@@&b in the quinine period to 48% in the
chloroquine periods before decreasing to 17% ard ir? the Fansidar andCT periods
respectively (Table 3.3.3 and Figure 3.3.3). Theegr@age of individuals ever gametocyte
positive when having a clinicd. falciparumepisode likewise increased from 50% in the
quinine period to 75% in the second chloroquinegaebefore decreasing to 37% and 25% in
the Fansidar and ACT periods respectively. Agea asntinuous variable, was found to be
negatively associated with gametocyte presencengluhie quinine (P=0.02), and the two
chloroquine periods (P<0.001). Yearly variation laasignificant impact in all periods except
ACT. An increasing number of days of individual ggace increased gametocyte carriage in
the CQ1 period (P=0.02) and increasing time siasé drug treatment increased gametocyte
carriage in the Fansidar period (P=0.02).
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3.3.3.4Evolution of heritability for P. falciparum gametge positivity

Heritability for the prevalence of gametocytes dgrclinical presentation only approached

significance during the Fansidar period (P=0.05&§ Table 3.3.3 and Figure 3.3.3 that gives
the variance components in percentage. By contthst,permanent environment effect

increased significantly during the chloroquine pds, before becoming non-significant in the

Fansidar and ACT periods. There was no house arnalteffects.

Table 3.3.3: Variance components of numberPoffalciparum gametocyte positivity for
village of Dielmo.

|Drug period | var.comp | stderr |  Z | P-value | 95% CI Inf | %% CI Sup |
Quinine

genetic 0.423 0.317 1.340 0.181 -0.197 1.044
PE 0.196 0.272 0.720 0.236 0.040 156.760
House 0.000 . . . . .
residua 0.932 0.04( 23.39( <.0001 0.85¢ 1.01f
Chloroquine 1

genetic 0.164 0.195 0.840 0.401] -0.218 0.545
PE 0.380 0.218 1.750 0.041 0.159 1.814
House 0.000 . . . . .
residual 0.942 0.035 27.300 <.0001 0.878 1.013
Chloroquine 2

genetic 0.000 . . . . .

PE 0.530 0.119 4.440 <.0001 0.356 0.870
House 0.127 0.090 1.410 0.079 0.045 1.050
residual 0.936 0.031 30.010 <.0001 0.878 1.001
Fansidar

genetic 0.658 0.346 1.900 0.057 -0.021 1.336
PE 0.000 . . . . .
House 0.127 0.219 0.580 0.281] 0.021 3389.110
residual 0.773 0.055 14.150 <.0001 0.677 0.893
ACT

genetic 0.570 1.224 0.470 0.641] -1.829 2.970
PE 0.97: 1.03¢ 0.94( 0.17¢ 0.25( 58.22¢
House 0.070 0.453 0.150 0.439 0.007 2.5E+65
residual 0.593 0.052 11.500 <.0001 0.503 0.708
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FIG. 3.3.3.Proportion of variance irP. falciparum gametocyte positivity explained by
additive genetic (solid line), intra-individual (tied line, squares) and house (thin dotted line,
triangles) effects in Dielmo.
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3.4 Discussion

Estimation of heritability in its broad sense irtural populations is not possible and hence
narrow sense heritability, which estimates the tagklgenetic contribution, is calculated here.
Actual values of heritability are specific for teeidy populations at a particular time and thus
strict comparison is not informative, although ltaaends can be inferred. The size of
heritability provides an indication of the powerdetect the effect of individual genes when
performing GWAS. Here it is clear that for sevaedsons, the choice of the study period for
GWAS analysis will affect the quality of the signdhe requirement for large longitudinal
datasets to generate sufficient power must thezdferoffset by the ever-increasing noise that
accompanies long-term datasets — more time mearesvagance (Lawton 1988).

The peculiarity of the variance component analysahis study was the replacement of an
additive genetic component by a permanent enviromngemponent over time. Classical
components of permanent environment, such as nahteffects, were not found to be the
root cause of this and spatial heterogeneity inoeMpe seems an insufficient explanation,
especially during the quinine and chloroquine psioThere was no significant change in
incidence rate, during at least the quinine androguine periods and no difference in the
number of different individuals presenting withnotial disease.

From a statistical point of view, insufficient réstion and power of the pedigree matrix may
have led to confounding between additive and nafit@@ genetic components. The
replacement of heritability by permanent environtredfect could be due just to an important
change of genetic relatedness matrix used for #veg analyzed. Imagine an individual
linked to many others in the cohort such that somdesiduals have great genetic relatedness
only with him and weak relatedness between thermasels it can be the case for a common
grandparent or founder. The absence of this kingeo$on in the analysis from one period to
the next, which can be due to many reasons, woualkerthe sub genetic relatedness matrix
concerning individuals analyzed more close to ttemiity matrix corresponding to the total
absence of additive genetics. Hence, all individeffects would be relocated in the
permanent environment effects as the total estimfaitedividual effects stay constant from a
model that distinguish between additive genetic aedmanent environment to a classic
mixed model estimating just the global individutieet. However, in this study it was not the
case as the pedigree structure stays stable froimdp® period (as estimated by the mean
genetic relatedness). This suggests that the imgriation of the new drug in some way
interfered with the human genetic contributionte butcome of infection.

The loss of an additive genetic effect followingplementation of a novel drug treatment may
result in significant loss of power to detect gemea GWA study. Prior genetic analysis of
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carefully defined phenotypes, both spatially andgerally delimited, must surely be a pre-
requisite for more detailed GWA studies. The temapohanges in the individual genetic and
permanent environment estimates are consistent tiwihe expected if there were specific
host-parasite genetic interactions. The changéeénprevalence of gametocytes at clinical
presentation provides additional evidence for thesg a change in the parasite population
over time. The permanent environment effect costaimy non-additive genetic components.
The complex, polygenic basis to the human resptmsealaria parasite infection may well

include dominance/epistatic genetic effects tha ancompassed within the permanent
environment effect. Evaluating their role in infheéng the outcome of infection through host
genotype by parasite genotype interactions usingemneystems warrants research effort.
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4.Linkage and Association Analysis

Abstract

After the identification of important environmenttdctors and the evaluation of human
factors underlying malaria disease, we performeé genetic studies that focus on candidate
genes for susceptibility/ resistance to malaria. A used family-based methods to test if
there was a correlation between alleles’ transomsat the genes and the disease stalgs.
used 45 Single Nucleotide Polymorphisms (SNPs) amdicate genes as genetic variables
and the adjusted individual effect on PFA as thenplype of interest. These individual
effects, estimated from the Generalized Linear Midodels (GLMM) discussed in the
previous chapter, represent the individual contrdms to the risk of having clinical malaria
episode PFA) after adjusting on age and transmission seasdralo corrected for random
variations within individual repeated measuremeriiere, we based on an extended
Transmission Disequilibrium Test (TDT) for two umkted disease loci (Morris and Whittaker
1999) and proposed a multi-locus model, more pavarid more adapted, for multifactorial
diseases such as malaria, to test for geneticdmkand association simultaneously at any
number independent loci. We first detailed the thied our method and provided simulation
studies to compare the power between single loadsnaulti-locus models in detecting a
genetic effect on a phenotype suspected to beeimfied by several independent loci. We
simulated family data in different configurationspgnding on the minor allele frequency
(MAF) and the sample size. For each configuratie®, randomly generated a binary
phenotype influenced by each of the simulated lbtiall configurations, the multi-locus
models were more powerful to detect genetic effdwds the single-locus models. We then
applied this method to our real malaria data bylyaivag the SNPs one by one in a first step
and SNPs showing at least a weak significance [feva 0.10) for association with the
phenotype were selected in a second step for a-loclts model that analyzes simultaneous
transmission of alleles from those SNPs. Five SdiRsved weak marginal protective effects
against malaria after correction for multiple tegtithree SNPs on tHeL C4A1(AE1) gene
(Band 3) located on chromosome 17 (ael_20 21, FO80B; ael 117 118, P = 0.0598;
ael 174 187, P = 0.0995), one SNP onytgbin gene (Xmn1l) located on chromosome 11
(Xmnl, P = 0.0598) and one other on the g&B® located on chromosome 9 (abo297, P =
0.0854). We then analyzed these five loci togetimel obtained stronger protective effect (P-
values distributed from T0to 108) with different combinations of these five loci.
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4.1 Introduction

In this chapter we consider family based methodting deviation from Mendel's Law of
allelic inheritance among a sample of offspring. Wése on the most widely known method,
the Transmission Disequilibrium Test (TDT) for gdmaling (Spielman, McGinnis et al.
1993). Thus, these family based association metHodsarry an element of linkage because
they make use of related individuals. Ewens aneél8in in 1995 showed that Mendel's Law
holds (i.e. equal transmission probability) eithwdren there is no linkage between the marker
locus and the disease locus of unknown locatiomyi@n there is no association between one
specific allele of the marker and the diseasesl@l{Ewens and Spielman 1995). Therefore,
when the null hypothesis of equal transmission abdlty of alleles is rejected, it is because
both linkage and association occur.

In this chapter, we will always adopt as null hypesis (H) and as alternative ¢ the
following:

* Ho: no linkage or no association.
* Hj: association in presence of linkage.

The advantage of these family based methods ogeession methods for association is that
they give automatic control of confounding: popugatstratification and/or admixture. The
disadvantage is that they require genotyping oé€agarents and more individuals to have
power. Usually, it is not possible to have genosypkcases’ parents for a disease that occurs
in old ages, but it is not the case in this prestatly concerning malaria where younger
children are the most susceptible to the diseadeainost all parents were included in the
cohort. Multi-locus family based method can alsoréase power; several studies using
simulated data show more power to detect an eféeatset of loci compared to single locus
tests (Ma, Han et al. ; Morris and Whittaker 1999).

We used some literature from lecture notes by Aaoh der Vaart, 2006 “Statistics in
Genetics” (Vaart 2006) and from the book “HandbobdlStatistical Genetics”, Wiley, 2007
by David J. Balding (Balding, Bishop et al. 2000) write this chapter. To develop a
“Disequilibrium Test for simultaneous transmissioialleles from multiple unlinked multi-
allelic loci”, we based the work on Sham and Curthn extended transmission /
disequilibrium test (TDT) for multi-allele markeodi” (Sham and Curtis 1995) and on
Andrew Morris and John Whittaker's method for “Gemaleation of the Extended
Transmission Disequilibrium Test (ETDT) to two unMed disease loci” (Morris and
Whittaker 1999).



110

4.2 Material and Methods

4.2.1 Some useful definitions for linkage and associatigtudies

Mendel’s Law of allelic inheritance

If Mendel's Law dictates transmission of alleldsere is equal probability to inherit allede
or a; implying equal probability to observe the two gsmpesai;/a, anday/a, among children

of two parents having genotypaga, anday/a,.

a|a, ala,

a4|a; ala,

P(a1/a2) = P@z/az) =0.5

Linkage Disequilibrium

An obvious quantitative measure of linkage disequim between loci with alleleg andb;
with haplotype frequenciesyf) and marginal frequencie@) and ;) is Dy = hj — pixq;.
These quantities are the difference between thet*jprobability of the alleles at the two loci
(the probabilities of the haplotypeas;) and the probabilities if the loci were indepertden

A population is defined to be in “linkage equiltam” if the alleles at different loci on a
randomly chosen haplotype are independent.
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Multiple testing

Bonferroni

The Bonferroni correction, when testing many akite hypotheses at an error rate threshold
of a, is to set a new threshoiéd corrected for multiple testing such that= o/(number of
tests).

Suppose that we performed independent tests correspondingntodifferent alternative
hypotheses H H,, ..., H, against the same null hypothesig. Hfor example if we test
association between a phenotype andnarkers M, My, ..., My, we start with the null
hypothesis Kl that any of the makers is associated to the plpaotWhile testing each
marker for association at a given error ratee. P(H |Ho) = probability to adopt hypothesis
given that H is true =a (the probability to wrongly find markerpositive for the test), an
increase in the number of markers tested incrdsseiobability to find at least one of the
markers significant, only by chance due to marsigriA natural way to correct this increase
in false positive markers is to set a new ewrofor each marker such that the probability to
have at least one false positive market.i$hen testing then markers at an error raté will

be equivalent to testing a single marker at anrawate ofa. Therefore,o' is obtained as
followed:

a =P(H or H, or ... or K, [Ho)
= P(H |Ho) + P(H: |Ho) + ... + P(Kh|Ho)  as H, H, ..., Hy are independent,
=a +o +..+a
=M’

And then,o’ =a/m.

False Discovery Rate (FDR)

After performing them tests as described above, supposeRlaae declared positive amlas
negative, but in realitym are positive andy are negative as summarized in Table 4.2.1.
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Table 4.2.1: Summary of multiples tests

Declared Significant

The Truth by the tests Not Significant Total
Null is True Fp Tn m=Fp+Tn
Alternative is True Tp Fn mETp+Fn
Total P=Fp+Tp N=Tn+Fn m

Fp is the number of false positivép the number of true positivdn the number of true
negative andrn the number of false negative.

The FDR method provides a control of error ratehvatstraightforward interpretability for
scientists outside of statistics by setting a fadsgcovery rate that satisfy the following
condition:

E(%|P>o]sFDR

i.e., given that we obtain a non null number ofifes tests, the expectation of error rate
which isFp/P has to be lower than the FDR. The interpretatsoasi follows: suppose thgt
tests out ofn are declared significant at an FDR of 0.05, th&nd these declarations can be
expected to be false positives, on average.

The weak control of FDR proposed by Benjamini anotctiberg in 1995 (Benjamini and
Hochberg 1995) follow these three steps:

(i) Order the P-values from the lowest to the highgstRP) < ...< P
(if) Find the highest rank let us denotef*, that satisfy R < kxa/m
(iii)If k* exists, adopt all hypotheses corresponding4p.P, Rix)

Equivalently, we can calculate the adjusted (orestied) FDR’s P-values (P*) as follow:
P*m = Rm)
P*ma) = min{P*@) ; Rmayxm/(m-1)}
etc. ... until

P*(l) = min{P*(Z) ; P(]_)Xm}.
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For examplen = 10 tests and = 0.05 with following P-values:

Tests P-value ordered P-value a rankk m kxa/m p*
1 0.37¢ 0.00z 0.0t 1 10 0.00¢ 0.01¢
2 0.009 0.00¢ 0.0t 2 10 0.01c 0.01¢
3 0.00z 0.00¢ 0.0t 3 10 0.01¢ 0.01¢
4 0.70( 0.00¢ 0.0t 4 10 0.02( 0.01¢
5 0.16¢ 0.00¢ 0.0t 5 10 0.02¢ 0.01¢
6 0.00¢ 0.09¢ 0.0t 6 10 0.03( 0.15%
7 0.44: 0.16¢ 0.0t 7 10 0.03¢ 0.23:
8 0.09¢ 0.37¢ 0.0t 8 10 0.¢4C 0.47:
9 0.00¢ 0.44: 0.0t 9 10 0.04¢ 0.49:
10 0.00¢ 0.70( 0.0t 10 10 0.05( 0.70(

=
o
S
a
I
S © P(k)
g
d < -
O E |
o~ /
(] -
./ kxa/m
(= - - - — 0
O

H3 H10 H9 HE H2 H8 H5 H1 HF H4

tests (sorted by pvalue)

In this example, tests 2, 3, 6, 9 and 10 are rejeat a false discovery rate of 0.05.
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The Bonferroni correction is a good approximatidwbat is called the “Family-Wise Error
Rate” (FWER) or “Genome-wide Significance LevelWER is the probability to obtain at
least one false positive result, and is conventiprexpected to be equal to 0.05.df is the
probability for each single test to be found pesitivrongly, then:

FWER= 1 — P(number of false positive = Q) 1 — (1 —’)™ < max(ma’ , 1).

However, the Bonferroni approximation of the FWERass consistent if tha tests are not
really independent, as could be the case in gemadeestudies due to linkage disequilibrium.
Another limitation of this method controlling thaMER at 0.05 is its conservativeness; the
number of false positiveFp) is evaluated with respect to the total numbetests (n) and
then not always appropriate for genetic studiesrelee many genes are often involved.

As an alternative, FDR could be an acceptable wagontrolling the inflation ofFp in the
context of genetic studies by considering the etqugeaumber of false positive among the
tests declared positive only, instead of refertmgll them tests.

4.2.2 Single-locus approach

This section presents linkage and association tsstg standard Transmission disequilibrium
Test (TDT) (Spielman, McGinnis et al. 1993) andeexted TDT (ETDT) (Sham and Curtis
1995) to test markers loci one by one among afseb&ers.

4.2.2.1Transmission Disequilibrium Test (TDT)

The TDT introduced by Spielman in 1993 tests fothbdonkage and association in families
with observed transmissions from parents to aftecispring (Spielman, McGinnis et al.
1993). The TDT can be regarded either as testskdide in the presence of association or
tests of association in the presence of linkageany case we will have linkage and
association if the null hypothesis is rejected. THBT protects against deviations from
Hardy—Weinberg equilibrium that could be inducednmy-random mating (Balding, Bishop
et al. 2007) and is robust against populationifitration.
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Design for a single biallelic locus

Consider S={T,, Ty, ..., Tn} @ sample ol trios with affected offspring. Let L be a bialleli
locus with alleles coded;, a,. The possible genotypes we can observe amongididils
from this sample at this locus ama/a;, ai/a; anday/a,. Each offspring received two alleles,
one inherited from each parent; then, from S weeh@x¥N transmissions of allele$y from
fathers +N from mothers. However, we will have ony(< 2xN) informative transmissions
from heterozygous parents: = ngy2) + Neya Where naye) (resp. ne)ywy) denotes sample
frequency for transmission of allede (resp. alleley) from parents having;/a, genotypes.

Transmission count for one biallelic locus

‘ 1NT 2NT
L Ny = Nwe
2. | nae  Nee

The classical Mc Nemar’s test

If the disease has nothing to do with the markerudop then we would expect that
heterozygous parenés/a, transmita; anda, alleles with equal probabilities to their affected
children. In other words, we expect that the samipégluenciesnayz and nga) for
transmission of alleles are of comparable magnitudee TDT formalizes this idea by
rejecting the null hypothesis of no linkageniy) is large relative ta = ngye) + Ny The
test may be remembered as a test for the null hggt that given the total numberof
heterozygous parents, the number of heterozygaesnisavho transmit allele, is binomially
distributed with parameters and z =1/2. Under this binomial assumption, givanthe
conditional mean and variance ) arenz = n/2 andnz(1 — ) = n/4, respectively. By
applying either the approximation of a binomialdogormal or the Central Limit Theorem we
obtain the most popular statistic used for the TID& Mc Nemar’s statistic:

2
(”(2)(1) - n(l)(z))

~y* with 1 degree of freedom.
Now *Noe

X =

Proof: The approximation of a binomial by a normal stdted a random variable distributed
as a binomiaB(n, z) is approximately distributed as a normal with ma@ad variance equal
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to nr andnz(1 —x), respectively, under some validity conditionstthee: (i)n large, (ii)z not
close to 0 or to 1 (the two conditions are tramglah practice byw > 5 andn(1 —z) > 5).

Thereforen ) ~ N(nz, nz(1 —x)) = N(n/2, /4) under the null hypothesis,

Npe —N/2
@0
@0~ 7T N, 1)
vn/4
_ 2An g —n/2) N, 1)
\/ﬁ )
_ 2X N ~Nae ~New N(O, 1)
Nwa *New
_ New “Nwe N, 1)

Vo FNae)

2
Ny — N
- ( @ (1)(2’) ~y? with 1 degree of freedom. (4.1)

Neya Naye)

The TDT rejects the null hypothesis ¥ = (N2 — N7 (ae + Ne@) exceeds the
appropriate upper quantile of the chi-square distron with one degree of freedom (equal
3.84 for a type | error 0.05).

Transmission probabilities

Let a; be the risk of transmission of alledg anda, the risk of transmission of alle& from
parents heterozygous at locus L. We can defing) = Prob &; transmitted | parent genotype
is aj/ay), the probability of transmitting alleky and not allelex:

Ty = adl(arton)

and T(2)1) = ool (oc1+0c2)

Likelihood of the transmission model

From the sample dfN trios we haven) realizations of the evengy is transmitted from
as/ay parents” (denoteda; = T |ai/a,”) at probability ofz) for each realization; an))
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realizations of the eveng; is transmitted frona;/a, parents” (denoteda; = T |ai/a;”) at
probability of 721y for each realization. Then, the Likelihood of tinensmission model is
given by:

I(@)=N.Pla, =Tla,/a,)xPla, =T|a,/a,) = ms x sk

Then, logarithm of the likelihood is:
logl(a) = Ny * |09(77(1><2))+ Ny * '09(1_ 77(1)(2)) (4.2)

Under the null hypothesis @Hof no linkage or no association between diseasasl and
marker locus, marker alleles are transmitted adoanfrom parents to offspring, regardless of
disease status so that= a» = 0.5. Thus, the log-likelihood of the null modebisen by:

1 1
logly(@) = Ny * IOQ(EJ + Ny X IOQ(EJ

log lo(a) = —Iog(2)>< (n(1>(2) + n(2>(1))

Log-likelihood ratio test

The hypotheses to test for linkage and associatietween marker locus and disease
susceptibility locus of unknown location are:

Ho: 7)) = 0.5 (orz(a)2) = m2)1)
Hi: 7)) # 0.5 (Orz(a)2) # m(2)(1)

Ewans and Spielman shown that equal transmissmapility occurs either when there is no
association, or when there is no linkage betweerkenand disease, (Ewens and Spielman
1995).

The statistic of the test is given by:
X = 2x[max{logly (o)} — log lo (a)] ,

distributed as a* with 1 degree of freedom under the null hypotheBisderiving equation
(4.2) we obtain the maximum of the l{g) whenz)2) is estimated using sample frequencies
(see Figure 4.2.1 below for illustration), i.e.eagial to:
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)2 Nayz)

Ty = =
0@ = 3 -
Toe) Y020  Noe Y New

The null hypothesis is then rejected when the ¢afled value foiX is greater than 3.84, the
95% quantile of thg? with 1 degree of freedom.
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For nuy2 = 13 andnga) = 33 (or any chosen values) for instance, we @ that the
likelihood of z(1)2) is maximal forzye) = 13/(13+33) = 0.28, by running this R-script just
below that screens a sequence of 1000 valueggs from O to 1 and plot the logarithm of
the corresponding likelihood (just copy and pastd&iesoftware).

# Beginning of the script

n12=13

n21=33

pil2=seq(from=0, to=1, by=0.001])

loglpil2=n12*log(pil2) + n21*log(1-pil2)

plot(pil2,loglpil2, type="1", Iwd=5, xlab="pil2', ylab="log-likelihood of
pil2',cex.axis=l.5cex.lab=1.5

abline(h=max(loglpl2), col="red", lwd=2)

abline(v=pil2[loglpi 12==max(loglpi12)], col="darkgreen", lwd=2, Ity=2)
# End of the script

-50

-100

log-likelihood
-150
|

-200

=)
I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0

7[[11[21

FIG. 4.2.1. Log-likelihood of the transmission mbfie ne1y2) = 13 andnpyq) = 33, the solid

horizontal line is at the maximum of the log-likedod and the dashed vertical line is at the
value ofry) ) that maximizes the log-likelihood.
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4.2.2.2Extended Transmission Disequilibrium Test (ETDT)

Sham and Curtis developed in 1995 a logistic regpasapproach that estimates the risk
effect for alleles of a microsatellite marker (Shand Curtis 1995); their method is
implemented in the program ETDT.

Like for transmission probabilities in the casebtllelic locus, we define in a more general
mannerry) = oil(aito;) = 1- 7)), if one study a locus that has more than twoesl¢as it is
the case for microsatellite markergndj index the different alleles. If we dena@g a; ,..., &
thel alleles of a multi-allelic locus, then the logdikhood of the transmission model is given

by:

logl(a) = ,Z”(i)(i)xl‘)g(”(ixi))f Zn(,-)(i)XIog(l—n(i)(j)) (4.3)

ij=1..] ij=1...1

i<j i<j
and the log-likelihood of the null transmission rebid given by:

logl,(a) = -log(2) x Z(na)u) + n(i)(i))

=l

i<j

The test statistic is 2x(lbg loglg) ~ > with df =1 - 1.

For example, for a tri-allelic locus with allelag ay, as

logl (a ) =Ny |Og(77(1)(2) ) N Iog(n(Z)(l))
Ny '09(”(1)(3) )+ Ny '09(7T(3><1) )

TN '09(”<2)(3) )+ N@)2) |°9(7T<3)(2>)
and

logl,(ar) = -log(2) (Nwe *New
tNuye T NEw

tNoe tNee)

and 2x(lod - loglg) ~x? with df = 2.
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There are several other extensions of the basic inDfe literature: Bickebolleand Clerget-
Darpoux (Bickeboller and Clerget-Darpoux 1995), &plelman and Ewens (Spielman and
Ewens 1996) describe extensions for multi-alledists.Spielman and Ewens (Spielman and
Ewens 1998), Curtis and Sham (Curtis and Sham 19%id and Li (Schaid and Li 1997),
Rabinowitz and Laird (Rabinowitz and Laird 20000daFulker et al. (Fulker, Cherny et al.
1999) discuss family tests when parents are misamdjor for general pedigree designs.
Martin et al. (Martin, Monks et al. 2000), Horvadhd Laird (Horvath and Laird 1998), and
Lake et al. (Lake, Blacker et al. 2000) describeho@s for general pedigrees that are also
valid when testing for association in the presenicknkage. Fulker et al. (Fulker, Cherny et
al. 1999), Abecasis et al. (Abecasis, Cardon e2@00), Rabinowitz (Rabinowitz 1997),
Horvath et al. (Horvath, Xu et al. 2001), and Laatdal. (Laird, Horvath et al. 2000) discuss
extensions for quantitative traits.

4.2.3 Multi-locus approach

Analysis methods based on a single SNP have lingteder to detect a true genetic effect
that requires a combination of specific allelesateral SNPs. In theory it is even possible
that two loci might not have “main effects”, but Have a joint effect. Including alternatives
like multiplicative penetrance or epistasis may edke model more realistic and enable
detection of interactions between the loci. Thisyntee detected using haplotype-based
methods or multi-locus approaches that considejdiné transmission of alleles & = 2, 3,

4, 5, etc. independent loci, analyzing all SNPscoorently.

We proposed in this part a generalization of théhow proposed by Andrew Morris and John
Whittaker for two unlinked loci (Morris and Whittak 1999) to perform a disequilibrium test
for simultaneous transmission of alleles from nplétiunlinked multi-allelic loci.

Remark 4.2.1 The K considered loci are not necessary on a haplotipm, can be on
different chromosomes. When the loci are on a salmemosome, they should not be in
linkage disequilibrium. The advantage of this meti®a gain of power through two ways of
increasing the sample size:

(i) Nuclear families data (all affected childrenfather — mother) are considered instead of
trios data (one affected child — father — moth&any offspring of a same family can
contribute to the test and the TDT is still valldhe reason is that under the hypothesis of no
linkage disequilibrium between the different lothe transmission or non-transmission of
alleles from different loci to each offspring ocsumdependently.
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(i) In classical TDT, only heterozygous parentsitcibute to the test. In this multi-locus
approach, a parent can be homozygous at manyrtwuai the set oK, but will contribute to
the test if he/she is heterozygous at least atames (for a parent, having two different alleles
at one locus is necessary and sufficient to havedti of transmitted alleles different to his set
of non transmitted alleles).

4.2.3.1Design

Consider S = {T, Ty, ..., Ty} @ sample ofN trios with affected offspring. As we explained in
the remarks above, a nuclear family with severfdpoing is represented in this sample by as
many trios as offspring.

Let LY, L? ..., LY, beK independent multi-allelic loci with, I, ..., I alleles respectively. So
marker locus Lhasl; alleles denotedy, ;... 8 . Therefore, the number of possileuples

of alleles (i.e. a combination setkfalleles obtained by sampling one allele from dachs)
that we can observe at thdoci in the sample is:

— K -
I =M e =1 %0 x00x]

For example if K = 3 loci having 2 alleles each:

allele 1 allele 2
locus! 1 2
locus: 1 2
locus? 1 2

Thenly =1, = I3 = 2 and the number of possible triplets (or 3¢apisl = 2x2x2 = 2° = 8, and
are:

(1 1 1)
(1 1 2)
(1 2 1)
(1 2 2)
(2 1 1)
(2 1 2)

2 1)

2 2)
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Transmission count for three biallelic loci

111 112NT 121 122 211 212 221 222

NT NT NT NT NT NT NT

111 N11)(112)
112 | nupyay
121 . NGijk)(iik) Neijk) (k)
122 f
A
211
.
212
4
221
.
222
A

When we consider genotypes at doci, any sampled offspring has exactly two inteti
K-tuples of alleles — we are not necessary talkimguahaplotype — that al@ﬁaf...af) and

(aﬁ.aj....as'?) where a; and a; constitute his couple of alleles at locusat, inherited from
one parent and. from the other parentu(u’) O {1,2,...}1}, (v,v)) O {1,2,...J3}, ... ,(s,8) O

{1,2,...x}. Then, a parent will transmit on&-tuple and will not transmit one other.
Transmissions from parents homozygous at all ofkheonsidered loci, corresponding to
parents having two identicEHuples of alleles, are not informative.

For other illustrations related to this multi-locoeethod, we will show tables fa¢ = 3 loci
and two alleles each as the number of possiblescaiseé dimension of transmission count
tables increase quickly.
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4.2.3.1Simultaneous transmission count

As done for simple TDT, we start by making the sqdatable that summarizes the
transmission counts. Each cell of this table sttressample frequency for the transmission of
one set oK alleles while another set &falleles is not transmitted.

Warning: Under uncertainty on the paternal or maternal amigpof an allele, there is no
impact at a single locus but it can lead to differehoices of transmitted and non transmitted
set of alleles at many loci.

When at the same time father, mother and childalireogether heterozygous at one single
locus among th& loci, it does not have an impact on the transmissount (i.e. the way to
fill the squared transmission table) as for thepb&gn DT method. However, if this situation
occurs at two or more loci for a trio there willigxseveral different ways to fill the table
depending on which parent is supposed to give lleke & for example (see the illustration
below); these are loci of doubt. What we will do ts consider all possible ways as
equiprobable. Because for a child there are 2 itnesssons, one from each parent, the number
1 has to be divided by the number of possible wa\fsthe end, for one offspring, the
transmission counts from the two parents have notsw?.

As we know in genetics and it makes it so nicent®@and number of choices often follow
regular sequences. So for this uncertainty on #terpal or maternal origin of an allele there
are regular formulae that can be included into ¢bmputing scripts to permit automatic
dispatching of the 2 transmissions in all possgulppositions that increase with the number
of loci of doubt. The strategy we adapt for thiaciof trio, father — mother — child are all
heterozygous at a number of laui> 2, is to replace the child by"Zictive children now
homozygous for each of the two alleles in questibthatm loci (so no more doubt for this
new children) and keeping the same genotypes atother loci without doubts. The
transmission from one parent to such a fictivecchibes contribute a count of 1/§2nstead

of one as done for real children. The assignmergeniotypes at the loci of doubt for the
created children is generating as follows:
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By running (just copy and paste) this script ondRvgare, we obtain the illustration on Table
4.2.2 below for 3 loci of doubt. The number of lo€idoubt can be set to any number.

# Beginning of the script

nbloci_doubt=3

geno_fictive_children=NULL

for (p in (nbloci_doubt1):0) {

geno_fictive_children =
c(geno_fictive_children,rep(c(réd(1",2p),rep(2/2",2"p)),2"(nbloci_doubt-p1)))
}
geno_fictive_children=matrix(geno_fictive_childrergw=2"nbloci_doubt,ncol=nbloci_doubt)
rownames(geno_fictive_children) = paste("fictiveildh1:2"nbloci_doubt, sep="")
colnames(geno_fictive_children) = paste(“locus_dtudinbloci_doubt, sep=""
geno_fictive_children

# End of the script

Table 4.2.2: Genotypes generate for 8 createdrehilceplacing 1 child who was, as well as
his two parents, heterozygous at 3 loci.

locus_doubtl locus doubt2 locus_doubt3

fictive_childl 11 11 1/1
fictive_childz 1/1 1/1 2/2
fictive_childs 11 2/2 1/1
fictive_child4 1/1 2/2 2/2
fictive_child: 2/2 1/1 11
fictive_childe 2/2 1/1 2/2
fictive_child7 2/2 2/2 1/1
fictive_child€é 2/2 2/2 2/2

As we can see, these fictive children are all homgoas, thus we will not have with them the

problem of trios where all members are heterozygdhe way of assigning their genotypes
permits an automatic screening of all possible esuaprobable scenarios that came out with
the heterozygous child they replace. To avoid dificgal increase of the sample size,

transmission count to each of these fictive childeedivided by their number.
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Illustrations:

For example if the number of loci of doubt s = 1, there are only™2= 2 possible
suppositions contributing equally in the counts, both suppositions leads to the same count
table: supposition 1 is for mother gave allele @ smpposition 2 is for father gave allele 2.

father count table for supposition 1
supposition 1 ! 1=NT 2=NT
2 1=T 1
. 1 2=T 1
supposition 2 5
child
1
mother 2 count table for supposition 2
supposition 1 L 1=NT _2=NT
2 1=T 1
" 1 2=T 1
supposition 2 5

As shown below, we obtain the same contributiothi transmission counts if this child is
replaced by 2 = 2 fictive children homozygous (the first is ofirker genotype 1/1 and the
second is 2/2, automatically gave by the scriptvahoThe transmission from each parent to
these 2 new children counts for 12 0.5:

father
for fictive 1
child 1 2
for fictive 1
child 2 2 fictive count table
child 1 | child 2 1=NT 2=NT
1 2 1=T 0.5+0.5
mother 1 2 2=T | 0.5+05
for fictive 1
child 1 2
for fictive 1
child 2 2




127

For example if the number of loci of doubtris= 2, there are™= 4 possible suppositions
contributing now (and fom > 2) differently in the counts, i.e. different ggsitions can lead
to different count tables but that are equiprobalslsuppositions are equiprobable.

count table 1
11 12 21 22 NT

11 1
father T 12
supposition| 1 1 21
1 2 | 2 22| 1
supposition| 1 1 count table 2
2 2 | 2 11 12 21 22 NT
supposition| 1 1 11
3 2 | 2 T 12 1
1 1 21 1
child 22
1 1 count table 3
mother 2 2 11 12 21 22 NT
supposition| 1 1 11
1 2 2 T 12 1
supposition| 1 1 21 1
2 2 | 2 22
supposition| 1 1 count table 4
3 2 | 2 11 12 21 22 NT
2 2 T 12
21
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All the 2" = 4 suppositions are equiprobable, and then thetscare distributed equally for
each one. The child is replaced Jy-24 fictive children homozygous at each of the taw:
child 1 is of genotypes at locusl: 1/1 and locudlZ, child 2 is for locus 1: 1/1 and locus 2:
2/2, child 3 is for locus 1: 2/2 and locus 2: 1¢hild 4 is for locus 1: 2/2 and locus 2: 2/2,
(automatically gave by the script above). The tmaission from each parent to these 4 new
children counts for 1/() = 0.25:

father
for fictive 111 fictive
child 1 2 2
for fictive 1] 1 child 1
child 2 2 ) 1 1
for fictive 11 1] 1
chias 2 2 count table
1] 1 child 2 11 12 21 22 NT
0.25 +
! ? t 0.25
0.25 +
' 2 1z 0.25
mother 21 062§5+
for fictive 111 child 3
child 1 5 2 5 . T
for fictive 1 1 2 1
child 2 2 )
for fictive 1|1 child 4
child 3 ) 2
1 1
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4.2.3.2Simultaneous transmission probabilities

.........

that the parent is of markers’ genotygela’ /a, , L*= a?/a? , .., X=a¥/aX:

T owvs = Plata?..ak =T,aka2..ak =NT|L* =&} /al,L2 =a?/a’,...L" =a¥/a¥)

.........

ala’..al and notala’..al from theirK loci, then the likelihood of the joint transmissio
model is given by:

1 2 K —_ n(u,v,...,s)(u',v',...,s') ( )n(u',v',...,s')(u,v ..... S)
I(a AR )_ I_I (ﬂ(u,v,...s)(u:v:...,S')) VT (v..9)(u...s) ’

U, K V..., 5<S'

The log-likelihood is then:
1 2 K)—
Iogl(a ,a ,...,a )— Zn(u’\/ .... S)(U',V',...,S') xlog(ﬂ(u’\l ..... S)(UI‘V-,“.’SI))

D Ny s S)XIog(l—nw ..... s)(u',v:...,s'))

WKU'VV),...,<S'

wherea' is the vector containing thelf‘j 's, and eacm‘j corresponds to the single locus risk

of transmission ohij , (-th allele of locus) among parents heterozygous for that allele.

Under the null hypothesis of no linkage or no asgmmn between th& independent makers
loci and theK independent and unknown disease lociKHaples of alleles are transmitted at

The log-likelihood of the null model is then:
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loglo = —|Og(2)x Z ‘(n (uVv,...,s)(u'Vv,....s" +n (u'\V)...,8)(uV,..., s))

The test statistic is 2x(Ib@",o?,... &) — loglo) ~x* with a number of free parameters that will
depend on the alternative model to test as explaméhe following part.

4.2.3.4The different alternative hypothesis

Now, there are several ways to define the prolgidi transmit jointly a set oK alleles
depending on the alternative model we want to lbestveen theK markers loci and th&
disease loci of unknown location. Therefore, thengoted likelihood is specific to the
alternative one would like to test.

(1) Only one of the K markers loci is expected to vdkéd to one of the disease loci:

When we want to test for linkage of marker locus a disease locus ignoring information
from the other markers the transmission probatditire given by:

among parents having genotyjfé at that locus and transmitting, whatever the alleles they

transmit elsewherg @ndj’ index the aIIeIesai,a;,...,a|i of the locus). For example, if we

The number of free parameters for the corresponttigdikelinood (i.e. the log-likelihood
computed using this definition @) is|l; — 1, the number of alleles of locus 1. This model
Is exactly the model for a single locus extended TBTDT).

(2) A number p (p = 2, 3, ..., K) of markers among thenarkers loci are expected to be
linked, one each, to p of the disease loci:

When we want to test for linkage of several mal&er to several disease loci, there are two
main assumptions:

(a) If we assume multiplicative penetrance across desdaci without interaction (no
epistasis), then the risk of transmission of ao§gtalleles from thg markers loci is the
product of their marginal risks. Then, the joirgrtsmission probabilities are given by:
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. _ atxa?x.xaf
(UV,....s)(u'V,...s) — 1 2 p 1 2 p
(@ixa?x.xalP)+(at xa?x..xa?)

The number of free parameters for the correspondpdjkelihood is:

(-1 + -1+ ..+ (- 1).

(b) If we allow for interaction (epistasis) between tHesease loci, then the risk of
transmission of a set qf alleles from thep markers loci denoted/>>? has to be

derived from the joint transmission counts’ talde et of alleles. The joint transmission
probabilities are then given by:

Ty, 9uv,.s) = 12..p 4 1 L2.P

The number of free parameters for the correspondpdjkelihood is:
lxlox ... xlp— 1.

(a) versus (b): One can test if there is significdaviation from a multiplicative model
without interaction to a model with interaction whigoth are more likely than the null model
by using their likelihood’s ratio having an appnmate chi-squared distribution with the
difference of free parameters as the number ofesesgof freedom.
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Remark 4.2.2: As we can observe, the number of alternative hgsss increases quickly
with the number of loci analyzed as shown in Figu&2. If we studK markers, the number
of alternatives is given by:

m = number of models with single locus + number afdeis with two loci assuming no
epistatis + number of models with two loci assunepgstatis + number of models with three
loci assuming no epistatis + number of models hitee loci assuming epistatis + ...etc.,
until the models with all th& loci. Then we have:

m=K + 2x > C?

p=2...,K

50

40

number of alternatives
20 30

10

1 2 3 4 5
number of markers

FIG 4.2.2. Number of alternative models by the nendf loci tested simultaneously.

To adopt one of the alternatives, the correspondavg P-value has to be lower than a
corrected threshold set by tBenferronimethod (i.e. 0.054) or by theFalse Discovery Rate
(FDR) method. Equivalently, the adjusted P-values carcdimpared to 0.05, for example,
adjusted P-values by FDR as described in the bagjrof this chapter.
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4.3Results

The principle of this method is to compute the ediok the transmission of sets of alleles and
subsequently compute the likelihoods from thatdalilne cannot start by computing the 2-
by-2 table for alleles of each single locus befdcethen deduce the transmission of sets.
However, the 2-by-2 transmission table for eaclegilocus can be derived from the multi-

locus table by summing over rows and over colunersinent for that locus. Thus, the single

locus models we obtained are derived from therfuilti-locus model.

4.3.1 Comparison with results from Family Based Assocati Test Software (FBAT)

To validate the computations, we used simulated datd compared results of single locus
models derived from the multi-locus model to resutom single locus model by FBAT
Software (Horvath, Xu et al. 2001), a commonly useethod for linkage and association
analysis. The equivalent TDT model in FBAT was uaad without inferring any genotype
for an individual (i.e. additive model, transmigssofrom parents to their affected offspring
only are considered, and there are no missing gpes}. For this we simulated 100 trios on
three SNPs having minor allele frequencies (MAFO&O. At each SNP we gave random
genotypes to a parent by sampling with replacenweice an allele from alleles {1, 2} with
occurrence probabilities of 0.70 to take allelendl 8.30 to take allele 2. We then sampled one
allele from each parent, with probabilities 50/&give a random genotype to an offspring.
Next we simulated a binary trait, “0” no diseasel 4h” for disease, associated weakly to
each of the three SNPs, by sampling “disease” higher probabilities for offspring carrying
allele 2 . To generate these data, we can run theript in Annex B. At the end of the script
two “.txt” files are saved, the first one is in@rat to be analyzed by the R script in Annex C
for multi-locus transmissions and the second isaiformat for analysis on FBAT after
additional changes in the file format and colummaa (see FBAT’s manual for users).
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Table 4.3.1: Result from multi-locus model.

model log-likelihood X DF P
SNP-1 -21.47 4.19 1 0.0408
SNP-2 -22.74 1.66 1 0.1980
SNP-3 -22.21 2.72 1 0.0992
SNP-1-2  Multiplicative -20.82 5.50 2  0.0639
SNP-1-3  Multiplicative -19.33 8.48 2 0.0144
SNP-2-3  Multiplicative -21.59 3.94 2 0.1391
SNP-1-2  Epistasi -21.03 5.07 3  0.1670
SNP-1-3  Epistasi -18.48 10.17 3 0.0172
SNP-2-3  Epistasi -21.08 4.97 3  0.1738
SNP-1-2-3 Multiplicative -18.94 9.26 3 0.0260
SNP-1-2-3 Epistasi -16.88  13.37 7 0.0636

Table 4.3.2: Result from FBAT Software

Allele Informative

Marker  Allele o S-E(S) Var(S) z P
frequency families

SNF-1 1 0.66¢ 13 -4 4.C -2.0C  0.045¢
SNF-1 2 0.33¢ 13 4 4.C 2.0C 0.045:
SNF-2 1 0.73( 15 -3 5.k -1.2¢  0.200¢
SNF-2 2 0.27( 15 3 5.k 1.2¢  0.200¢
SNP-3 1 0.67¢ 16 -4 6.C -1.6  0.102¢
SNF-3 2 0.32¢ 16 4 6.C 1.6 0.102¢

As shown in Tables 4.3.1 and 4.3.2, the results filee two methods are the same for testing
one SNP at a time. The multi-locus approach on FBA® test association of the disease to a
haplotype. It assumes that SNPs are closed onatine fiaplotype (no recombination). This
cannot be compared to our multi-locus approachchvbssumes that SNPs are independent,
i.e. they can be on different chromosomes and sghbal far away if they are on a same
chromosome (recombination is allowed).
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4.3.2 Power study

To compare the power between single locus and #agltis models to detect genetic effect
on a phenotype suspected to be influenced by dewelependent loci, we simulated 2500
different samples of trios (father — mother — chiéahd each time on three bi-allelic loci. It
consists of 100 repetitions for each of these 2Bwing configurations: 5 different minor
allele frequencies (MAF = 0.10, 0.20, 0.30, 0.4800 by each of the 5 different sample sizes
(100, 200, 300, 400, 500 trios). For each of the02simulations, we generated a random
binary phenotype which is influenced by each ofttivee loci and performed the models for
1, 2 and 3 loci. Figures 4.3.1 — 5 below compaeedistributions of P-values between the
different models at different settings. The hortabaashed lines for each type of model (1, 2,
and 3 loci) are plotted at 95% quantile of the Ri@ato avoid comparing outliers

In all configurations, the 3-loci models are mooeverful to detect genetic effects than the 2-
loci models and the 2-loci models more powerfuhthize single-locus models (Figures 4.3.1
—-5).

The R script to simulate trios and perform modeld plot the P-values is available in Annex
C (warnings: set a low number of repetitions or fewer confajions before running,
otherwise it can take several hours).
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FIG. 4.3.2. Comparison of P-values between sirgtad and multi-locus for MAF = 0.20 and at samje sf 100, 200, 300, 400, and 500.
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4.3.3 Application to the data of Dielmo and Ndiop

We apply the multi-locus method on 45 genes, aatds for association with malaria
disease (Table 4.3.3). The malaria phenotype we issthe predicted individual effect from
the mixed model in Chapter 3 “Heritability” whereewseparated the individual additive
genetic effect from other personal effects includedhe permanent environment effect.
However, this permanent environment effect contaimg non-additive genetic components.
The complex, polygenic basis to the human resptmsealaria parasite infection may well
include dominance/epistatic genetic effects tha ancompassed within the permanent
environment effect. Thus, the whole individual effeontaining additive as well as non-
additive genetics is used as the phenotype. Asamau previously in the chapter 3, this
phenotype is the individual contribution (individuslope or trend) to the risk of having
clinical malaria episodePFA) after adjusting on age, transmission season ksadcarrected
for random variations within individual repeatedaserements. Individuals having a positive
slope correspond to those with a positive contiiibuto the population’s mean risk to
developPFA and were classified as susceptible and individwéls negative slope contribute
negatively to the population’s mean risk to deveRipA and were classified as resistant.
Transmission of alleles from parents to resistdispaong is then analyzed here to find genes
showing protective effects against malaria.

We first analyzed the SNPs one by one and thossisganarginal effect after correcting for
multiple tests (by False Discovery Rate) were thelected for a joint transmission model.
Results from single locus model are presented Ilerd.3.3. SNPs with marginal corrected
P-value less than 0.10 were tested for linkageqgdisibrium (LD) and, when they showed
independency, were subsequently used for multidonadels. Result of LD are presented in
Tables 4.3.4 (A and B) and illustrated by Figures@! (A and B). Results from multi-locus
model are presented in Table 4.3.5. To limit thenber of alternative hypothesis tested, we
analyzed all models with one locus, all with twaijoall with three loci as the limit, and
additionally the complete set of tKeloci.
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Table 4.3.3: Results for single locus allele traission models.

Single locus models log-likelihood X DF P-value Bonferroni FDR
SNF-1=ael_20 z -32.8¢ 18.8¢ 1 0.00001 0.0005 0.0005
SNF-2 = Xmn] -56.0¢ 8.5z 1 0.0035: 0.157¢ 0.059¢
SNF-3 =ael_117_1: -72.1C 8.2¢ 1 0.0039¢ 0.179¢ 0.059¢
SNF-4 = abo29 -53.27 7.1 1 0.00759 0.341f 0.0854
SNFE5zael 174 18 5430 _6.4¢ 1 001105 __ 0.497: 0.0995
SNF-6 = abo77 -51.9¢ 568 1 0.01746 0.7857 0.130¢
SNF-7 = ael_189 1¢ 5.2z 4.8. 1 0.02816 1 0.181
SNF-8 = ubtf13_1. -78.82 4.5t 1 0.03290 1 0.181¢
SNF-9 = tgeiv_213 -61.5¢ 4.3t 1 0.0363( 1 0.181¢
SNF-10 = Hb¢ -43.7¢ 3.9z 1 0.0477¢ 1 0.21f
SNF-11 = ¢9i203 -39.9¢ 3.3C 1 0.0694: 1 0.260:
SNF-12 = tgt220r -20.5¢ 3.1& 1 0.0746: 1 0.260
SNF-13 = g6pd37 -30.3C 3.17 1 0.0751« 1 0.260:
SNF-14 = tgal43 -2.7C 291 1 0.0879¢ 1 0.282¢
SNF-15 =1_30633_3 -71.4C 2.7¢ 1 0.0963 1 0.289:
SNF-16 = adarb2_in2_49 -88.8¢ 2.5( 1 0.1138: 1 0.320
SNF-17 =ankl_9_1 -64.66€ 2.3t 1 0.1230: 1 0.325°
SNF-18 =rs100749¢ -88.2¢ 228 1 0.1338 1 0.328
SNF-19 = hd -44.68  2.1¢ 1 0.1385! 1 0.328:
SNF-20 = cr1_q981 -16.3¢  1.9¢ 1 0.1587: 1 0.353:
SNF-21 = g6pd20 -25C 1.9 1 0.1650« 1 0.353:
SNF-22 = abo52I -43.0z  1.2¢ 1 0.2560: 1 0.507
SNF-23 =ael_180_1 -66.61 1.28 1 0.2635: 1 0.50:i
SNF-24 = acpl8_ -69.41 1.2C 1 0.2732 1 0.507
SNF-25 =tgq62 -9.12 1.1€ 1 0.2816¢ 1 0.507
SNF-26 = spk5k42C -19.67 0.87 1 0.3519 1 0.597:
SNF-27 = abo46 -5226 0.8¢ 1 0.3583 1 0.597:
SNF-28 = crl_r1601 -60.6: 0.7 1 0.3934 1 0.613¢
SNF-29 = alpha_37d -34.3C 0.7z 1 0.3955 1 0.613¢
SNF-30 = c9r5v -563.0¢  0.6¢ 1 0.4247: 1 0.626¢
SNF-31 = crl_k159C -90.4¢ 0.6z 1 0.4314¢ 1 0.626¢
SNF-32 = phfl1b5_ -53.83 0.46€ 1 0.4966! 1 0.698t
SNF-33 = spkn36¢ -18.5¢ 0.3 1 0.5633( 1 0.744
SNF-34 = M_rs14274C -74.6¢ 0.3 1 0.5636( 1 0.744:
SNF-35 = cr1_hind -35.8¢ 0.31 1 0.5789: 1 0.744:
SNF-36 = tg_862_ -25.5z2  0.2¢ 1 0.6216¢ 1 0.769:
SNF-37 = tg_97. -3.31 0.z20 1 0.6536: 1 0.769:
SNF-38 = dip2c_in2_20¢ -90.71 0.1¢ 1 0.6621! 1 0.769:
SNF-39 = dip2c_in2_29¢ -93.4¢  0.1¢ 1 0.6669: 1 0.769:
SNF-40 = phfl1b5_ -40.8z2 0.1 1 0.6960¢ 1 0.783:
SNF-41 =rs31641 -64.41 0.1C 1 0.7557. 1 0.829:
SNF-42 = fcgr2a_r131 -79.67 0.0¢ 1 0.7796t 1 0.835¢
SNF-43 = M_rs111547¢ -45.72 0.06 1 0.8055: 1 0.84:
SNF-44 = acpll_ -25.62 0.0 1 0.8694: 1 0.889:
SNF-45 = abo26 -68.62 0.01 1 0.9199: 1 0.919¢
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Study of linkage disequilibrium (LD) between the BN candidate for multi-locus models:

SNPs with marginal P-value 0.10 were candidate for multi-locus models. Thea SNPs
were concerned (Table 4.3.3): three on the samee geel 20 21, ael 117 118,
ael 174 187) and two on different genes locatedlifiarent chromosomes (Xmnl and
abo297). Then, LD only between SNPs within the sgeme needed to be tested. This was
done using the programs SIMWALK2 (watson.hgenggitt/docs/simwalk2.html) that can
test for LD in family data context and GOLD (wwwispmich.edu/csg/abecasis/GOLD) that
provides a graphical summary of LD results.

Table 4.3.4.(A): linkage disequilibrium test betweeE1 SNPs among Dielmo families

ael 180 181 ael 174 187 ael 20 21 ael 189 19D
N 62 55 62 62
X2(DF=1); F 35.4; 2.7E-09 8.2; 0.004 4.6; 0.032 0; 0.977
ael 117 _118| Cramer's) 0.76 0.39 0.27 0.01
U 0.48 0.12 0.06 0.00
DELTA? 0.57 0.15 0.07 0.00
N 55 62 62
X2(DF=1); F 5.9; 0.015 4.7; 0.029 1.2;0.275
ael 180 181 Cramer's) 0.33 0.28 0.14
U 0.09 0.06 0.02
DELTA? 0.11 0.08 0.02
N 55 55
X2(DF=1); F 12.9; 0.0003 0.5; 0.4571
ael 174 187, Cramer's) 0.49 0.10
U 0.19 0.01
DELTA? 0.24 0.01
N 62
X2(DF=1); F 0.1; 0.813
ael 20 21 Cramer's \ 0.03
U 0.00
DELTA? 0.00

N is Number of pairs scoredCramer's V is a transformation of the Chi-squared based
measures of association into [0,U;is uncertainty coefficient (How much information o
one marker given by the otheDELTA ? is theDelta-Squared Measure of disequilibrium.
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Table 4.3.4.(B): linkage disequilibrium test betw&eE1l SNPs among Ndiop families

ael 180 18 | ael 174 1€ | ael 20 2 | ael 189 1¢
N 87 90 89 90
X2(DF=1); F | 54.3;1.7E-13 5.9; 0.014 5.0; 0.025 1.6; 0.209
ael 117 118 Cramer's) 0.79 0.26 0.24 0.13
U 0.52 0.05 0.05 0.03
DELTA? 0.62 0.07 0.06 0.02
N 89 89 90
X2(DF=1); F 6.6; 0.010 4.2;0.041 1.2; 0.269
ael 180 181| Cramer's) 0.27 0.22 0.12
U 0.06 0.04 0.02
DELTA? 0.07 0.05 0.01
N 91 92
X2(DF=1), F 5.7:0.017 0.3; 0.603
ael 174 187 Cramer's) 0.25 0.06
u 0.05 0.01
DELTA? 0.06 0.00
N 92
X2(DF=1); F 3.6; 0.056
ael 20 21 Cramer's ) 0.20
U 0.06
DELTA? 0.04

N is Number of pairs scoredCramer's V is a transformation of the Chi-squared based
measures of association into [0,U;is uncertainty coefficient (How much information o
one marker given by the otheDELTA ? is theDelta-Squared Measure of disequilibrium.
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Figure 4.3.6.(B): Disequilibrium map for the AE1 mkars among Ndiop families
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Table 4.3.5: Results for multi-locus allele transsimn models.

models log-likelihood X DF P-value Bonferroni FDR
SNF-1 (ael_20_2: -98.07 17.3¢ 1 0.00003. 0.00139: 0.00008:
SNF-2 (Xmn1) -98.6( 16.3( 1 0.00005- 0.00243i 0.00010:t
SNF-3 (ael_117_ 11 -101.97 9.5€ 1 0.00199: 0.08959: 0.00242:
SNF-4 (abo297 -102.5¢ 8.3 1 0.00392 0.17670I 0.00453:
SNF-5 (ael_174 18 -104.5(  4.5C 1 0.03392! 1.00000( 0.03392!
SNF-1-2 Multiplicative -91.1z 31.2¢ 2 2.00E-07 7.00E-06 3.30E-06
SNF-1-3 Multiplicative -95.3t  22.7¢ 2 1.00E-05 5.10E-04 4.00E-05
SNF-1-4 Multiplicative -93.5¢ 26.31] 2 2.00E-0€ 9.00E-05 1.00E-05
SNF-1-5 Multiplicative -97.4¢ 18.5¢ 2 9.00E-05 4.25E-03 1.70E-04
SNF-2-3 Multiplicative -95.5¢  22.3( 2 1.00E-05 6.50E-04 4.00E-05
SNF-2-4 Multiplicative -95.1% 23.2¢ 2 9.00E-0€ 4.00E-04 3.00E-05
SNF-2-5 Multiplicative -96.92 19.6¢ 2 5.00E-05 2.44E-03 1.10E-04
SNF-3-4 Multiplicative -98.1¢ 17.2( 2 1.80E-04 8.29E-03 2.90E-04
SNF-3-5 Multiplicative -101.5¢ 10.3¢ 2 5.69E-03 0.25623I 6.25E-03
SNF-4-5 Multiplicative -100.6¢ 12.21 2 2.23E-03 0.10038!I 2.64E-03
SNF-1-2 Epistasi -93.65  26.1¢ 3 9.00E-06 3.90E-04 3.00E-05
SNF-1-3 Epistasi -95.1€ 23.1¢ 3 4.00E-05 1.67E-03 8.00E-05
SNF-1-4 Epistasi -95.1f  23.1¢ 3 4.00E-05 1.66E-03 8.00E-05
SNF-1-5 Epistasi -95.0f  23.3¢ 3 3.00E-05 1.51E-03 8.00E-05
SNF-2-3 Epistasi -97.1¢ 19.1:Z 3 2.60E-04 0.01164i 3.60E-04
SNF-2-4 Epistasi -93.41 26.6¢ 3 7.00E-0€ 3.10E-04 3.00E-05
SNF-2-5 Epistasi -98.5¢ 16.3¢ 3 9.50E-04 0.042701 1.22E-03
SNF-3-4 Epistasi -99.3: 14.82 3 1.98E-03 0.08898!I 2.42E-03
SNF-3-5 Epistasi -100.8¢ 11.7: 3 8.36E-03 0.37627! 8.96E-03
SNF-4-5 Epistasi -101.7: 10.0¢ 3 0.01793! 0.80699I 0.01834i
SNF-1-2-3 Multiplicative -89.8¢ 33.81 3 2.00E-07 1.00E-05 3.00E-06
SNF-1-2-4 Multiplicative -87.3¢  38.7: 3 2.00E-08 9.00E-07 9.00E-07
SNF-1-2-5 Multiplicative -90.9¢ 31.6( 3 6.00E-07 3.00E-05 6.00E-06
SNF-1-3-4 Multiplicative -91.2¢ 31.0Z 3 8.00E-07 3.79E-05 6.30E-06
SNF-1-3-5 Multiplicative -96.3:  20.8: 3 1.10E-04 5.15E-03 2.00E-04
SNF-1-4-5 Multiplicative -93.32 26.8¢ 3 1.00E-05 2.80E-04 3.00E-05
SNF-2-3-4 Multiplicative -92.3¢  28.7¢ 3 3.00E-06 1.10E-04 1.00E-05
SNF-2-3-5 Multiplicative -95.3¢  22.7( 3 5.00E-05 2.10E-03 1.00E-04
SNF-2-4-5 Multiplicative -93.6¢ 26.21 3 1.00E-05 3.90E-04 3.00E-05
SNF-3-4-5 Multiplicative -97.9¢ 17.6: 3 5.30E-04 0.02373I 7.00E-04
SNF-1-2-3 Epistasi -91.5C 30.4¢ 7 8.00E-05 3.49E-03 1.50E-04
SNF-1-2-4 Epistasi - - - - - -
SNF-1-2-5 Epistasi -90.0¢ 33.3: 7 2.00E-05 1.04E-03 6.00E-05
SNF-1-3-4 Epistasi -92.4¢ 28.5Z 7 1.80E-04 7.96E-03 2.80E-04
SNF-1-3-5 Epistasi -93.7¢  26.0Z 7 5.00E-04 0.02251 6.80E-04
SNF-1-4-5 Epistasi -92.9: 27.6¢ 7 2.60E-04 0.01151( 3.60E-04
SNP-2-3-4 Epistasi -92.3C 28.8¢ 7 1.50E-04 6.83E-03 2.50E-04
SNF-2-3-5 Epistasi -96.57 20.3t 7 4.86E-03 0.21865I 5.47E-03
SNF-2-4-5 Epistasi -92.6¢ 28.2% 7 2.00E-04 9.04E-03 3.00E-04
SNF-3-4-5 Epistasi -97.7C 18.0¢ 7 0.01160! 0.522001 0.01214i
SNF-1-2-3-4-5 Multiplicative -87.4¢ 38.5:% 5 3.00E-07 1.00E-05 3.00E-06

SNF-1-2-3-4-5 Epistasi
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4 .4 Discussion

By simulation study, we have shown the advantagewati-locus models over single locus
models to find significant genetic effects when tbleenotype is influenced by several
independent loci. Therefore multi-locus models espnt important alternatives in the study
of genetic susceptibility and resistance to muttdaial diseases such as infectious diseases.
The results obtained by applying multi-locus mauglon the studied cohorts for malaria
disease have confirmed these findings.

Among the 45 markers loci for the candidate gebeshowed after correction for multiple
testing weak protective effect against malaria wivenignored information from other loci:
three are on thELC4A1(AE1L) gene located on chromosome 17 and are imdiejpe, i.e. not

in linkage disequilibrium, as shown above (ael_20PP2= 0.0005; ael 117 118, P = 0.0598;
ael 174 187, P = 0.0995), one is onytgobin gene (Xmnl) located on chromosome 11
(Xmnl, P = 0.0598) and one on tABO gene located on chromosome 9 (abo297, P =
0.0854). See Table 4.3.3 for single locus models.thi¢n analyzed these five loci together.
The sample is reduced to individuals with no migsgenotypes at all the five loci otherwise
we cannot know which complete set of alleles imdnaitted and which other is not
transmitted at these five genomic locations fotheaftspring, unless by inferring genotypes.
Then, when we considered simultaneous transmissioalleles from these five loci, the
protective effect became stronger as shown on Té&dé. Also the single locus models
performed on this sample reduced to individualfiwid missing genotypes at all the five loci
showed better marginal effects (Table 4.3.5). Asrfalaria phenotypes are suspected to be
influenced by several genes at different locatiothe human genome, these results suggest
that each of these five markers may be causalte@lto the disease or may not themselves
be causal, but may be sufficiently close to fiveused loci so as to be in linkage
disequilibrium with them. The mutations occurring 8LC4A1(AE1) gene are known to be
responsible for inherited blood disorders. Intenggy, it has been recognized for over 60
years that this negative effect of inherited blabsbrders is compensated by the protection
afforded against malaria parasites and yet the amsm underlying this protection remains
unknown (Williams 2006).

Whilst both parasite invasion and growth may beaéd by such red cell mutations, there
are currently two immunologically based hypothe$as the protective effect of blood
disorders. One implicates th8i C4A1(AE1) gene having a main effect that is to aceséer
red blood cell aging. This is more pronounced inapidized red blood cells: the parasite
causes premature aging of the cell. Band 3 (as knasv“Anion Exchanger 17, AEl) is a
membrane ion transporter encoded by the r@4Althat serves the additional functions of
providing red cell membrane stability and “flagdirmgd blood cells for destruction. As the
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red cell ages, alterations in band 3 lead to iresgdanembrane rigidity and to its exposure on
the surface of the red cell. Old red cells are thermoved from the circulation through
filtering of the physically rigid cells and throughntibody-dependent mechanisms. The
protective effect of the blood disorders is thustoelerate parasite removal using the bodies’
own old red cell destruction mechanism (Pantaleob&di et al. 2008; Tokumasu, Nardone
et al. 2009). The other immunologically based hlgpsts concerns the impact on infected red
cell sequestrationPlasmodium falciparumexpresses th@ar gene molecule PFEMP1 on
knobs at the surface of the red cell. This moleemables the parasite to sequester and thus
avoid clearance by the spleen. The red cell diserdee believed to disrupt effective
expression of PFEMP1 and thus impair parasite sstpten (and enhance the acquisition of
immunity).

From a statistical point of view, the assumptionimdependence among the loci tested
represents a great advantage of this multi-locudeintor increasing the sample size when
nuclear families are used. That is due to the taat the tests are valid for any number of
affected children in the nuclear families. Eaclspfing with the same parents constitute an
independent trio in this case of independence asMbndel's Law of allelic inheritance
implies that the transmission of sets of allelesagoffspring occurs independently.

One drawback of this method is the quick increasthé number of alternative hypotheses
and in the number of free parameters that rapidhkes the corrected threshold of
significance for the P-values at a very low lev&hother disadvantage is that individuals
should have genotype information on all the losted reducing the sample size, particularly
when the missing genotypes for each locus occudiff@rent individuals. Also we did not
make analyses using inferred genotypes when naadi@formation is available, but such
alternative methods based on the original TDT asthgu sib information exist in the
literature: The sib TDT (S-TDT) of Spielman and Bw&g1998), the sibship disequilibrium
test (SDT) of Horvath and Laird (1998) that usetadaom all the affected and all the
unaffected siblings.
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5.General Conclusion

Summary

We followed two malaria cohorts in sub-Saharan dsfnwhere the general burden of malaria
has declined from 1990 to 2008. Despite this deseré@athe general burden of malaria, from
1990 to 2008, found with several approaches, restelies on the same population show a
quick and recent increase back to the higher tresssom levels during 2009 and 2010 (Trape,
Tall et al. 2011). Indeed, this increase appeatb wipositive shift of age for population of
susceptibility, from traditional young (less thary@&ar-old) to older children (more than 10
year-old). Descriptive analyses allowed us to stimat young age and the period of treatment
were major factors determining the risk of PFA. STkan be seen through results of the
different methods we have tried in the first pdrthe thesis concerning the epidemiological
analysis where variables “Age” and “Year” (or “Drugeriod” when the years were
aggregated by drug periods) are variables withng&go predictive values explaining
occurrence or not of the disease. Also, environalefdactors are determinant in the
transmission of the parasite from one individualatwmther as reflected by the contrasted
prevalence of malaria between the two cohorts. pievalence is high in the village of
Dielmo where the transmission of the disease ocalirthe year due of the presence of a
small stream that enables mosquitoes to breed @asbsal in the village of Ndiop where
transmission occurs only during rainy season fraly tb December.

However, there are many more factors involved atittdividual level and as important as
were the age and the year at the population I&Msbse factors are the inherited genetic
background of the individual and the interactiorsAeen genetic and environment. Then our
first step in the second part of the thesis whics whe genetic analysis has focussed on
variance component analysis to assess the ovenaditig contribution to the disease prior to
linkage and association studies. The variance cosmgoanalyses divided the longitudinal
study according to drug treatment to consider tigaict of the radical selection pressure that
would have been exerted on the parasite populaioeach change in drug treatment
(Loucoubar, Goncalves et al. 2011). In additionge tthange in transmission intensity
occurring over the 19 year enabled us to assesmfiact on the genetic contribution of
malaria phenotypes. The evolution of anti-malathalg resistance and the force of infection
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have been well studied in the population (Trapegi®oet al. 1994; Rogier, Tall et al. 1999;
Noranate, Durand et al. 2007) and thus we expldredtability in these two cohorts
undergoing well-defined environmental changes. Harethe pedigree data has enabled just
estimation of heritability in the narrow sense tisathe additive genetic contribution. Actual
values of heritability are specific for the studypplations at a particular time and thus strict
comparison is not informative. The size of heriibprovides an indication of the power to
detect the effect of individual genes when perfogniGWAS. Evolution of variance
components in this study showed the replacemeranoédditive genetic component by a
permanent environment component time. The permasavitonment effect includes other
non additive genetic effects. The total estimaténdividual effects (additive and permanent
environment) stayed constant over time, suggesiiagthe loss of the additive genetic effect
may be due to absence of sufficient resolutiorh@n gedigree matrix. Hence, the phenotype
used in subsequent genetic analyses used the shotlothe individual additive genetic and
permanent environmental effects. Hence, a mixedahusing data from all the duration of
survey and adjusted on the age and the year wasped separately in each village to pick
up the global individual effect for each personpienotype for linkage and association
analysis.

As known for infectious disease, the genetic conepbof susceptibility/ resistance to malaria
is very complex, with multiple genes involved. Thasdtivated us to use multi-locus models
that remain a relatively poorly developed field ganetic statistics research. Many of the
existing methods, like FBAT Software’s method, dedh haplotypes assuming an effect of
an aggregation of very close loci to avoid hypothe$ recombination between genes, which
increases the computational challenge. Howevennigtifactorial disease like malaria many
candidate genes are distributed over the humanngemm different chromosomes and up to
now have showed weak effects, except for HbS. Bykition study, we have shown the
advantage of multi-locus models over single locuslets to find significant genetic effects
when the phenotype is influenced by several indépenloci. Therefore multi-locus models
represent important alternatives in the study ofegie susceptibility or resistance to malaria.
The results obtained by applying multi-locus maaglon the two studied cohorts for malaria
disease have confirmed these findings. The assampfiindependence between the loci in
the computation of the likelihood of allelic transsion in this multi-locus model is not
constrained by the non recombination hypothesisvévyer, the method is limited by the
quick increase in the number of free parametersiratiose number of alternatives hypothesis
that makes the corrected threshold of significdiocghe P-values very low. Also, the study
sample of individuals should have genotype inforamabn all the loci tested reducing the
sample size when no method to infer genotype itudied, particularly when missing
genotypes for each locus occur on different indiaid.
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Perspective

Statistical genetics in the studies of infectioisedse represents at the moment a very large
research field. One of the main challenges for ciideis diseases is the problem of
phenotypes, which are frequently quantitative dng theed robust definitions to distinguish
between disease and no disease; weak geneticseftdcbe very sensitive to the phenotype
resolution. Also, repeated measurements are génqyadferred to a single measure for
phenotypes to detect a confirmed trend for eackematbut, this choice induces several
challenges in statistical modeling. Generalizedniaion Equations (GEE) proposed in 1986
by Kung-Yee Liang and Scott L. Zeger (Zeger anchgid986) and/or Mixed Models are
then adequate but more adapted to case-contr@rdegian family designs. FBAT-GEE was
proposed as a GEE version of family based methaodhési limitations to deal with multiple
independent loci. Other proposed programs alloviimgmulti-locus analysis do not provide
methods for repeated measurements. Thus, in amy wasusually work in two steps, as we
did in this thesis, by dealing with the problentloé phenotype in a prior analysis and use the
residual phenotype in last genetic analyses.

Therefore, concerning infectious disease, an ingpoigap has to be filled in the development
of methods of analysis allowing for repeated anadetated measurements, one locus as well
as many loci that could be independent or dependert allowing for covariates. Such
specific statistical methods that fit the availattééga can be helpful to empirically confirm or
disprove, or to find genes with not necessarilpragreffects on malaria disease. Effects of
such genes could easily be hidden by phenotypéutesoor by the method of analysis or by
empirical properties of the of tests’ statistics.

Four SNPs of the G6PD gene were typed in our twdietl cohorts and only weak protective
effects, depending on sex, were found in a subpdipul of the cohorts by using regression
methods and survival analyses. These methods &ienmune from population stratification
problems and yet, family based methods we perfordiddnot provide significant results.
Several investigations are being done in that fildentists studying genetic association of
malaria susceptibility / resistance should consifiether study and improvements in the
method of G6PD deficiency assessment as well &s atherited blood disorders and also in
statistical genetic methods to make advance innmaaj@netic researches.
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Annex A

Metric

The first step for measuring variability in a paogion is to understand notions of similarity
and dissimilarity, and then define a measure dfade between each pair of observations,
such that the same group will be attributed to lsimsubjects, based only on their
observationsA variety of metrics can be used to calculate sirities and their choice may
affect the results.

ConsiderQ = {1,...},...n} the set ofn individuals. We can present several metricXx{)
from less to more structured.

Definition Similarity. A similarity index is an applicatioa on a pair of individuals having
positive real valuess{QxQ — R,) and verifying the following conditions:

() s(@.j)=s(.i), O@)) e QxQ,
(i) s@,)) =S>0, Oi e Q andSindependent af,
(is(@,j)<S O (1)) e QxQ.

Remark: s* (i,j)) = (1/9x s (i,)) is a normed similarity index,

with s : QxQ — [0,1] andS* = 1.

Definition Dissimilarity. A dissimilarity index is an applicatiod on a pair of individuals
having positive real values:(Q2xQ — R;) and verifying the following conditions:

(i) d(ij)=d(,i), O (1) e QxQ,
(i) d (i,)) = 0, DieQ, (ori=j=>d ) =0 O () € QxQ).
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Remark: d* (i,j) = (1D)xd (i,)) is a normed dissimilarity index, whelbe= max{d (i,j)},

with d*: QxQ — [0,1] andD* = 1.

These two dual notions, similarity and dissimilgrithave weak properties due to the
generality to construct indices satisfying theindibions.

Definition Distance A distance is a dissimilarity index verifying iaddition these two
conditions: @ (i,)) = 0 =>i =, O (i,j)) € QxQ} and {The Triangle Inequaliy Then a
distance is an applicatiah QxQ — R, verifying:

@) d(,j)=d,), 0 (i,)) € QxQ, (Symmetry)
@) d@j)=0 <=>| =] 0 (1)) e QxQ, (Positive definiteness)
@i d (,)) <d(i,k) +d (k) 0 (1,),K) e QxQxQ.  (The Triangle Inequality)

Several dissimilarity indices exist and can be usethake distance between subjects. Some
widely used are Jaccard index (Jaccard 1901) ar RiZekanowski index (Dice 1945).

In statistical analysis, Euclidean distance is inig)y considered in almost all methods used
to measure variability and tendencies, when the kis@wvs or does not know. An alternative
metric widely used in descriptive analysis (e.gsddminant Analysis) is Mahalanobis
distance (Mahalanobis 1936) that takes into accoamelation of the dataset, and therefore is
robust in handling outliers or most noisy obsexvadi for which lower weights are assigned.
The assignment of lower weights to most correlgtaens of observations can be perceived
through the definition of Mahalanobis distance weh#re inverse of the covariance matrix
integrate the formula; then, larger covariance radarger denominators leading to a lower
weight, see equations below.

Euclidean distance

Consider = {1,...J,...n} the set ofn individuals represented inmra-dimensional space. The
Euclidean distance between two individuals is #regth of the segment joining them. This
length is given by:
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(ik - jk)2 = \/(il - j1)2 +(i2 - jz)2 +"'+(im - jm)2

M=

d@.j)=

=
{0\

1

wherem is the number of dimensionig, andjx are the coordinates on th8 dimension of
individuali andj.

Mahalanobis distance

Consider = {1,...J,...n} the set ofn individuals represented inma-dimensional space. The
Mahalanobis distance between two individuals iggily:

di,j)=+(p-g)x= x(p-q)

wherep = (i1 iz ...im) @andq = (j1j2 ... Jm) are the vector of coordinates of individuaéndj; m
is the number of dimensiong andj. are the coordinates on th& dimension;X is the
covariance matrix of the data with dimensiorm, =% is the inverse of; X' is the transpose
of x.

NB: The parallel is done with a dataset contaimmgpservations anch variables after some
standardization necessary when the variables’ scdifer and when the variables are
qualitative. Most statistical software automatigadrocess to the standardization of data prior
to analysis. Standardized values on variables aeel as Cartesian coordinates in a space
where each variable represents an axis. For datastiow linear relationships, Euclidean
distance is a useful measure of distance.

WhenZX is the identity matrix (matrix with only valuesah the diagonal and O elsewhere),
corresponding to the case where all variableserdtitaset are independent, Mahalanonis and
Euclidean distances are equivalent.
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lllustration : Clustering ofN individuals aroundk centroids using different metrics.

Consider X and Y, two random quantitative varialwbeserved on a sample Wfindividuals

to be classify ink given groups represented by their centroids. Letiniroduce some
correlation in the data by taking observationsahe samples as combinations of the others
(see the R script below). The result of clusterrnignot be always the same using Euclidean
or Mahalanobis metric. This can be illustrated biyning several times the script, applied for
a simulation ok = 3 classes and = 9 individuals. Here is presented one realizatibboth
random variables X and Y on the sample:

X Y
Centroid_1 -2.746 -1.372
Centroid_2 0.473 -1.685
Centroid_3 2.823 -0.997
individual_1 -4.328 -0.124
individual_2 1.251 2.158
individual_3 2.878 2.189
individual_4 -2.209 -3.143
individual_5 1.304 3.422
individual_6 -1.406 -0.356
individual_7 -5.573 -9.514
individual_8 0.816 -1.773
individual_9 -2.937 -0.543

Figure A.1 illustrates how the choice of differenetrics can leads to different results, and
then, encourages the use of hypothesis- free method
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Mahalanobis distance, on the same data.
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These differences occurring in the clustering caillbstrated by running several realizations
of X and Y using this R script:

# - Beginning of the R script ----- #
library(MASS)

mahalanobis=function(a,b,metric){

dist_maha = sqrt((a-b)%*%ginv(metric)%*%(a-b))
return(dist_maha)

}

Euclide <- function(X1=c(0,0), X2=c(0,0)){
return(sqrt((X1[1]-X2[1])"2 + (X1[2]-X2[2])"2))

}

n=3; N=3*n
sl = cbind(runif(n,-5,5),runif(n,-5,5))
s2 = 0.28*s1 + matrix(rnorm(n*2,0,1.54),n,2)
s3 = 1.33*s2 -0.54*s2"2
Points = rbind(s1,s2,s3)
colnames(Points) = c("X","Y")
i01=c(runif(1,-5,5),runif(1,-5,5))
i02=c(runif(1,-5,5),runif(1,-5,5))
i03=c(runif(1,-5,5),runif(1,-5,5))
par(mfrow=c(1,2))
plot((min(Points,i01,i02,i03)-1):(max(Points,i012i@03)+1),(min(Points,i01,i02,i03)-
1):(max(Points,i01,i02,i03)+1), type="n", panekfi= grid(5,5),frame.plot=T, axes=T, xlab="x
coordinates",ylab="y coordinates")
for(i in L:N){
if (min(Euclide(Points]i,],i01),Euclide(Points[iip2),Euclide(Points]i,],i03))==Euclide(i01, Poinig])
{points(Points]i,1],Points[i,2],col=1,pch=19); segnts(Points[i,1],Points][i,2],i01[1],i01[2],lwd=2,tel)}
else{
if (min(Euclide(Pointsi,],i01),Euclide(Points][jip2),Euclide(Pointsi,],i03))==Euclide(i02, Poifit}))
{points(Points][i,1],Points]i,2],col=2,pch=19);
segments(Points[i,1],Points]i,2],i02[1],i02[2],lwd@x0l=2)}
else{
if (min(Euclide(Pointsi,],i01),Euclide(Pointd]ii02),Euclide(Pointsi,],i03))==Euclide(i03,
Points]i,]))
{points(Points]i,1],Points[i,2],col=3,pch=19);
segments(Points[i,1],Points]i,2],i03[1],i03[2],lwd@xol=3)}
}

}
}
points(i01[1],i01[2],col=1, pch=4,lwd=5)

points(i02[1],i02[2],col=2, pch=4,lwd=5)
points(i03[1],i03[2],col=3, pch=4,lwd=5)

plot((min(Points,i01,i02,i03)-1):(max(Points,i012i@03)+1),(min(Points,i01,i02,i03)-
1):(max(Points,i01,i02,i03)+1), type="n", panekfir= grid(5,5),frame.plot=T, axes=T, xlab="x
coordinates",ylab="y coordinates")

for(i in L:N){

if
(min(mahalanobis(Pointsi,],i01,cov(Points)),malmalbis(Points[i,],i02,cov(Points)),mahalanobis(Psji},i03,
cov(Points)))==mahalanobis(i01, Points][i,],cov(Rs)})
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{points(Points]i,1],Points[i,2],col=1,pch=19); segmts(Points[i,1],Points][i,2],i01[1],i01[2],lwd=2,&el)}
else{
if
(min(mahalanobis(Pointsi,],i01,cov(Points)),malmalbis(Points[i,],i02,cov(Points)),mahalanobis(Psji},i03,
cov(Points)))==mahalanobis(i02, Points][i,],cov(Rs)})
{points(Points][i,1],Points]i,2],col=2,pch=19);
segments(Points[i,1],Points]i,2],i02[1],i02[2],lwd@x0l=2)}
else{
if
(min(mahalanobis(Points[i,],i01,cov(Points)),malmalbis(Points[i,],i02,cov(Points)),mahalanobis(Psji},i03,
cov(Points)))==mahalanobis(i03, Points][i,],cov(Rs)})
{points(Points[i,1],Points]i,2],col=3,pch=19);
segments(Points[i,1],Points]i,2],i03[1],i03[2],Iwd;col=3)}
}

}

}

points(i01[1],i01[2],col=1, pch=4,lwd=5)
points(i02[1],i02[2],col=2, pch=4,lwd=5)
points(i03[1],i03[2],col=3, pch=4,lwd=5)
# - End of the R script ----- #
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Annex B

# to initialize parameters
alleles=c(1,2)

nbtrios=100
MAF=c(0.3,0.3,0.3)
fm=sort(rep(1:nbtrios,3))
offspring=rep(c(0,0,1),nbtrios)
ch=1:(3*nbtrios)

fa=NULL

mo=NULL

sex=NULL

fallal=falla2=NULL
fal2al=fal2a2=NULL
fal3al=fal3a2=NULL

mollal=molla2=NULL
mol2al=mol2a2=NULL
mol3al=mol3a2=NULL

chllal=chlla2=NULL
chl2al=chl2a2=NULL
chl3al=chl3a2=NULL

# to generate a sample
p=seq(1,3*nbtrios,3)

for (i in 1:length(p))
{

fa=c(fa,c(0,0,p[i]))
mo=c(mo,c(0,0,p[i]+1))
sex=c(sex,1,2,sample(c(1,2),1))

gfa=sort(sample(alleles,2,replace=TRUE, prob=c@H1],MAF[1])))
gmo=sort(sample(alleles,2,replace=TRUE, prob=c@H\],MAF[1])))
gch=sort(c(sample(gfa,1),sample(gmo,1)))
fallal=c(fallal,0,0,gfa[1]); falla2=c(falla2,0fa[g])
mollal=c(mollal,0,0,gmol[1]); molla2=c(molla2,tyiR])

chllal=c(chllal,gfa[1],gmo[1],gch[1]); chlla2=d(ch?,gfa[2],gmo[2],gch[2])

gfa=sort(sample(alleles,2,replace=TRUE, prob=c@H{2],MAF[2])))
gmo=sort(sample(alleles,2,replace=TRUE, prob=c@H2],MAF[2])))
gch=sort(c(sample(gfa,1),sample(gmo,1)))
fal2al=c(fal2al1,0,0,gfa[1]); fal2a2=c(fal2a2,0fa[g])
mol2al=c(mol2al,0,0,gmol[1]); mol2a2=c(mol2a2,yi{R])

chl2al=c(chl2al,gfa[1],gmo[1],gch[1]); chl2a2=d@#®,gfa[2],gmo[2],gch[2])

gfa=sort(sample(alleles,2,replace=TRUE, prob=c@H[8],MAF[3])))
gmo=sort(sample(alleles,2,replace=TRUE, prob=c@H8],MAF[3])))
gch=sort(c(sample(gfa,1),sample(gmo,1)))
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fal3al=c(fal3al,0,0,gfa[1]); fal3a2=c(fal3a2,0fa[g])

mol3al=c(mol3al,0,0,gmol[1]); mol3a2=c(mol3a2,\yi{R])

chi3al=c(chl3al,gfa[1],gmo[1],gch[1]); chi3a2=d@#R,gfa[2],gmo[2],gch[2])
}

locusl=paste(chllal,chlla2)
locus2=paste(chl2al,chl2a2)
locus3=paste(chl3al,chl3a2)

phenl=phen2=phen3=NA

phenl[offspring==1 & locus1=="1 1"]=rbinom(lengtHifgpring[offspring==1 & locus1=="1 1"]),1,0.20)
phenl[offspring==1 & locus1=="1 2"]=rbinom(lengttifgpring[offspring==1 & locus1=="1 2"]),1,0.70)
phenlfoffspring==1 & locus1=="2 2"]=rbinom(lengttifepring[offspring==1 & locus1=="2 2"]),1,0.90)

phen2[offspring==1 & locus2=="1 1"]=rbinom(lengttifepring[offspring==1 & locus2=="1 1"1),1,0.20)
phen2[offspring==1 & locus2=="1 2"]=rbinom(lengttifepring[offspring==1 & locus2=="1 2"]),1,0.70)
phen2[offspring==1 & locus2=="2 2"]=rbinom(lengttifgpring[offspring==1 & locus2=="2 2"]),1,0.90)

phen3[offspring==1 & locus3=="1 1"]=rbinom(lengttifepring[offspring==1 & locus3=="1 1"1),1,0.20)
phen3[offspring==1 & locus3=="1 2"]=rbinom(lengttifepring[offspring==1 & locus3=="1 2"]),1,0.70)
phen3[offspring==1 & locus3=="2 2"]=rbinom(lengttifepring[offspring==1 & locus3=="2 2"]),1,0.90)

phen=NULL
phen[(phenl+phen2+phen3)==0 | (phenl+phen2+phetPB=
phen[(phenl+phen2+phen3)==2 | (phenl+phen2+pheBB)E=

SimulatedData2=data.frame(fm,ch,fa,mo,sex,pherstbacus2,locus3)
SimulatedData3=data.frame(fm,ch,fa,mo,sex,phenadhthl1la2, chllal,chl2a2, chi3al,chl3a2,fallalafall
fallal,fal2a2, fal3al,fal3a2,mollal,molla2, moleid2a2, mol3al,mol3a2)

# to save simulated data on a file for further aisé-BAT after some changes in format and columnezam
write.table(SimulatedData2, file="C:/ ... give thath here ... /SimulatedData2.txt", sep="\t", quéte
row.names=F, col.names=T)
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Annex C
# - Beginning of the R script ----- #
# #
R CLEAN OBJECTS AND LOAD PACKAGES
# #
Is()
rm(list=Is())
library(foreign)
# #
R LOAD DATA FILES ---------------- #
# #
mydata=read.dta("C:/mydata.dta")
# #
# e CHOICE OF MARKERS TO ANALYZE AND PHENOTYP
# #

mydata$idlocusl=mydata$ael 20 21

mydata$idlocus2=mydata$xmnl

mydata$idlocus3=mydata$ael 117 118

mydata$idlocus4=mydata$abo297

mydata$idlocus5=mydata$ael 174 187

mydata$phen=mydata$pfaidbin

I=5

locus_on_X=c(0) # Put between brackets the listbemof loci localized on X chromosome, separatet],'by

# #
R DATA FRAME OF GENOTYPES
# #

father=data.frame(unique(mydata$fatherid))

names(father)=c("id")
father=unique(merge(father,mydata[,c("fm","id",@8idlocus",1:l,sep=""))], by="id"))
names(father)=c("fatherid","fm",paste("falocus",4dp=""))

mother=data.frame(unique(mydata$motherid))

names(mother)=c("id")

mother=unique(merge(mother,mydata[,c("fm","id", d4tlocus”,1:l,sep=""))], by="id"))
names(mother)=c("motherid","fm",paste("molocus’,sep=""))

gendata=unique(mydata[,c("fm","id","fatherid","mettid","sex","phen",paste("idlocus”,1:l,sep=""))])
gendata=merge(gendata, father, by=c("fm","fathgridll.x=T)

gendata=merge(gendata, mother, by=c("fm","mothgralf.x=T)

rm(father,mother)

gendata[,(dim(gendata)[2]-3*I+1):dim(gendata)[J]fia(gendata[,(dim(gendata)[2]-
3*I+1):dim(gendata)[2]])==TRUE]="0 0"
gendata=gendata[,c("fm","id","fatherid","motheritbex","phen",paste("idlocus”,1:l,sep=""),paste(tfals", 1:1,
sep=""),paste("molocus"”,1:l,sep="")]
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gendata2=unique(gendata[is.na(gendata$phen)==F&L §&ndata$phen==0 & # 0 to select
resistant and 1 to select suceptible

#

gendata$falocus1!="0 0" & gendata$molocusl!="@@endata$idlocusl!="0 0" &
gendata$falocus2!="0 0" & gendata$molocus2!6@ gendata$idlocus2!="0 0" &
gendata$falocus3!="0 0" & gendata$molocus3!6@ gendata$idlocus3!="0 0" &
gendata$falocus4!="0 0" & gendata$molocus4'@"@ gendata$idlocus4!="0 0" &
gendata$falocus5!="0 0" & gendata$molocus5!="&@endata$idlocus5!="0 0",
c("falocus1","molocus1","idlocus1",

"falocus2","molocus2","idlocus2",

"falocus3","molocus3","idlocus3",

"falocus4","molocus4","idlocus4",

"falocus5","molocus5","idlocus5",

"fatherid","motherid","id","sex")])

#

write.table(gendata2, file="C:/gendata2.txt", sep=juote=F, row.names=F, col.names=F)
gendata2=read.table("C:/gendata2.txt", sep="")
names(gendata2)=c("fallal","falla2","mollal","m@J&hlilal","chlla2",

"fal2al","fal2a2","mol2al","mol2a2","chl2al","t2a2",
"fal3al","fal3a2","mol3al","mol3a2","chl3al","t3a2",
"fal4al","fal4a2","mol4al","mol4a2","chl4al","tfa2",
"fal5al","fal5a2","mol5al","mol5a2","chl5al","t§a2",
"father”,"mother","child","sex")

# #
e LISTE OF POSSIBLE K-UPLET - #
# #
nbloci=5

nballeles=2

taballeles=matrix(NA,nbloci,nballeles)
rownames(taballeles)=c(paste("locus",1:nbloci,sEp="
colnames(taballeles)=c(paste("allele”,1:nballetgss"))

for (I in 1:nbloci){
for (a in 1:nballeles){

taballeles][l,a]=unique(sort(c(as.matrix(gendatdl],*6+1):(6*)]))))[a]

b3

rm(a,l)

kuplet=NULL

I=0

for (I1 in taballeles[1,]){
for (12 in taballeles[2,]){
for (I3 in taballeles[3,]){
for (14 in taballeles[4,]){
for (15 in taballeles[5,]){

if (is.na(I1)==FALSE & is.na(I2)==FALSE & is.na()J3=FALSE & is.na(l4)==FALSE &

is.na(15)==FALSE){
I=1+1

kuplet[l]=paste(11,12,13,14,15, sep="")

}
i34

nbkuplet=length(kuplet)

rm(1,11,12,13,14,15)

#
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# SIMULATION OF POSSIBLE CHILDREN FOR AMBIGUOUS TRASMISSIONS #
# #

gendata2$countw=1

gendata2$realchild=1

for (nin 1:nrow(gendata2)){
nbdoubt=0
locusdoubt=0
for (l'in 1L:nbloci){
if (gendata2[n,6*(I-1)+1]==gendata2[n,6*(I-1)+3] gendata2[n,6*(I-1)+1]==gendata2[n,6*(I-1)+5] &
gendata2[n,6*(I-1)+2]==gendata2[n,6*(I-1)+4]g&ndata2[n,6*(I-1)+2]==gendata2[n,6*(-1)+6] &
gendata2[n,6*(I-1)+1]!'=gendata2[n,6*(I-1)+2] &
gendata2$realchild[n]==1){
nbdoubt=nbdoubt+1
locusdoubt[nbdoubt]=I

}
}

if (nbdoubt>0) {

gensimchild=NULL

for (p in (nbdoubt-1):0) {

gensimchild = c(gensimchild,rep(c(rep(1,2”p),rep(p)),2”(nbdoubt-p-1)))
}

gensimchild=matrix(gensimchild,2”nbdoubt,nbdoubt)

for (i in 1:2"nbdoubt){

gendata2=rbind(gendata2,gendata2[n,])
gendata2[nrow(gendata2),6*(locusdoubt-1)+5]=genkitdf,]
gendata2[nrow(gendata?),6*(locusdoubt-1)+6]=genkitdf,]

}

gendata2$countw[n]=0
gendata2$countw[(nrow(gendata?)-2”nbdoubt+1):nrewdgta?)]=1/2"nbdoubt
gendata2$realchild[(nrow(gendata2)-2"nbdoubt+1juigendata2)]=0

B

rm(n,l,p,i)

# #

# --- TO COMPUTE MATRIX OF SUMULTANEOUS TRANSMISSI®
# #

transmat=matrix(0,length(kuplet),length(kuplet))
rownames(transmat)=kuplet
colnames(transmat)=kuplet

for (nin 1:nrow(gendata2)){
kuplet_fa_T=NULL; kuplet_mo_T=NULL; kuplet_fa_NT=NLL; kuplet._mo_NT=NULL

for (Iin 1:nbloci){

if ((length(setdiff(locus_on_X,l))==length(locus_ax)) | (length(setdiff(locus_on_X,l))!=length(locusn_X)
& gendata2$sex[n]==2)){

for (i in taballeles][l,][is.na(taballeles]l,])==FARE])}{

for (j in i:max(taballeles]l,][is.na(taballeles)ld=FALSE])){
for (u in taballeles|l,][is.na(taballeles][l,])==FAE]){

for (v in u:max(taballeles]l,][is.na(taballeles]kFFALSE])){
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if (gendata2[n,6*(I-1)+1]==i & gendata2[n,6*(I-1==] & gendata2[n,6*(I-1)+3]==u &
gendata2[n,6*(I-1)+4]==v & ((gendata2[n,6*(I-1)+5}& gendata2[n,6*(-1)+6]==u) | (gendata2[n,6*(I-
1)+5]==u & gendata2[n,6*(I-1)+6]==i)))}{
kuplet_fa_T=paste(kuplet_fa_T,i, sep=""); kupleb mi=paste(kuplet_mo_T,u, sep="");
kuplet_fa_NT=paste(kuplet_fa_NT,j, sep=""); kupleio_NT=paste(kuplet_mo_NT,v, sep="")}
else {
if (gendata2[n,6*(I-1)+1]==i & gendata2[n,6*(I-t2]==j & gendata2[n,6*(-1)+3]==u &
gendata2[n,6*(I-1)+4]==v & ((gendata2[n,6*(I-1)+5}=& gendata2[n,6*(I-1)+6]==v) | (gendata2[n,6*(l-
1)+5]==v & gendata2[n,6*(I-1)+6]==i))){
kuplet_fa_T=paste(kuplet_fa_T,i, sep=""); kupkeb_T=paste(kuplet_mo_T,v, sep="");
kuplet_fa_NT=paste(kuplet_fa_NT,j, sep=""); kupleto_NT=paste(kuplet_mo_NT,u, sep="")}
else {
if (gendata2[n,6*(I-1)+1]==i & gendata2[n,6*(-t2]==j & gendata2[n,6*(l-
1)+3]==u & gendata2[n,6*(I-1)+4]==v & ((gendata2fri(l-1)+5]==j & gendata2[n,6*(I-1)+6]==u) |
(gendata2[n,6*(I-1)+5]==u & gendata2[n,6*(I-1)+6]53{
kuplet_fa_T=paste(kuplet_fa_T,j, sep=""); kupleb_T=paste(kuplet_mo_T,u,
else {
if (gendata2[n,6*(I-1)+1]==i & gendata2[n,6*(}+2]==] & gendata2[n,6*(I-
1)+3]==u & gendata2[n,6*(I-1)+4]==v & ((gendata2§i(l-1)+5]==] & gendata2[n,6*(I-1)+6]==V) |
(gendata2[n,6*(l-1)+5]==v & gendata2[n,6*(I-1)+6]53{
kuplet_fa_T=paste(kuplet_fa_T,j, sep="");

kuplet_mo_NT=paste(kuplet_mo_NT,u, sep="")}
}
}
1
}

if (length(setdiff(locus_on_X,1))!=length(locus_oX) & gendata2$sex[n]==1){

if (gendata2[n,6*(I-1)+1]==1 & gendata2[n,6*(I-1)}2=1 & gendata2[n,6*(I-1)+3]==1 & gendata2[n,6*(l-
1)+4]==2 & gendata2[n,6*(-1)+5]==2 & gendata2[n(61)+6]==2){

kuplet_fa_T=paste(kuplet_fa_T,1, sep=""); kupleb_m=paste(kuplet_mo_T,2, sep="");
kuplet_fa_NT=paste(kuplet_fa NT,1, sep=""); kuphab_NT=paste(kuplet_mo_NT,1, sep="")}

if (gendata2[n,6*(l-1)+1]==1 & gendata2[n,6*(I-1)}2=1 & gendata2[n,6*(I-1)+3]==1 & gendata2[n,6*(l-
1)+4]==2 & gendata2[n,6*(-1)+5]==1 & gendata2[n(61)+6]==1){

kuplet_fa_T=paste(kuplet_fa_T,1, sep=""); kupleb_m=paste(kuplet_mo_T,1, sep="");
kuplet_fa_NT=paste(kuplet_fa_NT,1, sep=""); kuplab_NT=paste(kuplet_mo_NT,2, sep="")}

if (gendata2[n,6*(I-1)+1]==2 & gendata2[n,6*(I-1)}2=2 & gendata2[n,6*(I-1)+3]==1 & gendata2[n,6*(l-
1)+4]==1 & gendata2[n,6*(-1)+5]==1 & gendata2[n(61)+6]==1){

kuplet_fa_T=paste(kuplet_fa_T,1, sep=""); kupleb_mh=paste(kuplet_mo_T,1, sep="");
kuplet_fa_NT=paste(kuplet_fa NT,1, sep=""); kuplab_NT=paste(kuplet_mo_NT,1, sep=""}

if (gendata2[n,6*(I-1)+1]==2 & gendata2[n,6*(I-1)}2=2 & gendata2[n,6*(I-1)+3]==1 & gendata2[n,6*(l-
1)+4]==2 & gendata2[n,6*(I-1)+5]==2 & gendata2[n(b1)+6]==2){

kuplet_fa_T=paste(kuplet_fa_T,1, sep=""); kupleb mh=paste(kuplet_mo_T,2, sep="");
kuplet_fa_NT=paste(kuplet_fa NT,1, sep=""); kuplab_NT=paste(kuplet_mo_NT,1, sep=""}

if (gendata2[n,6*(I-1)+1]==2 & gendata2[n,6*(I-1)}2=2 & gendata2[n,6*(I-1)+3]==1 & gendata2[n,6*(l-
1)+4]==2 & gendata2[n,6*(-1)+5]==1 & gendata2[n(61)+6]==1){

kuplet_fa_T=paste(kuplet_fa_T,1, sep=""); kupleb_m=paste(kuplet_mo_T,1, sep="");
kuplet_fa_NT=paste(kuplet_fa_NT,1, sep=""); kuptab_NT=paste(kuplet_mo_NT,2, sep="")}
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if (gendata2[n,6*(l-1)+1]==1 & gendata2[n,6*(I-1)}2=1 & gendata2[n,6*(I-1)+3]==2 & gendata2[n,6*(l-
1)+4]==2 & gendata2[n,6*(I-1)+5]==2 & gendata2[n(b1)+6]==2){

kuplet_fa_T=paste(kuplet_fa_T,1, sep=""); kupleb_m=paste(kuplet_mo_T,2, sep="");
kuplet_fa_NT=paste(kuplet_fa_NT,1, sep=""); kuphab_NT=paste(kuplet_mo_NT,2, sep=""}

if (gendata2[n,6*(I-1)+1]==2 & gendata2[n,6*(I-1)}2=2 & gendata2[n,6*(I-1)+3]==2 & gendata2[n,6*(l-
1)+4]==2 & gendata2[n,6*(I-1)+5]==2 & gendata2[n(b1)+6]==2){

kuplet_fa_T=paste(kuplet_fa_T,1, sep=""); kupleb_m=paste(kuplet_mo_T,2, sep="");
kuplet_fa_NT=paste(kuplet_fa_NT,1, sep=""); kuphab_NT=paste(kuplet_mo_NT,2, sep="")}

if (gendata2[n,6*(I-1)+1]==1 & gendata2[n,6*(I-1)}2=1 & gendata2[n,6*(I-1)+3]==1 & gendata2[n,6*(l-
1)+4]==1 & gendata2[n,6*(I-1)+5]==1 & gendata2[n(61)+6]==1){

kuplet_fa_T=paste(kuplet_fa_T,1, sep=""); kupleb_m=paste(kuplet_mo_T,1, sep="");
kuplet_fa_NT=paste(kuplet_fa_NT,1, sep=""); kuptab_NT=paste(kuplet_mo_NT,1, sep="")}
1

if (length(setdiff(kuplet,kuplet_fa_T))!=length(klgt) & length(setdiff(kuplet,kuplet_fa_NT))!=lendiuplet)
& length(setdiff(kuplet,kuplet_mo_T))!=length(kupje
length(setdiff(kuplet,kuplet_mo_NT))!=length(kuplt

transmat[kuplet_fa_T,kuplet_fa_NT] = transmat[kupfa_T,kuplet_fa_NT] + gendata2$countw[n]
transmat[kuplet_mo_T,kuplet_ mo_NT] = transmat[ktipieo_T,kuplet_mo_NT] + gendata2$countw|[n]}

rm(i,j,l,n,u,v,kuplet_fa NT,kuplet_fa_T,kuplet_moTNuplet mo_T)

sum(transmat)  # this has always to be equal totrar of offspring analyzed, i.e. the number of @ithe
dataset "gendata2"

# #
# - TRANSMISSION INTENSITY OF ALLELES AT SINGLE LOGS -- #
# #

alpha=matrix(NA,nbloci,nballeles)
rownames(alpha)=c(paste("locus",1:nbloci,sep=""))
colnames(alpha)=c(paste("allele”, 1:nballeles,sep=""

for (l'in 1L:nbloci){

for (ain 1:nballeles){
alphall,a]=sum(transmat[substr(rownames(transhigtxpaste(a),substr(colnames(transmat),l,I)!=past

e(a)])/(sum(transmat[substr(rownames(transmatApaste(a),substr(colnames(transmat),l,1)!=pasie@) m(t

ransmat[substr(rownames(transmat),|,|)!=paste(b¥s(colnames(transmat),l,l)==paste(a)]))

B

rm(a,l)

# #
# - NUMBER OF TRANSMITTED AND NOT-TRANSMITTED —--- #
# #

nT=0

nNT=0

for (i in 1:(dim(transmat)[2]-1)){
for (j in (i+1):dim(transmat)[1]){
k=k+1

nT[K]=transmat][i,j]
NNT[K]=transmat][j,i]

1

rm(i,j,k)
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# #
# - The Number of possible alternative hypottes
# - but we will ignore combination of loci ov8r
# #
fact=function(m){
fm=1
while (m>=2){
fm=fm*m
m=m-1}
return(fm)}

comb=function(n,p){

while (n>=p){
return(fact(n)/(fact(p)*fact(n-p)))}}

# #

nbmodel= nbloci+2

if(nbloci>=2){

for (iin 2:3){

nbmodel= nbmodel+ 2*comb(nbloci,i)

1

nbmodel

rm(comb,fact,i)

# #

R SINGLE TRANSMISSION PROBABILITIES ----------
# #
tau=matrix(0,nbmodel,length(nT))

ddI=0

for (m in 1:nbloci){

ddi[m]=length(taballeles[m,])-1

k=0

for (i in 1:(nbkuplet-1)){

for (j in (i+1):nbkuplet){
k=k+1
a=as.numeric(substr(rownames(transmat)[i],m,m))
b=as.numeric(substr(colnames(transmat)[j],m,m))
tau[m,k]=alpha[m,a)/(alpha[m,a]+alpha[m,b])

m

rm(a,b,i,j,k)

# #

R 2-UPLET TRANSMISSION PROBABILITIES
# #

# MULTIPLICATIVE #

for (Im in 1:(nbloci-1)){

for (Inin (Im+21):nbloci){

m=m+1

ddi[m]=length(taballeles[Im,])-1 + length(taballe[t,])-1

k=0

for (i in 1:(nbkuplet-1)){

for (j in (i+1):nbkuplet){
k=k+1
a=as.numeric(substr(rownames(transmat)[i],Im,Im))
b=as.numeric(substr(colnames(transmat)[j],Im,Im))
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c=as.numeric(substr(rownames(transmat)[i],In,In))

d=as.numeric(substr(colnames(transmat)[j],In,In))

tau[m,k]=alpha]lm,a]*alpha[ln,c]/(alpha[lm,a]*alpfin,c]+alpha]lm,b]*alpha[In,d])
1

rm(a,b,c,d,i,j,k,Im,In)

# EPISTASIS #

for (Im in 1:(nbloci-1)){

for (Inin (Im+21):nbloci){

m=m+1

ddi[m]=length(taballeles[Im,])*length(taballeles[]j+1

k=0

for (i in 1:(nbkuplet-1)){

for (j in (i+1):nbkuplet){
k=k+1
a=as.numeric(substr(rownames(transmat)[i],Im,Im))
b=as.numeric(substr(colnames(transmat)[j],Im,Im))
c=as.numeric(substr(rownames(transmat)[i],In,In))
d=as.numeric(substr(colnames(transmat)[j],In,In))

x=sum(transmat[substr(rownames(transmat),Im,Imstg(a) &
substr(rownames(transmat),In,In)==paste(c),
substr(colnames(transmat),Im,Im)!=paste(a) |
substr(colnames(transmat),In,In)!=paste(c)])/
(sum(transmat[substr(rownames(transmat),Im,Imgstg(a) &
substr(rownames(transmat),In,In)==paste(c),
substr(colnames(transmat),Im,Im)!=paste(a) |
substr(colnames(transmat),In,In)!=paste(c)])
+sum(transmat[substr(rownames(transmat),Im,Ingste(a) |
substr(rownames(transmat),In,In)!=paste(c),
substr(colnames(transmat),Im,Im)==paste(a) &
substr(colnames(transmat),In,In)==paste(c)]))

y=sum(transmat[substr(rownames(transmat),Im,Imgstg(b) &
substr(rownames(transmat),In,In)==paste(d),
substr(colnames(transmat),Im,Im)!=paste(b) |
substr(colnames(transmat),In,In)!=paste(d)])/
(sum(transmat[substr(rownames(transmat),Im,Imgstg(b) &
substr(rownames(transmat),In,In)==paste(d),
substr(colnames(transmat),Im,Im)!=paste(b) |
substr(colnames(transmat),In,In)!=paste(d)])
+sum(transmat[substr(rownames(transmat),Im,Ingste(b) |
substr(rownames(transmat),In,In)!=paste(d),
substr(colnames(transmat),Im,Im)==paste(b) &
substr(colnames(transmat),In,In)==paste(d)]))

tau[m,K]=x/(x+y)

n

rm(a,b,c,d,i,j,k,x,y,Im,In)

# #

#o-mmmem- 3-UPLET TRANSMISSION PROBABILITIES#
# #

# MULTIPLICATIVE #
for (Im in 1:(nbloci-2){
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for (In in (Im+1):(nbloci-1)){

for (lo in (In+1):nbloci){

m=m+1

ddi[m]=length(taballeles[Im,])-1 + length(taballs[&,])-1 + length(taballeles[lo,])-1

k=0

for (i in 1:(nbkuplet-1)){

for (j in (i+1):nbkuplet){
k=k+1
a=as.numeric(substr(rownames(transmat)[i],Im,Im))
b=as.numeric(substr(colnames(transmat)[j],Im,Im))
c=as.numeric(substr(rownames(transmat)[i],In,In))
d=as.numeric(substr(colnames(transmat)[j],In,In))
e=as.numeric(substr(rownames(transmat)[i],lo0,l0))
f=as.numeric(substr(colnames(transmat)[j],lo,l0))
tau[m,k]=alpha[lm,a]*alphalln,c]*alpha[lo,e]/(alpfim,a]*alpha[ln,c]*alpha[lo,e] +

alpha[lm,b]*alphalin,d]*alphallo,f])

mh

rm(a,b,c,d,e,f,i,j,k,Im,In,lo0)

# EPISTASIS #

for (Im in 1:(nbloci-2){

for (In in (Im+1):(nbloci-1)){

for (lo in (In+1):nbloci){

m=m+1

ddi[m]=length(taballeles[Im,])*length(taballeles[j*length(taballeles[lo,]) -1

k=0

for (i in 1:(nbkuplet-1)){

for (j in (i+1):nbkuplet){
k=k+1
a=as.numeric(substr(rownames(transmat)[i],Im,Im))
b=as.numeric(substr(colnames(transmat)[j],Im,Im))
c=as.numeric(substr(rownames(transmat)[i],In,In))
d=as.numeric(substr(colnames(transmat)[j],In,In))
e=as.numeric(substr(rownames(transmat)][i],lo,lo))
f=as.numeric(substr(colnames(transmat)[j],lo,l0))

x=sum(transmat[substr(rownames(transmat),Im,Imstg(a) &
substr(rownames(transmat),In,In)==paste(c) & slmtmames(transmat),lo,lo)==paste(e),
substr(colnames(transmat),Im,Im)!=paste(a) |
substr(colnames(transmat),In,In)!=paste(c) | s(dEtrames(transmat),lo,lo)!=paste(e)])/
(sum(transmat[substr(rownames(transmat),Im,Imgstg(a) &
substr(rownames(transmat),In,In)==paste(c) & s@lmsitmames(transmat),lo,lo)==paste(e),
substr(colnames(transmat),Im,Im)!=paste(a) |
substr(colnames(transmat),In,In)!=paste(c) | s@iEtrames(transmat),lo,lo)!=paste(e)])
+sum(transmat[substr(rownames(transmat),Im,Ingste(a) |
substr(rownames(transmat),In,In)!=paste(c) | s¢lostnames(transmat),lo,lo)!=paste(e),
substr(colnames(transmat),Im,Im)==paste(a) &
substr(colnames(transmat),In,In)==paste(c) & s(bsinames(transmat),lo,lo)==paste(e)]))

y=sum(transmat[substr(rownames(transmat),Im,Imgstg(b) &
substr(rownames(transmat),In,In)==paste(d) & s@fmstmames(transmat),lo,lo)==paste(f),
substr(colnames(transmat),Im,Im)!=paste(b) |
substr(colnames(transmat),In,In)!=paste(d) | s@tidtrames(transmat),lo,lo)!=paste(f)])/
(sum(transmat[substr(rownames(transmat),Im,Imgstg(b) &
substr(rownames(transmat),In,In)==paste(d) & s@tmstmames(transmat),lo,lo)==paste(f),
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substr(colnames(transmat),Im,Im)!=paste(b) |
substr(colnames(transmat),In,In)!=paste(d) | s(txstrames(transmat),lo,lo)!=paste(f)])
+sum(transmat[substr(rownames(transmat),Im,Ingste(b) |
substr(rownames(transmat),In,In)!=paste(d) | s(festnames(transmat),lo,lo)!=paste(f),
substr(colnames(transmat),Im,Im)==paste(b) &
substr(colnames(transmat),In,In)==paste(d) & sbsimames(transmat),lo,lo)==paste(f)]))

tau[m,K]=x/(x+y)
i
rm(a,b,c,d,e,f,ij,k,x,y,Im,In,lo)
# #

# - L-UPLET TRANSMISSION PROBABILITIES
# #

# MULTIPLICATIVE #
m=m+1
k=a=b=0
for (i in 1:(nbkuplet-1)){
for (j in (i+1):nbkuplet){
k=k+1
x=y=1
df=0
for (Iin 1:nbloci){
a[l]=as.numeric(substr(rownames(transmat)][i],l,|))
b[l]=as.numeric(substr(colnames(transmat)[j],,I))
x=x*alpha]l,a[l]]
y=y*alphall,b[l]]
df = df + length(taballeles|l,])-1
}
tau[m,k]=x/(x+y)
ddI[m]=df
1
rm(a,b,i,j,k,l,x,y,df)

# EPISTASIS #

m=m+1

k=0

for (i in 1:(nbkuplet-1)){

for (j in (i+1):nbkuplet){
k=k+1

tau[m,k]=(sum(transmat[i,-i])/(sum(transmat]i,4Bum(transmat[-i,i])))/((sum(transmati,-
i])/(sum(transmatfi,-i])+sum(transmat[-i,i])))+(sutnansmat[j,-j])/(sum(transmat[j,-j])+sum(transmdil))))

B
rm(i,j,k)

df=1

for (I in 1:nbloci){df=df*length(taballeles]l,])}
ddI[m]=df-1

rm(l,df)

# MODELO: WHITE MODEL
LLO= -log(2)*sum(nT+nNT)
LLO
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#MODEL 1tom

LL=0
ETDT=0
pvalETDT=0
for (Iin L:m){
LL[1]= sum(nT*log(taull,}/(1-tau[l,]))) + sum((nTANT)*log(1-tau[l,]))
ETDT[I]=2*(LL[l]-LLO)
pvalETDT[l]=1-pchisq(ETDTI[I],ddlI[I])
rm(l)
# #
# oo TO DISPLAY RESULTS ----- #
# #

models=c("L1","L2","L3","L4","L5","Multiplicative_L1L2","Multiplicative_L1L3","Multiplicative_L1L4","Mu
Itiplicative_L1L5","Multiplicative_L2L3","Multiplicative_L2L4","Multiplicative_L2L5","Multiplicative_L3L4"
,"Multiplicative_L3L5","Multiplicative_L4L5","Epistsis_L1L2","Epistasis_L1L3","Epistasis_L1L4","Esis
_L1L5""Epistasis_L2L3","Epistasis_L2L4","Epistasi2L5","Epistasis_L3L4","Epistasis_L3L5","Epistasis
415" ,"Multiplicative_L1L21 3","Multiplicative_L1L214","Multiplicative_L1L2L5","Multiplicative_L113L4","
Multiplicative_L1L3L5","Multiplicative_L1L4L5","Multiplicative_L2L3L4","Multiplicative_L2L3L5","Multipl
icative_L2L4L5","Multiplicative_L3L4L5","EpistasisL1L2L3","Epistasis_L1L2L4","Epistasis_L1L2L5","Epis
tasis_L1L3L4","Epistasis_L1L3L5","Epistasis_L1L4L5Epistasis_L2L3L4","Epistasis_L2L3L5","Epistasis_L
2L4L5","Epistasis_L3L4L5","Multiplicative_L1L2L3L4B","Epistasis_L1L2L3L4L5")

Result_of thesis=data.frame(models,LL,ETDT,dd|,ByddT)
Result_of_thesis
# - End of the R script ----- #
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Abstract

Complex, high-dimensional data sets pose significant analytical challenges in the post-genomic era. Such data sets are not
exclusive to genetic analyses and are also pertinent to epidemiology. There has been considerable effort to develop
hypothesis-free data mining and machine learning methodologies. However, current methodologies lack exhaustivity and
general applicability. Here we use a novel non-parametric, non-euclidean data mining tool, HyperCube®, to explore
exhaustively a complex epidemiological malaria data set by searching for over density of events in m-dimensional space.
Hotspots of over density correspond to strings of variables, rules, that determine, in this case, the occurrence of Plasmodium
falciparum clinical malaria episodes. The data set contained 46,837 outcome events from 1,653 individuals and 34
explanatory variables. The best predictive rule contained 1,689 events from 148 individuals and was defined as: individuals
present during 1992-2003, aged 1-5 years old, having hemoglobin AA, and having had previous Plasmodium malariae
malaria parasite infection =10 times. These individuals had 3.71 times more P. falciparum clinical malaria episodes than the
general population. We validated the rule in two different cohorts. We compared and contrasted the HyperCube® rule with
the rules using variables identified by both traditional statistical methods and non-parametric regression tree methods. In
addition, we tried all possible sub-stratified quantitative variables. No other model with equal or greater representativity
gave a higher Relative Risk. Although three of the four variables in the rule were intuitive, the effect of number of P.
malariae episodes was not. HyperCube® efficiently sub-stratified quantitative variables to optimize the rule and was able to
identify interactions among the variables, tasks not easy to perform using standard data mining methods. Search of local
over density in m-dimensional space, explained by easily interpretable rules, is thus seemingly ideal for generating
hypotheses for large datasets to unravel the complexity inherent in biological systems.
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To date, data mining tools have been primarily developed for
data retrieval through search engines. In biology, this has been
essentially focused on sequence alignment algorithms to manage

Introduction

Identifying the key variables of a biological system that

determine the outcome of interest is difficult. Not only are there
potentially many factors involved, but they also do not work
independently. Testing for all possible interactions is almost
impossible both with respect to statistical validation and biological
interpretation. There is a need for data mining tools to explore
large and complex biological data sets to identify combinations of
factors that optimally explain the outcome of interest. Hypothesis-
free data exploration can potentially generate novel hypotheses
that emerge from the data and which are beyond our imagination.
These novel hypotheses can subsequently be tested using standard
statistical methods.

@ PLoS ONE | www.plosone.org

the ever-increasing amount of genetic data. More recently, data
mining technology has been proposed as an alternative to
traditional statistics to deal with high dimensional data generated
by Genome Wide Association studies, in the knowledge that
accounting for gene-gene and gene-environment is crucial to
understand human genetic susceptibility to disease [1,2,3,4]. In
addition to such methods in the field of genetic data analyses,
several new heuristic tools have been developed, notably non-
parametric modeling techniques such as Classification And
Regression Trees (CART) [5] and Random Forests [6]. These
methods present several advantages: models have the capacity to
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provide accurate fits of the response in a wide variety of situations,
enabling fitting of non-linear relationships between explanatory
variables and the dependant variable, with no assumption that
explanatory variables are independent. CART is a rule-based
method that generates a binary tree through recursive partitioning.
This splits a subset (called a node) of the data set into two subsets
(called sub-nodes) according to minimization of a heterogeneity
criterion computed on the resulting sub-nodes. Random forests is a
procedure that generates a large number of tree predictors and
then selects the most popular class. Despite the analytical advances
of all of these techniques, none perform exhaustive exploration of
the data [4] and to date, there is no algorithm that can search for
all possible stratifications and identify the best combination of
variables to explain a specified outcome.

Complementary to these non-parametric methods and to
traditional statistical methods, a new approach, HyperCube®
(Institute of Health & Science, Paris, France) is based on the latest
research in artificial intelligence, using least general generalized
algorithms and genetic algorithms. The underlying idea is to
describe a dataset by a group of « local over densities » of a specific
outcome with no a prior: hypothesis or notion of distance, each «
over density » being completely independent from every other.
The breakthrough is the ability to deal with points in a space with
absolutely no assumptions, including those concerning metric and
distance or nature of neighborhood. Indeed, working with a
distance or a defined topology is already an assumption and either
is not true or introduces bias into the model.

This method has been applied to various topics, mainly in the
financial and business sectors, but remains unvalidated in the field
of biology [7]. Through exhaustive exploration of m-dimensional
space, HyperCube® will classify subsets of the study population
into high and low risk groups and pinpoint not only the key
explanatory variables and their interactions, but also the key range
of values within each explanatory variable. Whilst this approach
has evident value for risk factor analysis critical for clinical decision
making, it also offers a tool with which to explore complexity,
potentially revealing unimaginable combinations of explanatory
variables underpinning the observed outcome.

We report here a rigorous assessment of the performance of this
novel HyperCube® method. The aim of the study is to test
whether the rules identified by HyperCube® give the best
predictive value. We use HyperCube® to explore a large
longitudinal epidemiological data set of malaria. We compare
the predictive value of the rules identified by HyperCube® with
models generated using classical statistical methods, binomial
regression and CART. We demonstrate that HyperCube® can
identify the best combination of factors predicting the outcome of
malaria infection in our dataset.

Results

Populations, outcome and explanatory variables

We studied a large dataset from a long-term epidemiological
study of two family-based cohorts in Senegal, followed for 19 years
(1990-2008) in Dielmo and for 16 years (1993-2008) in Ndiop
[8,9]. Time period of observation was classified as a trimester. The
dependant variable was defined as a binary trait: individuals with
at least one clinical Plasmodium falciparum malaria attack (PFA)
during that trimester or without PFA. In total, there were 46,837
outcome events of person-trimesters from 1,653 individuals.
Almost 20% of the events were PFA in both villages. Thirty-four
explanatory variables for association with the occurrence of PFA
were considered. Twenty one variables were qualitative (eight
nominal and 13 ordered) and 13 were quantitative (T'able 1 and 2).

@ PLoS ONE | www.plosone.org
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HyperCube® analysis

We first analyzed the data using HyperCube®. We divided our
dataset into 3 phases: Learning, Validation and Replication. We
analyzed the two cohorts separately. A random variable was
created dividing the data of each cohort into two groups of equal
size (in and out samples). The learning phase was carried out using
the “in sample” from the first studied cohort. In the validation
phase, rules defined in the learning phase were validated in the
“out sample” of the same cohort. The learning set contained
11,893 events and the validation set had 11,939 in Dielmo, while
in Ndiop there were 11,530 events in the learning set and 11,475
in the validation set. The effect of each validated rule from the first
cohort was studied in the second cohort in the replication phase.

We defined three parameters for running the learning process,
“Lift”, “Size” and “Complexity”. “Lift” is the ratio of the
prevalence of positive PFA events within a rule over the prevalence
of positive PFA events in the entire population; this is equivalent to
relative risk (RR). “Size” is the minimum number of events
described by the rule. “Complexity” describes the maximum
number of variables in a rule. Choice of “Lift” and “Size”
parameters are optimized using the “Signal Intensity Graph” (see
Material and Method). The “Complexity” parameter is here fixed
to six factors, of which two are forced, the “in sample” and the
cohort. Table 3 summarizes the parameters used and results
obtained from the HyperCube® analyses.

After 27 and 23 hours of analyses, we obtained 4,853 and 6,360
rules in Dielmo and Ndiop, respectively. We calculated the
probability for the occurrence of a rule with identical “Lift” and
“Size” parameters from randomization of the entire dataset to
obtain an empirical P value (empP). We selected minimized rules
(see materials and methods) with empP less than 10~ in Dielmo
and Ndiop, for the validation phase (Table 3). We used this high
threshold empP for selection to minimize the risk of over-fitting.
We were able to validate 51 of 52 minimized rules (98%) and 36 of
36 (100%) in Dielmo and Ndiop respectively. Of these, all 51
(100%) rules from Dielmo were replicated in Ndiop and all 36
(100%) rules from Ndiop were replicated in Dielmo with empP less
than 10 %, We selected the best predicted rule for further statistical
study (Figure 1). The best predictive rule contained 1,689 events
from 148 individuals and was defined as: individuals who lived in
Dielmo during 1992 to 2003, were of an age between 1 to 5 years
old, having hemoglobin type AA, and having had previous
Plasmodium malariae infection (PMI) less than or equal to 10 times.
These individuals had 3.71 (95%CI: 3.58-3.84) times more PFA
than the general population; and this sub-population was the most
representative (i.e. containing the maximum number of events)
among those with a RR of at least equal to 3.71.

Confirmation of the HyperCube® rule with traditional
statistical methods

We sought to replicate the HyperCube® rule using logistic
regression. We redefined continuous variables as binary variables
according to the HyperCube® rule: The “Year” variable was
defined as after 1991 and before 2004 or else; Age variable as
between 1 and 5 years old or else; Hemoglobin type AA or else
and cumulative number of previous PMIs as =10 times or else. By
multivariate analysis, we tested all possible interactions between
two variables and dropped interaction terms with £>0.05 until all
had P=0.05. The variables showed highly significant marginal
effect (P<<0.0001) except age (Table 4). Age was highly significant
(P<10™* when taking into account other criteria including year
(between 1992 and 2003) and previous PMIs (=10). Analysis
incorporating all possible interaction terms (i.e. with more than 2
variables) generated considerable over-dispersion and was difficult
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Table 1. List of explanatory categorical variables.
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Categorical (nominal) Variables

No of levels

House

Independent Family

Sex

Hemoglobin Type

ABO blood group

G6PD Haplotype (on 4 SNPs: G6PD-376%, G6PD-202*, G6PD-968* and G6PD-542%)
PMI

POI

67 (36 in Dielmo and 31 in Ndiop)
36 (12 in Dielmo and 24 in Ndiop)
2

7 (5 in Dielmo and 7 in Ndiop)

Categorical (ordered) Variables

No of levels

Drug treatment period
Year

Trimester

ABO-261*: rs8176719
ABO-297*: 158176720
ABO-467*: rs1053878
ABO-526*: rs7853989
ABO-771*: rs8176745
Alpha globin-3.7deletion
G6PD-202*: rs1050828
G6PD-376*: rs1050829
G6PD-542*: rs5030872
G6PD-968*: rs76723693

4
19 (19 in Dielmo and 16 in Ndiop)

W W w w w w w w w w b

*: Position on the gene.
doi:10.1371/journal.pone.0024085.t001

to interpret. This result demonstrates that even though age is a
major factor influencing development of PFA, without considering
other variables, this effect would have been missed.

In order to replicate precisely the HyperCube® rule and
determine the relative risk for comparison with other models/
rules, we estimated the overall effect of the four key variables and
all their possible interactions by defining a dummy variable X to
represent the two sub groups of the population: X =1 for a sub-
population defined by the observations in the rule (i.e. living in
Dielmo during 1992 to 2003, age 1 to 5 years old, having
hemoglobin type “AA” and having had previous PMIs=10);
X =0, otherwise (Table 5). Table 5 shows 1,232 PFA+457 not
PFA in the rule = 1,689 events via HyperCube®. The Pearson chi-
square test confirmed the strongly significant probability to
develop PFA (32 =2740.55, DF=1, P<10™'%), yielding a RR of
3.71 (95%CI: 3.58-3.84) and odds ratio (OR) of 11.02 (95%CI:
9.87-12.29). Using logistic regression, we confirmed the results of
HyperCube®.

Replication of the rule in the 2" cohort

In order to validate the biological and epidemiological aspect of
this HyperCube® rule, it was replicated in Ndiop where a sub-
population defined as above for Dielmo presented a higher risk to
develop PFA compared to the general population: (%2 =665.96,
DF=1, P<10™'%, RR of 2.35 (95%CIL: 2.22-2.48) and OR of
3.50 (95%CI: 3.16-3.87). The result was optimal in Dielmo and
replicated in Ndiop. The four variables identified above to be risk
factors in Dielmo were thus also risk factors in Ndiop. Keeping the

@ PLoS ONE | www.plosone.org 3

G6PD: Glucose-6-phosphate dehydrogenase, PMI: Plasmodium malariae infection, POI: Plasmodium ovale infection.

same settings as in Dielmo for time period (from 1992 to 2003),
previous PMIs (=10) and hemoglobin (“AA”), risk was maximum
when age was re-set to 3 to 7 years old, with a RR of 2.53 (95%CI:
2.41-2.66) and OR of 4.04 (95%CI: 3.67—4.45) with more events
(size=1,761 events from 181 individuals) and more strongly
significant (32 =933.93, DF=1, P<10~'®) than when using the
Dielmo age range of 1-5 years old (Size of 1,607 events from 158
individuals). This risk in Ndiop was, however, still lower than in
Dielmo.

The two cohorts differ in one very pertinent manner: in Dielmo
malaria transmission occurs all year round because of the presence
of a small stream that enables mosquitoes to breed. In Ndiop,
transmission is highly seasonal and occurs during the rainy season
(July-December). Hence, we calculated the risk in Ndiop using
only the period of year between July to December, a period when
environmental factors are similar in the two villages. We obtained
the same relative risk, RR=3.78 (95%CI: 3.62-3.94), OR of
11.80 (95%CI: 10.11-13.77), with a highly significant Pearson chi-
square test (32=1542.50, DF =1, P<10_16). Furthermore, this
risk was maximum when using age 3 to 7 years old (RR=4.11,
95%CI: 3.97-4.27 and OR=17.31, 95%CI: 14.68-20.41) with
more events (Size =932 events from 179 individuals vs. of Size of
863 from 157 when using age 1 to 5) and higher significance
(x2=2076.17, DF=1, P<10 ')

Comparison with other models
We examined whether a classical statistical method could
identify the same or better rules. We performed logistic regression
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Table 2. List of explanatory continuous variables.
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Distance to wells (meters)

Distance to all (animals, toilets,

house’s tree, wells) together (meters)

365 in Dielmo and 195
in Ndiop

329 in Dielmo and 150
in Ndiop

453 in Dielmo and 174

17 in Dielmo

Continuous Variables Mean Median Min Max

Age 21.35 (23.14 in Dielmo and 15.90 (17.06 in Dielmo and 0 97.88 (97.88 in Dielmo and 83.25 in
19.46 in Ndiop) 14.97 in Ndiop) Ndiop)

Mean genetic relatedness 0.012 (0.012 in Dielmo and 0.011 (0.012 in Dielmo and 0.001 0.041 (0.028 in Dielmo and 0.041 in

(Pedigree-based) 0.012 in Ndiop) 0.008 in Ndiop) Ndiop)

Mean genetic relatedness 0.008 (0.008 in Dielmo and 0.007 (0.008 in Dielmo and 0.002 0.029 (0.025 in Dielmo and 0.029 in

IBD*-based) 0.007 in Ndiop) 0.007 in Ndiop) Ndiop)

No. of previous PMI 2.53 (4.10 in Dielmo and 1 (1 in Dielmo and 0 in Ndiop) 0 44 (44 in Dielmo and 9 in Ndiop)
0.82 in Ndiop)

Time since first PMI (year) 6.07 (6.67 in Dielmo and 5.25 (5.95 in Dielmo and4.32 0 18.51 (18.51 in Dielmo and 15.25 in
5.03 in Ndiop) in Ndiop) Ndiop)

No. of previous POI 1.09 (1.33 in Dielmo and 0 0 11 (11 in Dielmo and 10 in Ndiop)
0.83 in Ndiop)

Time since first POI (year) 5.52 (6.20 in Dielmo and 4.88 (5.55 in Dielmo and 0 18.51 (18.51 in Dielmo and 15 in
4.72 in Ndiop) 4.25 in Ndiop) Ndiop)

Exposure (number of days 80.76 (81.65 in Dielmo and 91 (91 in Dielmo and 90 1 92

present in the village) per trimester ~ 79.87 in Ndiop) in Ndiop)

Distance to animal enclosure 322 in Dielmo and 147 in 271 in Dielmo and 139 1 in Dielmo 765 in Dielmo and 393 in Ndiop

(meters) Ndiop in Ndiop and 2 in Ndiop

Distance to toilets (meters) 326 in Dielmo and 149 280 in Dielmo and 143 1 in Dielmo 774 in Dielmo and 401 in Ndiop
in Ndiop in Ndiop and 2 in Ndiop

Distance to house’s tree (meters) 344 in Dielmo and 152 311 in Dielmo and 149 1 in Dielmo 759 in Dielmo and 386 in Ndiop
in Ndiop in Ndiop and 1 in Ndiop

719 in Dielmo and 483 in Ndiop

in Ndiop and 17 in Ndiop
288 in Dielmo and 143 1 in Dielmo 774 in Dielmo and 483 in Ndiop
in Ndiop and 1 in Ndiop

*IBD: Identity-By-Descent.

doi:10.1371/journal.pone.0024085.t002

analysis and CART using the Dielmo data. We first tested the
effect of each variable on PFA by univariate analysis. When two or
more variables were correlated, the most explicative variable was
chosen. Continuous explanatory variables were categorized to

enable comparison with HyperCube®, by grouping the range of

values having similar values for the dependant variable. Searching
for the cut-off values for continuous variables was guided by
Classification and Regression Trees (CART) methods [5]. CART
identified cut-off values to categorize Age and Exposure variables,
but did not find significant cut-off values for previous PMIs or any
other continuous variable. Therefore, median was chosen as the
cut-off value for each of these other variables. We then selected
variables that showed =0.10 type I error for multivariate analysis
(Table 6 and 7). As HyperCube® dichotomizes any variable, being
in or out of the rule; we redefined each variable in a similar way.
Categorical, ordinal and interval variables that had more than 2
levels were redefined by regrouping levels for which their partial

effects were in the same direction. Trimester variable was
redefined as semester (January—June and July-December) since
the first two trimesters had decreasing effects and the last two had
increasing effects on PFA when we adjusted on the other variables.
Year variable was redefined in two levels (period 1: “year=2003>
and period 2: “year=2004") according to the effect of ecach year.
Age variable was classified into two levels (having between 0.4 and
8.1 years-old or else) according to CART analysis, ABO blood
group in two levels (O or not O). Table 8 shows the result of
univariate analysis after redefinition. For multivariate analysis we
used the binary explanatory variables from Tables 6-8 and
analyzed by logistic regression using several model selection
methods: (1) selection based on an exhaustive screening of
candidate models in each subset of explanatory variables, selecting
the best one in terms of Information Criterion (lowest Akaike
Information Criterion (AIC)); (2) forward selection and backward
elimination. Model selection was computed using Package

Table 3. Parameters used and rules obtained from the HyperCube® analyses.

Total Number of  Number of Number of
number of Learning Time of Number of minimized validated replicated
Cohort events Set Validation Set Purity Lift Size  run Coverage Total rules rules rules rules
Dielmo 23,832 11,893 11,939 0.73 4.00 400 27 h 67% 4,853 52 51 51
Ndiop 23,005 11,530 11,475 0.74 3.49 400 23 h 72% 6,860 36 36 36

doi:10.1371/journal.pone.0024085.t003

@ PLoS ONE | www.plosone.org

Purity: prevalence of events {PFA =1} in the rule; Lift: Relative Risk of belonging to the rule compared to the total population; Size: number of events in the rule;
Coverage: percentage of events {PFA=1}in all rules found by HyperCube® compared to the total number of events {PFA =1} in the whole dataset.

September 2011 | Volume 6 | Issue 9 | 24085



Exhaustive Data Mining in Malaria Epidemiology

B3 B
Keys Indicators % —
Purity: 0.73 Size: 1689 samples ———a e
: I Not Plasmodium falciparum |
Average number of PFA: 1.39 e s st —
Plasmodium falciparum malaria attack _ [m—
C
Rule space
Patients that match all the following conditions: Loss Coverage Size
Village is Dielmo -0.67 50.9 +1607
AN S o o between 0Oand10 006 934 +63
malariae infections
Year between 1992 and 2003 -0.27 64.7 +508
Age between land 5 -2.53 142 +9135
Hemoglobin type is Ad -0.11 86.6 +268
Had 3.71 more often Plasmodium falciparum malaria attacks
D
Plasmodium malariae infections Year Hemoglobin type

I W |

Figure 1. Typical result from HyperCube®. A) Table “Key Indicators” shows Lift: 1.39; Size: 1,689; Purity: 0.73. B) Graph showing comparative
proportion of events within the rule and events in the entire population, pink: affected (PFA positive), green unaffected (PFA negative). Both pink and
green bars would reach the horizontal red line if there was same proportion of positive PFA in the rule and in the entire population. C) Table “Rule
space” shows marginal contribution of each variable to the lift. Loss: gives partial decreases of lift when removing each variable (or risk factor) from
the rule; Coverage: percentage of events {PFA = 1} defined by the corresponding variable alone compared to the total number of events {PFA=1} in
the whole dataset; Size: increase of events in a rule when the constraint defined within a variable is cancelled or by dropping the variable. D) Graphs
showing distribution (in blue) of each variable, and the range of values (in green) within the rule.

doi:10.1371/journal.pone.0024085.g001

“glmulti” of R software [10]. The results obtained are presented in
Table 9.

According to the results of the multivariate regression model
selection (Table 9), we defined for each selected model a sub-group
X =1 when all risk factors are present, otherwise X=10. For each
model, we gave RR, p-value, and number of events for the sub-group

having all identified risk factors. All sub-groups identified using model
selection techniques had lower predictive values for developing PFA
than the HyperCube® rule (Table 9). For sub-groups explaining the
same or a greater number of events than the one found by
HyperCube®, the RR was lower and the 95% confidential intervals
of RR did not overlap with those for the HyperCube® rule (Table 9).

Table 4. Multivariate analysis of risk factors associated with clinical P. falciparum malaria attacks in Dielmo using the HyperCube®

rule.

Parameters DF Estimate SE %2 Pr>y2 OR Wald 95%CL
Intercept 1 —3.43 0.16 483.4 <.0001 o = o
Age group (years) Tto5 1 0.38 0.28 1.8 0.178 1.46 [0.84 2.53]
Type of hemoglobin AA 1 0.38 0.07 278 <.0001 1.46 [1.27 1.68]
Year After 1991 and Before 2004 1 1.80 0.15 139.4 <.0001 6.07 [4.50 8.19]
Number of previous P. malariae infections =10 1 0.80 0.15 294 <.0001 223 [1.67 2.97]
Age group *P. malariae infections 1to5 =10 1 1.62 0.27 365 <.0001 5.06 [2.99 8.56]
Age group* Year 1to5 Before 2004 1 0.77 0.10 558 <.0001 215 [1.76 2.63]
P. malariae infections*Year =10 Before 2004 1 —1.38 016 722 <.0001 0.25 [0.18 0.35]

confidential level.
doi:10.1371/journal.pone.0024085.t004

@ PLoS ONE | www.plosone.org

DF: degree of freedom; Estimate: effect of explanatory variable’s levels on logit(Probability of {PFA =1}); SE: standard error; y2: chi-square DF =1; OR: Odds ratio; CL:
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Table 5. Number of positive/negative PFA events (P.
falciparum malaria attacks) in subgroups of individuals in and
out of the HyperCube® rule.

PFA positive No PFA
In the rule 1232 457
Out of the rule 7977 37171
Total population 9209 37628

doi:10.1371/journal.pone.0024085.t005

We tested whether the HyperCube® rule predicted the highest
risk of developing PFA. We used the HyperCube® model as a
reference. We modified the reference HyperCube® rule by either
removing one of the variables or adding in variables identified by
multivariate analysis. Using the same method to define subsets of
the population and construct contingency tables, we calculated
RR, OR and P values for each model. As shown in Table 10, there

Exhaustive Data Mining in Malaria Epidemiology

was no other model that gave higher RR and/or OR than the one
identified by HyperCube® with equal or greater size.

In contrast to the regression analyses, CART found that age
(between 0.22 and 5.48) and year (from 1990 to 2003) defined the
high risk group for having PFA (RR=3.26 [95CI: 3.16-3.38],
OR =7.34 [95CI: 6.80-7.93] and size = 3,041 with 32 = 3268.85,
DF=1 [P<10™'%)) (Figure 2). No other variable or combination
of variables yielded a higher Relative Risk.

Optimality of HyperCube® choice

We then tested whether the cut-off values delimiting the range
of values in the HyperCube® rule (defined as the reference rule) for
each variable were the optimal ones. Hemoglobin type was fixed
as AA or not. We modified the range of continuous variables of the
reference rule. As the cut-off values for continuous variables were
considered at integer values, there were a finite number of subsets
that we could try for modifying a rule. We tested all possible
ranges of the continuous variables (Age, previous PMIs and Year)
with constraint of minimum “Size” of =400 events in the rules.
We first fixed 2 variables and changed one variable at a time. The
variable to change was first defined as the range of integer values

@ PLoS ONE | www.plosone.org

Table 6. Univariate logistic regression analysis of each categorical risk factor for clinical falciparum malaria (PFA) attacks in Dielmo.
No of Person-trimesters
N=23832
Estimate
PFA=0 PFA=1 (Std. Error) Crude OR  Wald 95%CL P-values  Global P
N(%) = 19475 N (%) =4357
Age group (years) [0-0.4] 303 (84.17) 57 (15.83) Ref. 1
[0.4-6.7] 2344 (46.72) 2673 (53.28) 1.80 (0.15) 6.06 [4.54-8.09] <.0001
[6.7-8.12] 692 (67.13) 338 (32.82) 0.95 (0.16) 2.6 [1.9-3.55] <.0001 <.0001
[8.12-13.6] 2943 (81.28) 678 (18.72) 0.20 (0.15) 1.22 [0.91-1.65] 0.1782
=13.6 13138 (95.58) 608 4.42) —1.40 (0.15) 0.25 [0.18-0.33] <.0001
Missing data 55 3 - - - -
Sex Male 9663 (80.77) 2301 (19.23) Ref. 1
Female 9812 (82.68) 2056 (17.32) —0.13 (0.03) 0.88 [0.82-0.94] ° <.0001
Blood group (0] 7597 (79.56) 1952 (20.44) Ref. 1
A 5131 (83.65) 1003 (16.35) —0.27 (0.04) 0.76 [0.70-0.83] <.0001
AB 920 (90.20) 100 (9.80) —0.86 (0.11) 0.42 [0.34-0.52] <.0001 <.0001
B 4496 (82.40) 960 (17.60) —0.19 (0.04) 0.83 [0.76-0.91] <.0001
Missing data 1331 342 - - - -
Type of hemoglobin AA 16304 (81.28) 3756 (18.72) Ref. 1
AC/AS/SS 2007 (87.53) 286 (12.47) —0.48 (0.07) 0.62 [0.54-0.70] <.0001
Missing data 5196 1438 = = = =
G6PD Normal alleles 6448 (84.0) 1228 (16.0) Ref. 1
Mutated allele 7865 (82.30) 1691 (17.70) —0.12 (0.04) 0.89 [0.82-0.96] 0.0032
Missing data 5162 1438 - - - -
P. malariae infections =1 (median) 9348 (81.99) 2099 (18.34) Ref. 1
>1 8983 (79.91) 2258 (20.09) 0.11 (0.03) 1.12 [1.04-1.20] - 0.0008
missing 1144 0 - - -
P. ovale infections =0 (median) 9946 (81.54) 2251 (18.46) Ref. 1
>0 8385 (79.93) 2106 (20.07) 0.10 (0.03) 1.11 [1.04-1.19] = 0.002
missing 1144 0 - - -
Estimate: effect of explanatory variable’s levels on logit(Probability of {PFA = 1}); SE: standard error; OR: Odds ratio; CL: confidential level; Ref.: reference level.
Age and Exposure were categorized using CART and previous PMIs and previous POls using median since CART did not find significant cut-off values.
doi:10.1371/journal.pone.0024085.t006
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between its minimum and maximum values, and then reduced from
the maximum to smaller integer values covering an ever-decreasing
total age range until the minimum. This was repeated step by step
until each integer value of the variable was set as the minimum for a
step. Therefore, the total number of choices for a variable is
14+2+3+.. +maximum = sum of a finite arithmetic sequence = (first
valuetlast valuej*(number of values/*(1/2). Each choice corre-
sponds to a specific modification of the reference rule (i.e. a specific
interval of values defining the modified rule). Then, for Age,
previous PMIs and Year, there are (1+98)*98*0.5=4851,
(1+45y%45%0.5=1035 and (1+19)*19%0.5=190 possible choices
respectively. We then fixed 1 variable and changed 2 variables
simultaneously. When Year is fixed and the couple (Age, previous
PMIs) changed simultaneously, there are 4851%1035=5,020,785
possible choices. For previous PMIs fixed and (Age, Year) changed
and Age fixed and (previous PMIs, Year) changed there are
4851*¥190=921,690 and 1035*190=196,650 possible choices.
When we selected choices with at least same size as the reference
rule, the resulting RR was always lower than the reference RR.

@ PLoS ONE | www.plosone.org

Table 7. Univariate logistic regression analysis of each temporal risk factor for clinical falciparum malaria (PFA) attacks in Dielmo.
No of Person-trimesters
N=23832
Estimate
PFA=0 PFA=1 (Std. Error) Crude OR  Wald 95%CL P-values  Global P
N(%) = 19475 N (%) =4357
Year 1990 587 (82.21) 127 (17.79) Ref. 1
1991 740 (81.59) 167 (18.41) 0.04 (0.13) 1.04 [0.81-1.35] 0.7457
1992 717 (77.18) 212 (22.82) 0.31 (0.13) 137 [1.07-1.75] 0.0126
1993 790 (78.61) 215 (21.39) 0.23 (0.12) 1.26 [0.99-1.61] 0.0653
1994 774 (75.44) 252 (24.56) 0.41 (0.12) 1.50 [1.19-1.91] 0.0008
1995 796 (77.06) 237 (22.94) 0.32 (0.12) 1.38 [1.08-1.75] 0.0093
1996 853 (72.23) 328 (27.77) 0.58 (0.12) 1.78 [1.41-2.24] <.0001
1997 818 (73.3) 298 (26.7) 0.52 (0.12) 1.68 [1.33-2.13] <.0001
1998 1179 (80.2) 291 (19.8) 0.13 (0.12) 1.14 [0.91-1.44] 0.2632
1999 1137 (78.09) 319 (21.91) 0.26 (0.12) 1.30 [1.03-1.63] 0.0258 <.0001
2000 1151 (76.84) 347 (23.16) 0.33 (0.12) 1.39 [1.11-1.75] 0.0041
2001 1019 (77.91) 289 (22.09) 0.27 (0.12) 131 [1.04-1.65] 0.0222
2002 1061 (80.75) 253 (19.25) 0.1 (0.12) 1.10 [0.87-1.40] 0.4188
2003 1055 (80.47) 256 (19.53) 0.11 (0.12) 1.12 [0.89-1.42] 0.3396
2004 1153 (87.81) 160 (12.19) —0.44 (0.13) 0.64 [0.50-0.83] 0.0006
2005 1312 (91.11) 128 (8.89) —0.8 (0.13) 0.45 [0.35-0.59] <.0001
2006 1228 (83.2) 248 (16.8) —0.07 (0.12) 0.93 [0.74-1.18] 0.5663
2007 1495 (90.44) 158 (9.56) —0.72 (0.13) 0.49 [0.38-0.63] <.0001
2008 1610 (95.72) 72 (4.28) —1.58 (0.16) 0.21 [0.15-0.28] <.0001
Season Jan-Mar 4749 (82.62) 999 (17.38) Ref. 1
April-June 4912 (82.03) 1076 (17.97) 0.04 (0.05) 1.04 [0.95-1.14] 0.4029
July-Sept 4841 (80.38) 1182 (19.62) 0.15 (0.05) 1.16 [1.06-1.27] 0.0017 0.0128
Oct-Dec 4973 (81.89) 1100 (18.11) 0.05 (0.05) 1.05 [0.96-1.16] 0.2973
Exposure =66.5 days 2978 (94.33) 179 (5.67) Ref. 1
>66.5 days 15745 (81.57) 3558 (18.43) 1.32 (0.08) 3.76 [3.22-4.39] - <.0001
752 620 ° ° =
Estimate: effect of explanatory variable’s levels on logit(Probability of {PFA = 1}); SE: standard error; OR: Odds ratio; CL: confidential level; Ref.: reference level.
Age and Exposure were categorized using CART and previous PMIs and previous POls using median since CART did not find significant cut-off values.
doi:10.1371/journal.pone.0024085.t007

Figure 3 shows the effects of the modified ranges (i.e. the effect of
other choices different from the one found by HyperCube®) on RR.
If all 3 variables were allowed to vary simultaneously there would be
4,851(Age) *190(Year) *1035(previous PMIs) =953,949,150 possi-
ble choices. The time for running such an analysis on one computer
with 2 central processor units (Duo CPU 2.00 GHz 2.00 GHz),
Memory (RAM) of 3.00 GB) is estimated at ~5678 days (~1.94
choices analyzed per second) using function “system.time(.)” of R-
software, and thus not possible to analyze.

Discussion

We describe here a new data mining algorithm that can identify
the combinations of variables that give the optimal prediction of
the outcome of interest. We demonstrate that the model identified
by HyperCube® has better predictive value than any other model
tested. HyperCube® was able to identify the best cut-off value and
range for continuous variables. It classified the population into
high and low risk groups and made the results easier to interpret in
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Table 8. Univariate analysis of each risk factor (redefined in only two levels) for clinical P. falciparum malaria attacks (PFA) in

No of Person-trimesters

N=23832
PFA=0 PFA=1 Estimate (Std. Error) Crude OR  Wald 95%CL P-values
N (%) =19475 N (%) =4357
(81.72) (18.28)
Age group (years) <0.4 or =8.12 16384 (92.42) 1343 (7.58) Ref. 1
[0.4-8.12] 3036 (50.21) 3011 (49.79) 2.49 (0.04) 12.1 [11.22-13.04] <.0001
Missing data 55 3 - - -
Blood group A or B or AB 10547 (83.64) 2063 (16.36) Ref. 1
(0] 7597 (79.56) 1952 (20.44) 0.27 (0.04) 1.31 [1.23-1.41] <.0001
Missing data 1331 342 - - -
Year =2004 6798 (89.87) 766 (10.13) Ref. 1
<2004 12677 (77.93) 3591 (22.07) 0.92 (0.04) 2.51 [2.31-2.73] <.0001
Semester Jan-Jun 9661 (82.32) 2075 (17.68) Ref. 1
Jul-Dec 9814 (81.13) 2282 (18.87) 0.08 (0.03) 1.08 [1.16-1.16] 0.0179

Estimate: effect of explanatory variable’s levels on logit(Probability of {PFA =1});
doi:10.1371/journal.pone.0024085.t008

terms of biology than the probability estimates generated by most
statistical methods.

The principle of this method is to explore all possible
combinations of predictor variables and to find, through stochastic
parallel computing exploration, the optimal hypercubes (or sub-
spaces) defined by a combination of these variables, without making
any assumptions. This method allows generation of rules, sets of
variables and ranges of variable values that define subpopulations
with high risk for the outcome of interest and that best predict the
outcome. Inspired from latest research in artificial intelligence,
Least General Generalized algorithms and Genetic Algorithms,
HyperCube® SaaS software generates local hypercubes and
stabilizes each local hypercube to a local optimum, each optimum
being new and independent. By doing so, it is possible to describe
and understand local configurations without there being necessarily
any global effect, i.e. some specific combination of factors that are
only found in a sub-set of the population may increase the risk of
outcome for that sub-population, but which are not detectable when
averaged across the entire population. HyperCube® enables us to
describe the range of values and the combination of variables that
can trigger the events. Although the statistics aims to reject, or not, a
predefined assumption according to given risks, these complex event
intelligence techniques allow us to generate assumptions on rules
without any prerequisite. A hypercube is expressed in a simple
formal way as a rule, directly readable and comprehensible.

As correction for multiple testing is not possible when using
HyperCube®, statistical validation and replication in independent
cohorts are crucial, even prior to biological validation. We
randomly divided the population in one cohort into the learning
set and the validation set. We used the other cohort for replication.
In addition, we calculated an empirical P value from whole
randomized data. We demonstrated that using a high threshold of
empirical Pvalue (107, 98-100% of the rules could be validated
and 100% of validated rules could be replicated in another cohort
despite their differences in human ethnicity and malaria
endemicity [11].

Biological validation of the rule is most important. Here three of
the variables are known a priori to increase the risk of developing

@ PLoS ONE | www.plosone.org

SE:

standard error; OR: Odds ratio; CL: confidential level; Ref.: reference level.

PFA: young children (i.e. lack of clinical immunity), normal
hemoglobin Hb AA, and living during a period of intense malaria
transmission. However, HyperCube® allowed us to identify the
range of continuous variables, such as age and year, which enable
us to define high and low risk groups. In addition, the effect of
these three variables alone did not reach our stringent acceptance
threshold. Identifying an additional variable using classical
techniques would be a big challenge due to the number of
possible choices. HyperCube® added a fourth one “number of
previous PMIs at ranges less than or equal to 10” to define a rule
containing 1,232 events with PFA and 457 events without PFA
(prevalence = 72.9%) compared to 19.7% prevalence of the whole
population (RR 3.71 (95%CI: 3.58-3.84). This RR is the highest
of all models containing this number of events. This rule explained
28.28% of total events with PFA in the dataset.

The effect size of each variable was estimated by removing each
variable and calculating the loss m “Lift” (Figure lc). The
strongest effect is age (68%), then village (18%), followed by year
(7.3%). Hemoglobin type explained 3% of the “Lift” while
previous PMIs had only 1.6% effect. There was 1.8% of the “Lift”
that could not be explained by each of these variables individually
(Table 11) and thus reflects interaction among the variables. In
Dielmo, malaria transmission is holoendemic with an average of
more than 200 infectious bites per person per year, 10 times more
than Ndiop [12]. Therefore, individuals living in Dielmo have
more chance to develop PFA. Age is a well known factor of PFA
due to rapid development of clinical immunity in high malaria
transmission regions. Using variance component analysis, age
explained 29.8% of total variation in number of PFA in Dielmo
[11]. The year effect is almost certainly yearly variation in
transmission intensity. Indeed in 2003, the HyperCube® rule
threshold for year, a new drug for PFA treatment was introduced
and malaria transmission decreased in following years. Hemoglo-
bin type is one of the best known genetic factors protecting against
malaria. In our and other studies, sickle cell mutation explained 2
5% of risk in development of severe and clinical falciparum malaria
[13], similar to that estimated by HyperCube® (Table 11). The
new variable that HyperCube® identified is previous P. malariae
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Table 10. Predictive values of modified HyperCube® rule.

Variable Size RR 95%CL OR 959%CL 1 DF Pr>y2
M.ref: 3.71 358 384 11.02 9.87 12.29 2741 1 <.0001
P. malariae infections+Year+Age+Hemoglobin 1689

M.ref—P. malariae infections 1752 3.65 3.52 3.77 10.35 9.30 11.51 2705 1 <.0001
M.ref—Year 2197 3.44 333 3.56 8.58 7.82 9.40 2843 1 <.0001
M.ref—Age 10824 1.18 1.14 1.23 1.24 1.18 1.30 71 1 <.0001
M.ref—Hemoglobin 1957 360 348 373 994 9.00 10.99 2898 1 <.0001
M.ref+Sex—P. malariae infections 879 369 353 386 10.82 9.31 12.57 1475 1 <.0001
M.ref+Sex—Year 1031 359 344 375 982 8.57 11.25 1592 1 <.0001
M.ref+Sex—Age 5377 116 110 122 1.20 1.13 1.29 29 1 <.0001
M.ref+Sex—Hemoglobin 990 362 346 378 1006 8.75 11.56 1562 1 <.0001
M.ref+Blood Type—P. malariae infections 784 3.61 344 379 10.03 8.58 11.72 1249 1 <.0001
M.ref+Blood Type—Year 966 3.46 3.30 3.63 8.69 7.57 9.96 1351 1 <.0001
M.ref+Blood Type—Age 4312 1.29 1.22 1.36 1.38 1.29 1.49 78 1 <.0001
M.ref+Blood Type—Hemoglobin 852 366 350 3.83 10.48 9.01 12.19 1399 1 <.0001
M.ref+G6PD—P. malariae infections 651 376 358 395 11.56 9.69 13.79 1162 1 <.0001
M.ref+G6PD —Year 717 372 355 391 11.17 9.46 13.20 1244 1 <.0001
M.ref+G6PD—Age 4840 117 1.1 123 1.22 113 1.31 30 1 <.0001
M.ref+G6PD—Hemoglobin 661 384 366 402 1259 10.53 15.05 1249 1 <.0001
M.ref+Semester—P. malariae infections 884 377 362 394 11.76 10.09 13.69 1574 1 <.0001
M.ref+Semester—Year 1117 3.56 341 3.72 9.54 8.38 10.86 1677 1 <.0001
M.ref+Semester—Age 5458 1.23 1.17 1.30 1.31 1.23 1.40 64 1 <.0001
M.ref+Semester —Hemoglobin 988 376  3.61 3.92 11.62 10.06 13.42 1734 1 <.0001
M.ref+Exposure—P. malariae infections 1403 366 3.25 3.80 10.46 9.29 11.78 2228 1 <.0001
M.ref+Exposure—Year 1804 3.44 331 3.57 8.51 7.69 9.42 2367 1 <.0001
M.ref+Exposure—Age 8729 1.15 1.11 1.20 1.20 1.14 1.27 42 1 <.0001
M.ref+Exposure —Hemoglobin 1535 3.62 3.49 3.76 10.14 9.05 11.35 2361 1 <.0001
M.ref+P. ovale infections—P. malariae infections 729 388 371 4.06 13.13 11.06 15.60 1410 1 <.0001
M.ref+P. ovale infections—Year 759 3.87 3.71 4.05 13.05 11.02 15.44 1459 1 <.0001
M.ref+P. ovale infections—Age 4256 1.52 1.44 1.59 1.73 1.62 1.86 246 1 <.0001
M.ref+P. ovale infections—Hemoglobin 768 3.85 3.69  4.03 12.79 10.82 15.10 1456 1 <.0001
M.ref: reference model; Size: number of events; RR: risk ratio; OR: Odds ratio; y2: chi-square DF =1; CL: confidential level.
doi:10.1371/journal.pone.0024085.t010

F age <8.12
|
age>=13.6 year < 2004
I age >=0.22
RR =0.23 RR=0.95 RR = 1.42 |
size = 13746 size = 3621 ates s 1881 RR=0.34 age <5.48
size =135 I |
RR=218 RR=3.27
size = 1350 size = 3041

Figure 2. Decision tree generated by Classification and Regression Tree (CART) analysis of risk factors determining the occurrence
of P. falciparum malaria attacks (PFA) per trimester. Figure shows the cut-off values identified by CART that divide the dataset into two. At each
leaf are given the Relative Risk (RR) and the number of events associated with that leaf.

doi:10.1371/journal.pone.0024085.9002
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Figure 3. Effect on relative risk (RR) of modifying the ranges of continuous variables. Graphs show RR for all other possible definitions of
risk group on the explanatory variables, with equal or greater size than the HyperCube® rule. Y-axis indicates the RR. A) Only ranges of Age are
modified: 102 choices among 4,851 possible choices had size equal or greater than 1,689 (size of the HyperCube® rule) and are plotted; B) Only
ranges of previous PMls are modified: 35 choices among 1,035 possible; C) Only ranges of Year are modified: 25 choices among 190 possible; D)
Ranges of both Age and previous PMIs are modified simultaneously: 25,040 choices among 5,020,785 possible; E) Ranges of both Age and Year are
modified simultaneously: 8,912 choices among 921,690 possible; F) Ranges of both previous PMIs and Year are modified simultaneously: 1,110
choices among 196,650 possible. Filled red triangle represents the RR of HyperCube®'s rule (HyperCube®'s risk group), empty black circles represent

the RR of other choices of risk groups.
doi:10.1371/journal.pone.0024085.g003

infection - PMI. Although CART did not identify any significant
threshold for previous PMI, using the median as the cut-off value
gave a significant effect for previous PMI is the univariate logistic
regression, whereby above median previous PMI increased risk of
PFA (P=0.0008, Table 6). Interestingly in the HyperCube® rule
the reverse was found and this is because of the interaction of

Table 11. Effect size of each variable in the rule.

DIELMO NDIOP

All year July December

Loss % Loss Loss % Loss Loss % Loss
Initial Lift 3.71 100% 235 100% 3.78 100%
Age —253 —682% —0.82 —349% —126 -—333%
Village —067 —181% —0.7 —29.8% 0.05 1.3%
Year —-027 —-73% —0.07 —3.0% —0.06 —1.6%
Hb —0.11 —3.0% —7.0% —3.0% —0.09 —24%
Previous PMIs —0.06 —1.6% —0.13 —55% —0.12 —32%
Semester = = = = —143 —37.8%
Total Loss —3.64 —98% -1.79 -76% 291 -77%
Residual Lift  0.07 1.9% 0.56 23.8% 0.87 23.0%
Loss: partial decreases of lift when removing each variable from the rule.
doi:10.1371/journal.pone.0024085.t011
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previous PMI with age: being young and having previous PMI
decreased risk.

Cross-species immunity among different Plasmodium species has
long been suspected and there is evidence of among-species
negative interactions during concomitant infection [14,15]. An
influence of P. malariae carriage on subsequent P. falciparum
infection has been observed before. In Gabon, children infected
with P. malariae presented more often with a P. falciparum infection
and at higher parasite densities [16]. During the follow-up,
subjects who were infected by P. malariae were reinfected by P.
Jalcyparum more rapidly. Such a relationship was also observed in
the Garki project [15,17,18]. Although small scale variation in
mosquito biting rate could generate similar levels of exposure to
each parasite spp., the species infection association was found to be
related to differences in acquired immunity and not to differences
in exposure, suggesting that the levels of immunity to P. falctparum
and to P. malariae were inter-related [18]. More recently, a family-
based study found a strong relationship between P. falciparum
parasite density and frequency of P. malariae infections [19]. P.
falctparum parasite density has previously been shown to be under
human genetic control and linked to the chromosomal region
531 in four independent studies [11,20,21,22]. These results
suggest that individuals genetically susceptible to P. falciparum are
also genetically pre-disposed to P. malarae [19]. Little is known on
the impact of infection by one species on the incidence of disease
of another. The relationships between parasite density and risk of
attributable disease were found to be similar for P. falciparum, P.
vivax and P. malariae in Papua New Guinea, compatible with the
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hypothesis that pan-specific mechanisms may regulate tolerance to
different Plasmodium spp. [23]. Pertinent to our finding here, Black
et al. found that children with symptomatic episodes not only
presented with fewer mixed species infections, but also had fewer
previous P. malarae infections than symptom-free children, as
demonstrated by serology [24]. The induced infection experiments
also provide evidence of the development of some cross-protective
immunity [25]. Interestingly, previous infection with P. malariae has
been previously shown to impact upon a P. falciparum infection, but
with respect to the production of transmission stages and not
clinical presentation [26,27].

Many other rules used this variable confirming that previous
infection by P. malariae is associated with protection against
development of PFA. It is presently impossible to conclude if this
assoclation is a causal one or is due to a correlation to an unknown
factor affecting the risk to develop PFA. As both parasites are
transmitted by the same mosquito species, increased exposure to
one species (P. malariae) might be expected to correlate with
increased exposure to the other (P. falciparum). Hence, spatial
heterogeneity in the exposure to infection could simultaneously
result in increase risk of infection by both parasite spp. Our analysis
did not take into account “number of previous P. falciparum
attacks” (nbpPFA) and so it is possible that the variable previous
PMIs replaces this information. However, in another HyperCube®
analysis, we found that both previous PMIs and nbpPFA are used
in different rules (data not shown), indicating that the previous
infection by the two parasite species is not perfectly correlated.
Thus, it seems probable that the parasite species effect reflects
some impact of P. malariae infection on the development of
immunity against P. falciparum. In our study, there were from 0 to
44 P. malariae infections per person prior to a clinical P. falciparum
episode. Hypercube® identified that having few P. malariae
infections (less than 10) was a potent risk factor, which excluded
about 10% of events from those individuals who were often
infected with P. malariae. The fact that a threshold of ten infections
was identified as eliminating this risk factor is clearly not an exact
threshold, but generally reflects the weakly immunising effect of P.
malariae infection, reminiscent of that induced by P. falctparum
infection. Furthermore, whereas eighteen out of 51 rules used the
number of previous P. malariae infections, none used the number of
previous P. ovale infections, illustrating that infection by the two
Plasmodium species differently affects susceptibility to P. falciparum
attacks. However, it should be noted that the absence of an effect
of P. ovale on clinical P. falciparum attacks does not mean that P.
ovale definitively has no effect. It may be the case that additional
variables may be required to be taken into account. Indeed, in the
multivariate model selection analysis (Table 9), previous P. ovale
infection is significantly as a risk factor when a minimum of 6
explanatory variables are used. In our HyperCube® analyses, we
limited the number of variables in a single rule to four. This
differential species effect is currently under investigation.

We compared the rule with the model identified by classical
logistic regression method. Although we aimed to include all
possible interaction terms among variables studied in multivariate
analysis, over-dispersion of the data made this unstable. In
addition, the running time would have been unacceptably long,
taking ~5678 days for one a common computer to analyze about
10° models (3 variables with around 10° cases for each). With
HyperCube®, it took 23 to 27 hours to analyze 35 variables. In
addition, the results of testing interaction among more than 2
variables by classical methods are difficult to interpret. We
demonstrated that by omitting or adding other variables identified
by other statistical methods or varying the cut-off value of
continuous variables, the rule still performed best. Although some
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rules had higher RR, they have lower “Size”” or more complexity
and less significant P value. Among rules with “Size” equal to or
greater than 1,689, the same as the reference rule, the reference
rule gave the highest RR.

Interestingly, the rule identified by classical method covered
0.67% of total positive events whereas one HyperCube® rule
explained 13.4%. When considering the minimized rules, we
could identify risk factors that could explain 67% of total positive
events, a percentage of coverage that would never be achieved by
classical methods. While the classical method looked at events in 2
dimensions, HyperCube® identified rules in multi-dimensional
space. Although all factors identified by the classical method are
risk factors for development of PFA, different groups of people
developed PFA for different reasons. The rule identified by the
classical method involved only individuals who had all the risk
factors. We could only separate groups of individuals with different
risk factors when looking at the events in multi-dimensional space.

Analysis by CART identified a combination of variables, Age
and Year, that increased risk of PFA. Both of these variables and
the range of these variables were very similar to those identified by
HyperCube®. That CART failed to detect Hemoglobin or
previous PMIs likely reflects the differences in methodologies of
the two techniques. CART uses a sequential approach first
splitting the data set according to the most significant variable and
identifying the threshold value of that variable that maximizes the
discrimination in the two subsets of data (i.e. least PFA vs. most
PFA). Then, CART will further sub-divide each subset by the next
most significant variable that leads to maximum discrimination.
This approach thus leads to canalization of the data along different
pathways, resulting in a decreased sample size for comparison. In
addition, optimization by maximum discrimination at each level
may paradoxically lead to an erroneous sub-optimal end-point
many levels down. HyperCube®, by contrast, analyses all variables
simultaneously with no sequential selection that leads to such loss
of power or canalization along a potentially eventual sub-optimal
pathway.

One limitation arises when studying qualitative variables with
more than two levels. It is not possible for HyperCube® to
combine levels having a similar effect in the same rule. One
alternative would be to use analysis of variance, as we previously
did in our classical analysis for qualitative variables with more than
2 levels, to detect modalities having a similar effect on the
dependant variable and group them a priori.

Another more practical problem comes from the efficiency of
the learning process. This process is more efficient in explaining
the minor outcome, which is sometimes not the standard way of
thinking. For instance, we could identify only factors increasing the
risk of PFA, but not those conferring protection against malaria,
which is the classical choice in malaria field. The positive events
for PFA made up ~15% of the total number of events. To identify
factors conferring protection (negative PFA), of which the
prevalence was 85%, would have presented a vastly increased
analytical challenge and yielded many, many more rules.

The choice of minimum group size for the outcome variable
can, however, generate problems for biological interpretation. IFor
example, here we observe that hemoglobin AA (normal hemoglo-
bin) increases risk for development of PFA compared to the
mutated sickle form, AS, which is known to confer protection.
Importantly, we cannot conclude from our analysis that AS
confers protection. In general, care must be taken in interpreting
the direction of the effect and further specific analyses should be
performed prior to establishing formal conclusions.

Repeated measures and potential pseudo-replication of events
from the same individual are difficult to take into account. Whilst
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this can be accounted for a posteriors in confirmatory classical
analyses, this cannot be currently taken into account in
HyperCube®. For the rules obtained, the full information on the
number of events and the number of people contributing to those
events can be provided, as done here. In addition, with regard to
use of human genetic factors as explanatory variables, bias due to
population stratification is difficult to take into account in
HyperCube®. Such a bias needs to be secondarily tested on
validated rules using classical methods.

A final limitation is that HyperCube® requires huge computa-
tional power and needs to use massive parallel processing. Today,
HyperCube® is accessible as a web based software that requires no
specific learning skills, though it requires significant computing
power provided through SaaS architecture. Currently HyperCu-
be® is used on various complex problems [7]; we now report an
analysis of epidemiological data using this algorithm. HyperCuhe®
classified events or individuals into high and low risk groups
defined by combinations of variables. It efficiently sub-stratified
quantitative variables to optimize the effect. In addition, it was
able to identify interactions among the variables. These tasks are
not easy to perform using standard data mining methods.
HyperCube® is very useful in handling large datasets with
complexity of the dependant variable, such as found in large
epidemiological studies and genetic studies. We have proved that
the rules identified by HyperCube® are the optimal in the dataset
and that no other methods can find them in a reasonable time.
Search of local over density in m-dimensional space, explained by
easily interpretable rules, is thus seemingly ideal for generating
hypotheses for large datasets to unravel the complexity inherent in
biological systems. Hypotheses generated by this data mining
program should be validated using classical statistical methods
and/or by biological experimentation. Further statistical analyses,
to provide adequate description and inference on the sub-
population identified in a rule, have to be performed by using
specific models (e.g. Generalized Estimating Equations [28] or
Generalized Linear Mixed Models [29] to take into account
repeated measures and/or genetic covariance between individuals,
or distribution of the dependent variable).

Materials and Methods

Ethics statement

The project protocol and objectives were carefully explained to
the assembled village population and informed consent was
individually obtained from all subjects either by signature or by
thumbprint on a voluntary consent form written in both French
and in Wolof] the local language. Consent was obtained in the
presence of the school director, an independent witness. For very
young children, parents or designated tutors signed on their
behalf. The protocol was approved by the Ethical Committee of
the Pasteur Institute of Dakar and the Ministry of Health of
Senegal. An agreement between Institut Pasteur de Dakar, Institut
de Recherche pour le Développement and the Ministére de la
Santé et de la Prévention of Senegal defines all research activities
in the study cohorts. Each year, the project was re-examined by
the Conseil de Perfectionnement de I'Institut Pasteur de Dakar
and the assembled village population; informed consent was
individually renewed from all subjects.

Populations

The populations studied come from two family-based village
cohorts, Dielmo and Ndiop, in Senegal. These populations have
been recruited for a long-term immunological and epidemiological
study [8]. Malaria transmission intensity differs between the 2
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villages because of the presence of the river in one of them that
offers a mosquito breeding site all-year round.

Research stations have been installed in the villages with full-
time nurses and paramedical personnel. Almost all fever episodes
were reported to the clinics with blood smears checked for malaria
parasites. The outcome of interest is a Plasmodium falciparum
malaria attack (PFA). PFA was defined as a presentation with
measured fever (axillary temperature >37.5°C) or fever-related
symptoms (headache, vomiting, subjective sensation of fever)
associated with 1) a P. falciparum parasite/leukocyte ratio higher
than an age-dependent pyrogenic threshold previously identified
in the patients from Dielmo [30], ii) a P. jfalciparum parasite/
leukocyte ratio higher than 0.3 parasite/leukocyte in Ndiop. The
threshold was used because of high prevalence of asymptomatic
infections in the populations, as occurs in regions endemic for
malaria.

Some explanatory variables are time-dependent and were
therefore evaluated for each trimester. These included current
age, experience of exposure to other Plasmodium spp. (Plasmodium
ovale and Plasmodium malariae) before the current trimester defined
by the cumulated number of previous infections, the correspond-
ing year and trimester, time spent in the village during the current
trimester. Other variables are individual-dependent including sex,
geographic location (e.g. village, house), and genetic profiles (c.g.
blood type, hemoglobin type, Glucose-6-phosphate dehydrogenase
(G6PD) deficiency status (genotype and Enzyme activity). All
variables are summarized in Table 1 and 2.

Mutation characterization

Sickle cell mutation and alpha-globin 3.7 deletion were typed as
described [31]. G6PD mutations and ABO polymorphisms were
typed by PCR-RFLP, SNaPshot® (Applied Biosystems, Foster
City, USA) or TaqMan SNP genotyping assays (ABI Prism®-7000
Sequence Detection System, Applied Biosystems, Foster City,
USA) according to the manufacturer recommendation. Primers,
probes and restriction enzymes used are shown in Table 12. PCR
conditions will be sent on request. ABO polymorphisms were
selected to differentiate the A, B and O alleles [32].

HyperCube® data mining algorithm

The HyperCube® technology is accessible as a web based
software that requires no specific learning skills, though it requires
a significant computing power provided through a SaaS
architecture (Institute of Health & Science, Paris, France). A
hypercube is a subspace defined by a combination of conditions,
each condition being either a range or a modality of a continuous
or discrete variable. A hypercube has various characteristics: its
dimension, the number of variables involved; the “Lift”, the
measure of the over density compared to the whole database, the
“Size”, the number of points included in the hypercube.

After defining the dependent variable, HyperCube® program
generates a series of rules by exhaustively exploring the space of
the random variables, generating optimal subspaces significantly
enriched with the occurrence of events, and defining for each
interesting subspace, its explicative variables and their corre-
sponding values. A rule is a set of a limited number of continuous
and/or categorical variables and their associated values. A search
by HyperCube® program is divided in 3 steps:

(i) A stochastic exploration of the space of random variables: Subspaces
are exhaustively generated following this procedure: One
point is randomly chosen as a germ (a starting point) in the
m-dimensional space defined by the m explanatory variables;
after a 2™ point is randomly selected to form a segment.
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These two points correspond to apical points of a starting
subspace having a hypercube design and represent the
diagonal of this hypercube. This diagonal (jointly the volume
of the hypercube) will be optimally increased. Each subspace
1s selected depending on two constraints: its size, the number
of events included in the subspace, and its purity, the
percentage of positive events in the subspace. To define
explanatory variables, the corresponding axe for each
variable delimiting the subspace is suppressed, and the
subsequent subspace tested for satistying the previous
constraints. The variables for which the corresponding axe
must be present to satisfy these constraints are the
explanatory variables. The subspace is cancelled if it does
not satisfy the constraints defined by the user and a new
subspace is generated.

(i)  An optimization of the characteristic of the hypercube: The volume of
each initial hypercube selected at the first step is locally
maximized depending on a Z score using genetic algorithms,
and always constrained to a minimum purity.

(1)  Validation of the rule using a non-parametric approach: The Z score
of the optimized hypercube is compared to those generated
by a random permutation of the dependant variable.

For exhaustiveness, these three steps are repeated until all points
have been used as starting point and all the events have been
studied; ie. all the events in the learning dataset have been
included in at least one rule. The user can stop the learning
process at any time and know the coverage of his exploration. Due
to human limitations in understanding complex rules, the maximal
number of explanatory variables inside each rule can be fixed,
thereby defining complexity. HyperCube® uses an exhaustive non-
parametric and non-Euclidean methodology, it does not use
proximity between events but only generates subspaces in which
events are present or not.

We have first to define variables to introduce into the learning
data set. If necessary, the outcome variable is transformed into a
dichotomous variable. In our case, the number of clinical P.
Jalcyparum attacks by trimester was divided into two groups: ‘“no
attack during the trimester”, and “at least one attack during the
trimester”. This is done on a local computer using MATRIX
program with two main functions: “Simple lift” and “Correla-
tion”. “Simple lift” classifies variables according to their first order
effect and has 3 major roles: to verify consistency of the data, to
detect circular variables and to detect variables with pivot points
that define threshold values for the impact of a variable on the
outcome. “Spearman (or Pearson) Correlation” associated with
“Simple lift” will help to define which variable to choose amongst
the correlated variables. Sometimes, a combined variable from
correlated variables is the best choice. The matrix is loaded onto
the supercomputer after defining on which part of the database the
learning process will be performed. In our case, we chose the
learning set of Dielmo cohort. We defined on which group of the
dichotomous variable the learning process would be carried out, in
our case “‘at least one attack during the trimester”. Iirst, we
constructed a Signal Intensity Graph (SIG), which defines the
relationship between the two main parameters of a learning
process, “purity” and “size”. This graph shows the value of the
“purity” for 5 different “sizes” defined from data of the database
and of a randomized database. This graph can be downloaded
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onto the local computer. After defining the last parameter,
“Complexity”, which defines the maximum number of variables
per rule, the learning process is run. From the total number of
rules, a set of minimized rules is obtained from an iterative process.
In the first step, the rule explaining the most number of events is
chosen and at each of the following steps the rule explaining the
maximal number of events in the remaining event space not
included in the first rule is added. The iterative process is stopped
when all the events explained by the total number of rules are
explained by the set of minimized rules. The total number of rules
and/or the minimized rules can be downloaded onto the local
computer to perform further analysis.

Statistical analysis
We used Classification and Regression Trees (CART) methods
[5] to split continuous explanatory variables to categories. We

performed a Logistic Regression Model to estimate overall RR
and OR of combinations of factors [33,34].

Identity-by-descent (IBD)

We estimated multipoint IBD using genome wide microsatellite
genotypes by MERLIN [35]. We defined “IBD-based mean
genetic relatedness” for an individual to the rest of the population,
based on IBD probabilities, as the mean of his kinship coefficients
with all  other individuals=(1/(N=1)x(l/M)xY; Y,
[0.5xP1+P2],,, =1, ..., N=1 and m=1, ..., M where N is the
number of individuals genotyped for the microsatellite markers in
the population, M the number of microsatellite markers
P1 = probability of sharing 1 allele and P2 = probability of sharing
2 alleles.

Pedigree-based mean genetic relatedness

The genetic covariance is computed as 1{A,B) = 2 X coancestry(A,B)
where the coancestry between A and B is calculated referring to this
following method (Falconer and Mackay 1996) [36]: coances-
(AB) =Y (172" Y XA+ Copmon Aucesto)) Where p is the number of
paths in the pedigree linking A and B, n(p) the number of
individuals (including A and B) for each path p and Ix is the
coancestry between the two parents of X, which is set to 0 if X is a
founder. We defined the mean relatedness coefficient for an
individual to the rest of the population, based on the pedigree, as
the mean of his kinship coefficients with all other individuals. The
variable named “Pedigree-based mean genetic relatedness” was
defined by this measure.
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Abstract

Despite considerable success of genome wide association (GWA) studies in identifying causal variants for many human
diseases, their success in unraveling the genetic basis to complex diseases has been more mitigated. Pathogen population
structure may impact upon the infectious phenotype, especially with the intense short-term selective pressure that drug
treatment exerts on pathogens. Rigorous analysis that accounts for repeated measures and disentangles the influence of
genetic and environmental factors must be performed. Attempts should be made to consider whether pathogen diversity
will impact upon host genetic responses to infection. We analyzed the heritability of two Plasmodium falciparum
phenotypes, the number of clinical malaria episodes (PFA) and the proportion of these episodes positive for gametocytes
(Pfgam), in a family-based cohort followed for 19 years, during which time there were four successive drug treatment
regimes, with documented appearance of drug resistance. Repeated measures and variance components analyses were
performed with fixed environmental, additive genetic, intra-individual and maternal effects for each drug period. Whilst
there was a significant additive genetic effect underlying PFA during the first drug period of study, this was lost in
subsequent periods. There was no additive genetic effect for Pfgam. The intra-individual effect increased significantly in the
chloroquine period. The loss of an additive genetic effect following novel drug treatment may result in significant loss of
power to detect genes in a GWA study. Prior genetic analysis must be a pre-requisite for more detailed GWA studies. The
temporal changes in the individual genetic and the intra-individual estimates are consistent with those expected if there
were specific host-parasite interactions. The complex basis to the human response to malaria parasite infection likely
includes dominance/epistatic genetic effects encompassed within the intra-individual variance component. Evaluating their
role in influencing the outcome of infection through host genotype by parasite genotype interactions warrants research
effort.
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Introduction

The genomics era has heralded a plethora of Genome Wide
Association (GWA) studies that have successfully identified genetic
determinants of many medical disorders [1-4]. Heritability
analyses provide an indication of the genetic contribution
underlying a specified phenotype. Whereas in the case of
monogenic diseases genetic determinants in GWA studies account
for the estimated heritability, there is considerable missing
heritability in more complex diseases [5]. This had led to an
intense debate of the potential causes for this, citing amongst
others the potentially important roles of epistasis, gene-environ-
mental interaction and the confounding effect of population

@ PLoS ONE | www.plosone.org

specific genetic architecture [6]. In addition to genetic explana-
tions, one potential source contributing to the missing heritability
concerns the phenotype; poorly resolved phenotypes lower the
power to detect genetic variants [7].

The application of GWA studies to infectious diseases has only
more recently developed [8-10], but is likely to become
increasingly implemented [11]. Infectious disease phenotypes
are, however, composite phenotypes reflecting both the human
and pathogen genetics and their interactions. Thus, the phenotype
“problem™ is likely to be much greater than in non-infectious
diseases. Over the long-term, host-pathogen co-evolution will
maintain genetic variation if the additive genetic value of a host
genotype changes when parasites evolve in response to the

November 2011 | Volume 6 | Issue 11 | e26364



selection induced by the host [12]. This, thus, may be apparent in
the local genetic architecture of the human genetics determining
specific traits, where populations have undergone widely different
exposure to the pathogen. In addition, despite the current efforts
to untangle the genetic basis to complex diseases [13], no attention
has been paid to the impact of radical short-term changes in the
pathogen population genetic structure, such as those induced by
drug pressure, on the human genetic contribution to infection
phenotypes.

In recent years, particular attention has been paid to addressing
the human genetic susceptibility and resistance to Plasmodium
Jalctparum malaria [14-16]. Sickle cell trait has long been
recognized as having a protective effect against severe disease
[17,18] and this provided a positive control for the first GWA
study of severe malaria [19]. Following this success and in the
knowledge that the human genetic response to malaria parasite
infection is complex and polygenic [20], it is now widely admitted
that well-conducted epidemiological studies that take into account
confounding environment factors are required [21]. In general,
the requisite large sample size for GWA studies necessarily means
combining participants from many sites. Whilst among-site
variation in human population sub-structure and in the intensity
of transmission can in principle be taken into account, such
confounding variation may have more subtle effects. Variation in
the intensity of transmission, for example, not only has discernable
effects on the development of immunity, it also influences parasite
genetic diversity [22].

To date genetic analyses have implicitly assumed that any
variation brought about by parasite diversity will only have a
minor impact, especially with very broad binary phenotypes such
as severe versus mild malaria. This has been to some extent
confirmed in animal models, but significant host-by-parasite
interactions have been observed [23]. In contrast to such extreme
binary disease phenotypes, there has been increasing interest in
quantitative phenotypes that describe the outcome of infection
[16,24-27]. Such phenotypes focus on the actual biology of the
parasite within the human host, rather than the extreme disease
phenotype, but may be more affected by changes in parasite
diversity. Parasite genetic variation in growth rate, transmissibility
and other biological phenotypes is well recognized [28] and thus
quantitative malaria phenotypes may be influenced strongly by
parasite genetics. Indeed, it was recently demonstrated that there
was a parasite genetic contribution to time to clearance following
treatment [29]. Transmission intensity influences the number of
different parasite clones within an infection, which itself can
impact on quantitative phenotypes [30]. Moreover, malaria
parasites exhibit extensive phenotypic plasticity and quantifiable
parasite phenotypes are affected by the immunological and
hematological state of the host [31]. Finally, parasite populations
evolve over time, especially in the face of persistent drug pressure
and there has been recent suggestion that drug resistance is linked
to or will select for virulence of the parasite [32,33]. All such
sources of variation in the parasite population may significantly
alter the observed outcome of infection and thus cloud the signal
in the genetic analyses.

Here we address the extent to which malaria phenotypes in a
longitudinal family-based epidemiological study are influenced by
the changes in anti-malarial drug treatment and in transmission
intensity from 1990 to 2008. We estimate the heritability of two P.
Jalciparum-related  phenotypes: the number of clinical malaria
episodes (PFA) [16] and the proportion of infections carrying
gametocytes (parasite stages that can infect mosquitoes) (Pfgam)
[27,34]. Heritability is an important parameter that determines
statistical power in gene-mapping studies that use pedigree
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information. A large heritability implies a strong correlation
between phenotype and genotype, so that loci with an effect on the
phenotype can be more easily detected [35]. These two
phenotypes were chosen to be representative of different types of
phenotype: PFA will be strongly influenced by variation in
transmission intensity, whereas Pfgam will more strongly reflect
the host-parasite interaction. In addition to calculating the
heritability, we estimate the shared environment (here house)
and intra-individual (also known as “permanent environment”)
effects, including maternal effects.

Materials and Methods

Ethics statement

The project protocol and objectives were carefully explained to
the assembled village population and informed consent was
individually obtained from all subjects either by signature or by
thumbprint on a voluntary consent form written in both French
and in Wolof, the local language. Consent was obtained in the
presence of the school director, an independent witness. For very
young children, parents or designated tutors signed on their
behalf. The protocol was approved by the Ethical Committee of
the Institut Pasteur de Dakar and the Ministére de la Santé et de la
Prévention of Senegal. An agreement between Institut Pasteur de
Dakar, Institut de Recherche pour le Développement and the
Ministére de la Santé et de la Prévention of Senegal defines all
research activities in the study cohorts. Each year, the project was
re-examined by the Conseil de Perfectionnement of the Institut
Pasteur de Dakar and the assembled village population; informed
consent was individually renewed from all subjects.

Study site and study population

The study was conducted in the malaria research project carried
out since 1990 in a family-based cohort in Senegal, which has
perennial holoendemic transmission (high force of infection). This
site 18 managed by a tripartite agreement between the Institut
Pasteur de Dakar, the Institut de Recherche pour le Développe-
ment and the Ministére de la Santé et de la Prévention of Senegal.
A field research station with a dispensary run by nurses was
constructed for the program and the health care is free-of-charge
for the volunteers. All participants were asked to come to a study
clinic for all their healthcare needs. Every person satisfying
adhesion conditions could become a volunteer and every volunteer
could leave the study at any time, therefore forming a dynamic
open cohort. Further details of the study sites and adhesion criteria
are previously described [36,37].

The family structure (pedigree) was available after a demo-
graphic census performed for every volunteer at his adhesion in
the project. A verbal interview of mothers or key representatives of
the household was used to obtain information on genetic
relationships between studied individuals, their children, their
parents, and to identify genetic links among the population. The
total pedigree comprised 828 individuals, including absent or dead
relatives, composed of 206 nuclear families (father — mother
couples with at least one child) with an average of 3.6 children
cach. In addition, previous typing with microsatellites has enabled
the construction of a pedigree based on Identity-by-Descent (IBD)
using MERLIN [16,38].

Data collection - P. falciparum malaria phenotypes

The parasite phenotypes analyzed were: (i) the number of
P. falciparum clinical episodes per trimester (PFA) and (i) the
proportion of clinical episodes that were positive for gametocytes,
parasite stages transmissible to mosquitoes (Pfgam). A malaria
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episode is defined as a clinical presentation with measured fever
(axillary temperature >37.5°C) or fever-related symptoms (head-
ache, vomiting, subjective sensation of fever) and with a blood
smear positive for P. falciparum at a parasite/leukocyte ratio higher
than the age-dependent pyrogenic threshold previously defined by
Rogier et al. [39]. For PFA, we first excluded any observations of
each trimester for which the individual concerned was not present
for at least 30 days (= 1/3 of the trimester). Individuals satisfying
presence conditions without any P. faleiparum clinical episode in a
trimester were classified as PFA = 0; individuals satisfying presence
conditions with 1 or more malaria clinical episodes in a trimester
correspond to person-trimester with PFA= {1, 2, 3, 4, or 5}.
Repeated clinical presentations within 15 consecutive days were
not considered to be independent and were excluded from the
analyses, unless there was a parasite negative blood smear between
two clinical episodes. In all cases parasite positivity was established
as follows. Thick and thin blood films were prepared and stained
by 3% Giemsa stain. Blood films were examined under an oil
immersion objective at X1000 magnification by the trained
laboratory technicians and 200 thick film fields were examined
to count the number of asexual and gametocyte parasite stages.
The proportion of clinical episodes carrying gametocytes excluded
any repeated clinical presentations within 15 days of previous
treatment.

The following covariates were considered: sex, house, secason (4
categories: Jul-Sep; Oct-Dec; Jan—Mar; Apr—Jun) nested within
year, year (5 categories: 1990 to 1994 for quinine period, 5
categories: 1995 to 1999 for 1* chloroquine period, 4 categories:
2000 to 2003 to the 2" chloroquine period, 3 categories: 2004 to
2006 for fansidar period, 3 categories: 2006 to 2008 for ACT
period) and logarithm of number of days present in each trimester.
For Pfgam, we additionally considered the presence of other
Plasmodium spp. parasites (Plasmodium ovale and Plasmodium malariae;
2 categories: yes/no) and time since last treatment. For Pfgam, age
was found to be best described as a continuous variable in each
drug period. By contrast, age classes <5 years, [5-15[, [15-35]
and =35 years best described the effect of age on PFA. Only
individuals for whom there was pedigree information were
included in the analysis.

Data analyses

From 1990 to 2008, four different drug regimens were
implemented: Quinine from 1990 to 1994, Chloroguine from 1995
to 2003, Fansidar from 2004 to mid-2006 and Artemisinin-based
combination therapy (ACT) from mid-2006 to 2008. The chloroquine
drug period was divided into before (CQ]1) and after (CQ2) 1999.
This was done both to reduce the chloroquine period data set size
and to examine the chloroquine periods prior to and during the
observed emergence of parasite resistance to this drug [40]. The
statistical analyses were performed independently for each of the
five drug treatment periods.

We implemented Generalized Linear Mixed Models (GLMM)
using SAS 9.1.3 (SAS Institute Inc., Cary, NC, USA) procedures
GLIMMIX, MIXED and INBREED [41-43]. GLMM allows
fitting of mixed models with correlated random effects, such as
those due to genetic relationships. Random effects are assumed to
be normally distributed, and conditional on these random effects,
the exogenous variable had (i) a Poisson distribution when the
studied phenotype was number of P. falciparum clinical episodes per
trimester (PFA) or (ii) a Binomial distribution when the studied
phenotype was the proportion of clinical episodes that were
positive for gametocytes (Pfgam). Genetic covariance, or relation-
ship among all pairs of individuals in the study and among their
parents or more distant ancestors, were stored in a squared matrix,
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the Pedigree-based genetic relatedness matrix, of dimension AXA
where A is the total number of individuals in the pedigree
including those with missing phenotypes. Genetic covariance
between two individuals was computed using the pedigree
information as described below:

For A and B, a given pair in a pedigree, the genetic covariance
is computed as HA,B)=2x coancestry(A,B) where the coancestry
between A and B is calculated using the method presented in
Falconer and Mackay (1996) [44]: coancestry(A,B) =X,(1/ " % (1 +
I Common ncesto) Where p is the number of paths in the pedigree
linking A and B, n(p) the number of individuals (including A and B)
for each path p and Ix is the inbreeding coeflicient of an individual
X, which is equal to the coancestry between the two parents of X. Ix
is set to 0 if X is a founder. This matrix was built using INBREED
procedure of SAS and then integrated into the models [42].

The objective of the model used for the analysis was to estimate
and separate different sources of variation underlying the total
variation observed for the phenotype: the relative contributions of
human genetics (additive genetic variance), intra-individual vari-
ance, maternal effects, house effects and unexplained residual
variation. The repeated measurements design allows us to separate
additive genetic variance from intra-individual variance. The
occurrence of related individuals living in different houses allows
separation of additive genetic variance from that due to shared
household. Therefore, the random part of the mixed models
included (i) the house identification variable as random effect
assuming independence between houses to capture variance due to
houses, (ii) the individual identification variable twice: a first time to
capture the additive genetic variance by assuming non-indepen-
dence between individuals and using the subpart of the Pedigree-
based genetic relatedness matrix concerning individuals for which
the phenotype was observed as covariance matrix between all pairs
and a second time to capture other individual variances (e.g. intra-
individual effects) assuming independence between individuals and
(i11) the mother identification variable to capture maternal effects,
assuming non-independence between mothers and offspring, using
the subpart of the Pedigree-based genetic relatedness matrix
concerning mothers of individuals for which the phenotype was
observed. The unexplained residual variation was then deduced.

PFA was analyzed using a Poisson regression model, which
explicitly takes into account the non-negative integer-valued aspect
of the dependent count variable. Therefore a GLMM with a
Poisson distribution was fitted using SAS proc GLIMMIX and log
as the link function between E(PFA | covariates) and a predictor that
is linear. Initially a maximal model with all covariates was fitted
and a minimal adequate model including only significant
covariates was obtained. The effect of each covariate on the
outcome variable was estimated taking into account both
inbreeding, via the genetic relatedness matrix integrated in the
SAS Proc GLIMMIX using the LDATA option, and repeated
measures, as well as house effects.

The vector of random effects was assumed to follow a
multivariate normal distribution:

g ANO'§ 0 0 0 0
m 0 Ay, 0 0 0
y=|0b ~ N |0;]0 0 Iyo? 0 0
0 0 0 Iya? 0

€ 0 0 0 0 I,c?

where g is the additive genetic effect, m is the maternal effect, 4 is
the intra-individual effect, ¢ is the house effect and ¢ is a random
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residual; rrgg s (7,”2 s ()';,2 s (7[2 s 0'32 are the additive genetic, maternal,
intra-individual, house and residual variances, respectively. Ay
represents the matrix of additive genetic relationships between
individuals, with dimension NxN, A, represents the matrix of
additive genetic relationships of mothers to offspring, with
dimension MxM, Ly is an identity matrix with dimension NxN,
17 1s an identity matrix with dimension X, and I, is an identity
matrix with dimension nxn; and n = Xn; where n; is the number of
measure for individual z, NV is the number of individuals for which
the phenotype was observed and M the number of their mothers.

The heritability is defined by ¢,°/(c,” + 0,” + 0,” + 0. + 0.7

For each variance component, an estimate was also generated
for each individual contributing to the overall component. Thus,
for the additive genetic and intra-individual effects, an estimate
was established for cach person. Similarly for house and maternal
effects, estimates were established for each house and mother.

Pfgam was analyzed by fitting a GLMM with a Binomial
distribution, using SAS proc GLIMMIX [41]. The distribution of
random effects and corresponding indices were defined as for PFA
in the first analysis.

Results

Data description and epidemiological analyses of key
environmental factors

The first composite phenotype considered was the number of 7.
JSalctparum clinical episodes per person per trimester (PFA). Over the
19-year study period, 713 individuals were present from between
one and 75 complete trimesters generating 22,169 person-
trimesters of presence. There were a total of 5,680 clinical P.
Jaleiparum episodes. The maximum number of PFA per person-
trimester was five and the median was one. 485 individuals had at
least one PFA positive trimester during the study period. The
maximum number of clinical episodes per person per drug period
was 40 and the median was two. Table 1 summarizes the data by
drug period and additionally gives the mean relatedness (by 1IBD)
of the individuals present in each period. The number of clinical
episodes decreased with age (P<<0.0001) and this decrease was
most accurately described by 4 groups (<5 years, 5—14 years, 15—
34 years and >35 years old). Year and season also had a consistent
influence on the number of clinical episodes (P<<0.0001). The
incidence rate of clinical episodes per trimester decreased
significantly following the introduction of Fansidar; this change
in the incidence rate is most evident in the most susceptible age
group (<5 years of age) (Figure 1).

The second composite phenotype considered was the number of
P. falciparum clinical episodes that were positive for gametocytes,
the parasite stage transmissible to mosquitoes. The prevalence of
gametocytes at clinical presentation increased from 37% in the
quinine period to 48% in both the chloroquine periods before
decreasing to 17% and 12% in the Fansidar and ACT periods
respectively (Table 1). The percentage of individuals ever
gametocyte positive when having a clinical P. falciparum episode
likewise increased from 50% in the quinine period to 75% in the
second chloroquine period before decreasing to 37% and 25% in
the Fansidar and ACT periods respectively. Age, as a continuous
variable, was found to negatively associate with gametocyte
presence during the quinine (P=0.02), and the two chloroquine
periods (P<<0.001). Yearly variation had a significant impact in all
periods except ACT. An increasing number of days of individual
presence increased gametocyte carriage in the CQIl period
(P=10.02) and increasing time since last drug treatment increased
gametocyte carriage in the Fansidar period (P=0.02).
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Heritability analyses — (i) number of P. falciparum clinical
episodes per trimester

A. Additive genetic, intra-individual, maternal and house
variance components. The narrow sense heritability of PFA
was estimated by drug period. During the quinine period there
was significant heritability, estimated at 46%, but which decreased
and became non-significant in the subsequent drug treatment
periods (Figure 2 and Table 2). Conversely, the intra-individual
effect increased significantly following the quinine period,
accounting for over 50% of the observed variance in PFA.
There was no house effect during any period (Figure 2 and
Table 2).

The intra-individual effect includes, amongst other parameters,
any maternal contribution, whether genetic or environmental. In
the case of malaria parasite infection, for example, maternal
antibodies protect the newborn during the first few months of life
and thus the mother transfers her acquired immunity. In addition,
infection during pregnancy can lead to low birth weight with
consequent effects on health of the newborn and potentially later
in life [45]. Thus, as classically performed in heritability analyses,
we consequently evaluated the contribution of a maternal effect in
addition to the additive genetic and intra-individual effects. There
was no maternal effect during any drug period.

B. Additive genetic and intra-individual estimates for
individuals. Estimates for the additive genetic variance strongly
correlated for all the three drug periods for which the total additive
genetic variance was not zero (i.e. thus for which there were non-
zero genetic estimates per individual). There were only individual
significant estimates for the additive genetic effect during the
quinine period. Nineteen individuals had significant estimates
during the quinine period; fourteen of these were present during
more than one drug period but none had significant estimates
subsequent to the quinine period. By contrast, five of them had
significant estimates for the intra-individual effect in periods
subsequent to the quinine period. Overall, individual estimates of
genetic effects were highly correlated with intra-individual effects
by drug period when non-zero (i.e. for quinine, CQ1l and CQ2
periods, Table 3) (r=0.73, 0.71 and 0.65 respectively).

By definition, major components of the intra-individual
variance are features that are particular to each individual.
Pertinent to malaria parasite infection would be heterogeneity in
exposure to mosquitoes but that which is independent of any
detectable household spatial effect; i.e. specific individual behav-
iors that lead to differential exposure to mosquitoes. We examined
how the intra-individual estimates for each individual were
correlated over the drug periods. Estimates always correlated in
the drug period that followed, but decreasingly so in subsequent
drug periods (Table 3). Estimation of the individual contributions
to the overall intra-individual effects revealed that 54, 47, 91 and
76 individuals had significant estimates in the CQl, CQ2,
Fansidar and AC'T periods respectively. There were no individuals
with significant estimates during the quinine period. The majority
of these individuals (129 of 191) had a significant estimate in only
one drug period. Fifteen and 47 individuals had significant
estimates in three and two drug periods respectively.

Of the 210 individuals present throughout the 19 year period,
69 had significant intra-individual estimates: fifty individuals in
only one treatment period and the remainder in two (n=15) or
three (n=4) different periods. Figure 3 displays a comparative
scatter plot of intra-individual estimates in all drug periods. For
simplicity, only the 50 individuals with significant estimates during
a single drug period are highlighted: individuals with a significant
estimate in a specific period are denoted as red stars (CQ1), green
squares (CQ2), blue triangles (Fansidar) and yellow circles (ACT)
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number carrying gametocytes (Pfgam).
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Table 1. Data summary for analyses of the number of P. falciparum clinical episodes per person per trimester (PFA) and the

Drug Person- Individuals Mean Number of Pf Individuals % Pfgam Individuals

Period Trimesters present relatedness episodes Pf positive Range positive Pfgam positive Range
Quinine 4080 338 0.0082 1454 234 1-40 37.2 17 1-16
cQ1 5469 405 0.0080 1950 245 1-38 47.1 151 1-26
cQ2 4800 423 0.0081 1481 205 1-38 48.6 155 1-28
Fansidar 3753 417 0.0084 466 148 1-1 171 55 1-5
ACT 4067 487 0.0083 329 135 1-10 12.2 34 1-3

carried gametocytes.
doi:10.1371/journal.pone.0026364.t001

in every graph. In the vertical quinine box column, all points
cluster around zero with respect to the x-axis — there is no intra-
individual effect in the quinine period. This negligible intra-
individual variance component in the quinine period and the
subsequent increase in the following periods can be clearly seen in
Figure 3: the data points are increasingly spread out along the x-
axis from the quinine column through the CQIl, CQ2 and
Fansidar columns. The extreme significant values in the CQ]1 (red
stars), CQ2 (green squares), Fansidar (blue triangles) and ACT
(yellow circles) periods clearly separate from the rest in their
respective drug periods: thus for example the individuals
represented by yellow circles have much larger values than the

1.6

129

0.8 -

06 -

04 -

0.2

Incidence of P. falciparum clinical episodes per person-trimester

Shown are the total number of person-trimesters per drug treatment period in which the number of P. falciparum clinical episodes occurred, the number of individuals
present, their overall genetic relatedness (IBD), the number having a clinical episode, the range in the number of episodes per person, the percentage of these episodes
that were positive for gametocytes, the number of individuals ever carrying gametocytes during a clinical episode and the range in the number of times individuals

others in the ACT Y-axis row, whereas these same individuals do
not differ from the rest in the CQIl, CQ2 and Fansidar Y-axis
rows. This shows in detail how individuals with much higher or
lower numbers of P. falciparum episodes (very positive or very
negative values) have so in only single drug periods. Interestingly,
the degree to which the significant points separate from the rest
appears to increase with time (i.e. from CQ1 through ACT); the
blue triangles (Fansidar) and yellow circles (ACT) are more clearly
separated from the rest in their respective Y-axis rows. This
increase in the intra-individual variance component as displayed
though individual estimates over time is reflected in the
summarized intra-individual variance component in Table 2. This

<5-years-old 6to 15-years-old

16 to 35-years-old > 36-years-old

Figure 1. The incidence rate (mean and SEM) of clinical P. falciparum episodes per person-trimester (PFA) according to age classes
(from left to right on the X-axis) <5 years, [5-15], [15-35] and =35 years that best describe the effect of age on PFA.

doi:10.1371/journal.pone.0026364.g001
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Figure 2. Proportion of variance in the number of clinical P. falciparum episodes per trimester explained by additive genetic (solid
line), intra-individual (dotted line, squares) and house (thin dotted line, triangles) effects.

doi:10.1371/journal.pone.0026364.9002

shows that as the overall incidence rate drops, there is a growing
gap between certain individuals having a high numbers of episodes
and the rest. Comparing across drug periods, not only do period-
specific significant individual estimates become non-significant in
subsequent periods, they seemingly take on increasingly opposed
values. This is most evident for CQI, where the significant
estimates for this period, denoted by red stars, decrease in value
during the CQ2 and Fansidar periods (Figure 3, horizontal row
“ACT”). Similarly for CQ2, significant estimates (green squares)
became less than zero in the Fansidar and ACT periods. This
suggests that individuals with previously very high numbers of
clinical episodes have increasingly fewer numbers of episodes than
the rest. One explanation for this would simply be the acquisition
of clinical immunity due to repeated exposure to the parasite.

As can be seen in Figure 1, age is a reasonable proxy of the
acquisition of immunity and both age and time spent within the
site impact upon incidence rate. However, no single factor was
found to be shared by individuals with significant intra-individual
estimates. L.e. Age, gender and time spent within the village since
inception of the study or during the six months prior to the episode
were not significant variables determining the intra-individual
estimate.

In the knowledge that resistance to chloroquine and then
Fansidar emerged during the respective drug treatment periods, a
potentially confounding factor would clearly be repetitive
presentation of a single infection because of treatment failure.
To evaluate whether the observed increases in the intra-individual
variance was a result of drug treatment failure, we examined
whether individuals with significant individual intra-individual
estimates had a shorter time since previous treatment in the
quinine and chloroquine periods, when incidence rate remained
high and stable. Although the time since previous treatment for
those individuals having significant intra-individual estimates at
any time was shorter than for those never having significant
estimates (P<<0.001), drug period per se had no effect (P=0.31).
Thus, there was no difference in time between infections in the
quinine and 2 chloroquine periods, suggesting that treatment
failure was not causing this significant increase in the intra-
individual variance component.

@ PLoS ONE | www.plosone.org

Table 2. Variance component analyses of the number of P.
falciparum clinical episodes (PFA) according to drug period.
95% 95%
Drug period var.comp std.err Z Pr >Z ClInf  Cl Sup
Quinine
Genetic 0.941 0.384 2450 0.014 0.189 1.693
Intra 0.391 0.247 1.580 0.057 0.152 2343
House 0.030 0.106  0.280 0.390 0.003 8546
residual 0.692 0.016 43410 <.0001 0.662 0.725
Chloroquine 1
Genetic 0.257 0.205 1.250 0.211 —0.145 0.658
Intra 1.106 0.209 5.300 <.0001 0.789 1.664
House 0.039 0.059 0.670 0.252 0.007 85.995
residual 0.603 0.012 50.300 <.0001 0.580 0.627
Chloroquine 2
Genetic 0.281 0242  1.160 0.246 —0.193 0.756
Intra 1.230 0229 5370 <.0001 0.880 1.838
House 0.101 0.109 0.930 0.177 0.026 6.787
residual 0.493 0.011 46.870 <.0001 0.473 0.514
Fansidar
Genetic 0.000 - - - - -
Intra 1.797 0214 8.380 <.0001 1441 2.304
House 0.036 0.059 0610 0.272 0.006 392.83
residual 0.395 0.010 41290 <.0001  0.377 0.415
ACT
Genetic 0.000 - - - - -
Intra 1.759 0.208 8.450 <.0001 1413 2.250
House 0.125 0.096  1.300 0.098 0.042 1.390
residual 0.357 0.008 43.240 <.0001  0.341 0.374
Genetic - additive genetic effect; Intra - Intra-individual effect; House — House
effect.
doi:10.1371/journal.pone.0026364.t002
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Table 3. Correlation of individual estimates of (i) the intra-individual and (ii) additive genetic effects underlying the variation in the
number of P. falciparum clinical episodes according to drug period.

PFA

(i) Intra Quinine CcQ1 CcQ2 Fansidar ACT
Quinine 0.49%%* 0.04 —0.01 0.04
cQ1 0.30%** 0.002 0.04
Q2 0.29%** 0.18*
Fansidar 0.16*
(ii) Genetic Quinine cQ1 cQ2

Quinine DFT @B

cQ1 0.44%%%

*P<0.05,

*p<0,01,

#%p<0,001.

doi:10.1371/journal.pone.0026364.t003
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Figure 3. Comparative scatter plot of the Intra-individual estimates per individual per drug period for those individuals present
throughout the study period. Individuals with significant intra-individual estimates at any period are shown in color: red stars (significant in CQ1),
green squares (significant in CQ2), blue triangles (significant in Fansidar) and yellow circles (significant in ACT).
doi:10.1371/journal.pone.0026364.g003
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Heritability analyses - (ii) prevalence of gametocytes
during clinical P. falciparum episodes

A. Additive genetic, intra-individual, maternal and house
variance components. Heritability for the prevalence of
gametocytes during clinical presentation only approached
significance during the Fansidar period (P=0.057) (Table 4,
Figure 4). By contrast, the intra-individual effect increased
significantly during the chloroquine periods, before becoming
non-significant in the Fansidar and ACT periods. There were no
house or maternal effects.

B. Additive genetic and intra-individual estimates for
individuals. Correlation between estimates for the individual
intra-individual and genetic effects revealed a similar pattern to
PFA: there was significant correlation between estimates in
consecutive drug periods, both with respect to estimates of
individual intra-individual and additive genetic effects, but no
correlation between more distantly related periods (Table 5).
Moreover, individual estimates of the genetic and intra-individual
effects by drug period were again highly correlated when non-zero
(i.e. for Quinine, CQ1, and ACT periods, Table 5) (r=0.79, 0.77
and 0.80 respectively).

Table 4. Variance component analyses of the prevalence of
gametocytes in treated clinical episodes (Pfgam) according to
drug period.

95% CI 95% ClI
Drug period var.comp std.err Z P-value Inf Sup
Quinine
genetic 0.423 0.317 1.340 0.181 —0.197 1.044
Intra 0.196 0272 0720 0.236 0.040 156.760
House 0.000
residual 0.932 0.040 23390 <.0001 0.858 1.015
Chloroquine 1
genetic 0.164 0.195 0.840 0.401 —0.218 0.545
Intra 0.380 0.218 1.750  0.041 0.159 1.814
House 0.000
residual 0.942 0.035 27.300 <.0001 0.878 1.013
Chloroquine 2
genetic 0.000
Intra 0.530 0.119 4440 <.0001 0.356 0.870
House 0.127 0.090 1410 0.079 0.045 1.050
residual 0.936 0.031 30.010 <.0001 0.878 1.001
Fansidar
genetic 0.658 0.346 1900 0.057 —0.021 1336
Intra 0.000
House 0.127 0.219 0.580 0.281 0.021 3389.110
residual 0.773 0.055 14150 <.0001 0.677 0.893
ACT
genetic 0.570 1.224 0470 0.641 —1.829 2970
Intra 0.973 1.035 0940 0.174 0.250 58.229
House 0.070 0.453 0.150  0.439 0.007 2.5E+65
residual 0.593 0.052 11.500 <.0001 0.503 0.708
Genetic - additive genetic effect; Intra - Intra-individual effect; House — House
effect.
doi:10.1371/journal.pone.0026364.t004
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The strongly significant intra-individual variance component in
CO2 was due to 12 individuals, eight of whom repeatedly had
gametocytes and four who rarely presented with gametocytes.
Although the time since previous drug treatment was shorter in
these significant individuals, there was no difference between those
frequently carrying gametocytes and those rarely doing so (mean
32.4 days SEM 2.5 vs. 34.8 days SEM 2.02). There is thus no
indication that previous drug treatment is causing this intra-
individual effect. No obvious factor, such as age or sickle cell trait,
was shared by such individuals. Five of these individuals had
significant intra-individual estimates for PFA. Only one individual
had a significant intra-individual estimate in the CQ] period and
was not significant in the CQ2 period.

Correlations between malaria phenotypes

There were no significant correlations in either individual
additive genetic or intra-individual effects between PFA and Pfgam
at any period where non-zero estimates were available.

Discussion

Here we have made an initial study of the heritability of two P.
falciparum malaria-related phenotypes in a single population over
time. The analyses divided the longitudinal study according to
drug treatment to examine the impact of the radical selection
pressure that would have been exerted on the parasite population
at each change in drug treatment. In addition, the change in
transmission intensity occurring over the 19 year enabled us to
assess its impact on the heritability of the malaria phenotypes. The
evolution of anti-malarial drug resistance and the force of infection
have been well studied in the population [36,37,40] and thus we
explored heritability in a single population undergoing well-
defined environmental changes.

Firstly, it was notable that for PFA, a phenotype known to be
influenced by human genetics, significant heritability was lost
following the change in drug treatment from quinine to
chloroquine and in subsequent drug periods. There was no
significant change in incidence rate, at least during the quinine
and chloroquine periods, no difference in the number of different
individuals presenting with clinical disease, or in the pedigree
structure (as estimated by the mean genetic relatedness). This
suggests that the implementation of the new drug in some way
interfered with the human genetic contribution to the outcome of
infection. In direct contrast, the intra-individual variance compo-
nent increased following the implementation of chloroquine.

Intra-individual variance encompasses effects specific to each
individual, classically including maternal effects and dominance
(non-additive) genetic effects [35,46]. There was no maternal effect
for the number of P. falciparum clinical episodes in our cohort at
any time period. The very high correlation of the individual
genetic and intra-individual estimates within each drug period
suggests that the two effects are highly confounded. This might be
a result of insufficient resolution of the relatedness matrix within
cach drug period — ie. either not enough relative-pairs were
present within each period and/or the IBD matrix was not
sufficiently resolved. This would lead to confounding between
shared environmental, additive and non-additive genetic effects
[47] and might explain the loss of heritability. However, given the
similarity in mean genetic relatedness of individuals in the quinine
(when the genetic effect was significant) and other periods, this
seems an insufficient explanation. One potential source of
variation would be local heterogeneity in individual exposure to
mosquitoes. The increase in the intra-individual variance compo-
nent as the transmission intensity decreased is consistent with
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heterogeneity in mosquito biting. Although there was no evidence
for a significant impact of shared environment (house), heteroge-
neity in exposure may occur at a finer level of spatial resolution
and/or that reflecting individual behavioral differences ([48]
including commentary). One possible source of differential
exposure would come from bednet use. However, long-lasting
insecticidal-treated nets were not actively promoted until the
summer of 2008. Individuals showing extreme intra-individual
estimates shared no particular feature, whether it be age, sex or
time present in the study site. This argues against any particular
behavior or state of immunity contributing to the observed
increase in estimates. The intra-individual variance component
also includes environmental effects on an individual’s phenotype
that are constant across (or common to) repeated measures on that

individual [46]. It is notable that not only do individual estimates
correlate only with those from the subsequent drug period, but
also that the majority of the extreme values per individual
occurred in one drug period. One explanation for this concerns
the impact of the differing drug treatments on the parasite
population.

The most evident change in the parasite population during the
study was the development of resistance first to chloroquine and
then to Fansidar [40]. Treatment failure would result in the same
individual presenting more than once for the same infection, thus
artificially increasing that individual’s number of malaria episodes
and hence the estimated intra-individual effect. However, there
was no evidence for treatment failure biasing the number of
malaria episodes per person. The second effect of drug pressure
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Table 5. Correlation of individual estimates of (i) the intra-individual and (ii) additive genetic effects underlying the variation in the
proportion of P. falciparum clinical episodes positive for gametocytes according to drug period.

Pfgam

(i) Intra Quinine cQ1 cQ2 Fansidar ACT
Quinine 0.23* 0.42%+* - 033
cQ1 0.26%* - 0.11
Q2 - 0.34**
(ii) Genetic Quinine cQ1 cQ2 Fansidar ACT
Quinine 0.31%* 0.40* 0.27
cQ1 @k —0.02
Q2 B B
Fansidar 0.25%
*P<0.05,

**P<0.01,

#*p<0,001.

doi:10.1371/journal.pone.0026364.t005
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would be to radically reduce parasite diversity and select for a sub-
population of parasites. This process would not be instantaneous,
because the majority of the parasite population at any one time in
this cohort resides in untreated, asymptomatic infections. Thus,
the positive correlations of individual intra-individual and indeed
additive genetic estimates in consecutive drug periods might reflect
the slowly changing parasite population, implicitly suggesting the
existence of specific human-parasite interactions. Drug pressure
would result in a stochastic loss of particular parasite genotypes,
selection for drug resistant genotypes and potentially selection of
parasites more pathogenic for particular individuals. The changing
drug regimens would be expected to differentially select for
parasite genotypes at each instance, thus making it highly unlikely
that the same individuals would be continually susceptible. Whilst
an attractive hypothesis, a combination of immune state, behavior
and random focal transmission for specific periods of time could
generate the observed increase in the intra-individual effect. Our
study can not provide the immunological and parasite genetic data
that demonstrate changes in the parasite population that would
likely have clinical implications for a sub-set of individuals.
Moreover, given the complexity and uncertainty of the key
parasite antigens that are implicated in the development of clinical
immunity [49], such data might not be simple to interpret.

In contrast to the immeasurable effect of very fine scale spatial
heterogeneity in exposure to infection that will impact on PFA,
variability in gametocyte production in an infection will reflect the
influence of the host-parasite interaction. Both parasite and host
genetics can influence gametocyte production [27,50]. In this
study we found no additive genetic effect underlying the
proportion of clinical infections with gametocytes, confirming
our previous observations [27]. Interestingly, however, there was a
similar increase in the intra-individual effect to that observed for
PFA and the two phenotypes were not correlated. Moreover, as for
PFA, there was good correlation in estimates across only
consecutive periods. These comparable effects to PFA were
particularly notable during the period when transmission intensity
was stable. Subsequently, the decrease in intensity in the Fansidar
and ACT periods was accompanied by an even more significant
decrease in gametocyte prevalence, resulting in perilously small
sample sizes for reliable analysis.

Here, the period of drug treatment strongly influenced this
phenotype. Such an influence has been well documented following
treatment. Chloroquine increases gametocyte production [51] and
Fansidar has also been suggested to increase gametocyte
production [52] and/or longevity of gametocyte carriage in a
single infection with drug resistant parasites [53]. By contrast,
ACT has a gametocytocidal activity and reduces gametocyte
carriage [54]. Here, there were no indications that previous
treatment contributed to gametocyte presence at presentation,
thereby inflating the intra-individual effects in the chloroquine
periods. During the Fansidar period, a longer time since treatment
was associated with gametocyte presence. The variation in the
prevalence of gametocytes at presentation strongly suggests that
the parasite population altered according to drug period and the
correlated individual intra-individual estimates over successive
drug periods are similar to those seen for PFA. This would support
the hypothesis that changes in the parasite population diversity are
contributing to the observed phenotype.

Estimation of heritability in its broad sense in natural
populations is not possible and hence narrow sense heritability,
which estimates the additive genetic contribution, is calculated.
Actual values of heritability are specific for a study population at a
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particular time and thus strict comparison is not informative,
although broad trends can be inferred. The size of heritability
provides an indication of the power to detect the effect of
individual genes when performing GWA studies. Here it is clear
that for several reasons, the choice of the study period for GWA
study analysis will affect the quality of the signal. The requirement
for large longitudinal data sets to generate sufficient power must
therefore be offset by the ever-increasing noise that accompanies
long-term data sets — more time means more variance [55].

The peculiarity of the variance component analyses in this study
was the replacement of an additive genetic component by an intra-
individual component over time. Classical components of the
intra-individual component, such as maternal effects, were not
found to be the root cause of this and spatial heterogeneity in
exposure seems an insufficient explanation, especially during the
quinine and chloroquine periods. Insufficient resolution and power
of the pedigree matrix may have led to confounding between
additive and non-additive genetic components, but again this
seems an inadequate explanation given the mean genetic
relatedness of the individuals implicated. Observed patterns of
individual estimates were consistent with there being specific host-
parasite interactions. Although relatives might be expected to
respond similarly to an identical parasite, this might not be
detectable as an additive genetic component. To what extent
changes in the parasite population can impact upon genetic studies
is important to understand, both on a practical level of study
sampling strategy and at a fundamental level to ask whether
candidate genes should be expected to have an effect under
whatever circumstances. In the hypothetical case of population
fixation of a protective gene, heritability will be zero. What will be
the expected heritability in a diverse human population if parasite
diversity approaches zero? Will certain genes only be protective
against a sub-set of parasites?

In this study we have found suggestive evidence that the parasite
population may impact upon estimates of heritability. Whereas a
review of theory and data have led to the suggestion that additive
genetic variance will represent the majority of genetic variance in
complex traits [56], this conclusion averages across populations
and may not therefore be the case within a single population [6],
especially in the case for infectious diseases. The complex,
polygenic basis to the human response to malaria parasite
infection may well include dominance/epistatic genetic effects
that are encompassed within the intra-individual effect. Evaluating
their role in host genotype by parasite genotype interactions in
model systems will surely be fruitful. In conclusion, prior genetic
analysis of carefully defined phenotypes, both spatially and
temporally delimited, must surely not only be a pre-requisite to
more detailed GWA studies, but also may be informative for the
potential importance of pathogen genetics and the occurrence of
host-pathogen interactions.
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